(* Example proof by Larry Paulson; see http://www.cs.kun.nl/~freek/comparison/ Taken from Isabelle2004 distribution. *) (* Title: HOL/Hyperreal/ex/Sqrt_Script.thy ID: Id: Sqrt_Script.thy,v 1.3 2003/12/10 14:59:35 paulson Exp Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 2001 University of Cambridge *) header {* Square roots of primes are irrational (script version) *} theory Sqrt_Script = Primes + Complex_Main: text {* \medskip Contrast this linear Isabelle/Isar script with Markus Wenzel's more mathematical version. *} subsection {* Preliminaries *} lemma prime_nonzero: "p \ prime \ p \ 0" by (force simp add: prime_def) lemma prime_dvd_other_side: "n * n = p * (k * k) \ p \ prime \ p dvd n" apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult) apply (rule_tac j = "k * k" in dvd_mult_left, simp) done lemma reduction: "p \ prime \ 0 < k \ k * k = p * (j * j) \ k < p * j \ 0 < j" apply (rule ccontr) apply (simp add: linorder_not_less) apply (erule disjE) apply (frule mult_le_mono, assumption) apply auto apply (force simp add: prime_def) done lemma rearrange: "(j::nat) * (p * j) = k * k \ k * k = p * (j * j)" by (simp add: mult_ac) lemma prime_not_square: "p \ prime \ (\k. 0 < k \ m * m \ p * (k * k))" apply (induct m rule: nat_less_induct) apply clarify apply (frule prime_dvd_other_side, assumption) apply (erule dvdE) apply (simp add: nat_mult_eq_cancel_disj prime_nonzero) apply (blast dest: rearrange reduction) done subsection {* The set of rational numbers *} constdefs rationals :: "real set" ("\") "\ \ {x. \m n. n \ 0 \ \x\ = real (m::nat) / real (n::nat)}" subsection {* Main theorem *} text {* The square root of any prime number (including @{text 2}) is irrational. *} theorem prime_sqrt_irrational: "p \ prime \ x * x = real p \ 0 \ x \ x \ \" apply (simp add: rationals_def real_abs_def) apply clarify apply (erule_tac P = "real m / real n * ?x = ?y" in rev_mp) apply (simp del: real_of_nat_mult add: divide_eq_eq prime_not_square real_of_nat_mult [symmetric]) done lemmas two_sqrt_irrational = prime_sqrt_irrational [OF two_is_prime] end