
Proof General meets IsaWin

David Aspinall1 and Christoph Lüth2

1 LFCS, School of Informatics, University of Edinburgh, U.K.
WWW: http://homepages.inf.ed.ac.uk/da

2 Department of Mathematics and Computer Science, Universität Bremen
WWW: http://www.informatik.uni-bremen.de/~cxl

Abstract. We describe the design and plan for implementing a com-
bination of theorem prover interface technologies. On one side, we take
from Proof General the idea of a prover-independent interaction language
and its proposed implementation within the PG Kit middleware archi-
tecture. On the other side, we take from IsaWin a sophisticated desktop
metaphor using direct manipulation for developing proofs. We believe
that the resulting system will provide a powerful, robust and generic en-
vironment for developing proofs within interactive proof assistants, and
we intend to demonstrate this for some of our favourite systems.

1 Introduction

Proof General is a generic interface for interactive proof assistants, built on the
Emacs text editor [3, 2]. It has proved rather successful in recent years, and is
popular with users of several theorem proving systems. Its success is due to its
genericity, allowing particularly easy adaption to a variety of provers (primarily,
Isabelle, Coq, and LEGO), and its design strategy, which targets experts as well
as novice users. Its central feature is an advanced version of script management,
closely integrated with the file-handling of the proof assistant. This provides a
good work model for dealing with large-scale proof developments, by treating
them similarly to large-scale programming developments. Proof General also
provides support for high-level operations such as proof-by-pointing, although
these are less emphasised.

Proof General has some drawbacks, however. From the developers’ point of
view, it is rather too closely tied with the Emacs Lisp API which is somewhat
unreliable, often changing, and exists in different versions across different flavours
of Emacs. From the users’ point of view, although the interface offers some high-
level operations and tries to hide the shell-window process, interaction is still
firmly based on the proof assistant’s (often cryptic) command language, and not
much support is offered for specific tactics or commands.

IsaWin is the instantiation of a generic graphical user interface to Isabelle [16,
15, 17]. It aims at providing an abstract user interface based on a persistent
visualisation metaphor and the concept of direct manipulation; users need not
be concerned with the syntactic idiosyncrasies of the prover, and can instead
concentrate on the logical content of the proof. This abstract approach also



2 David Aspinall and Christoph Lüth

allows high-level operations: for example, there is support for proof-by-pointing
(folding or unfolding equations), term annotations (the system can display the
type of sub-terms), or tactical programming (one can cut parts from the history
of a proof to make it into an elementary tactic, which can be reapplied elsewhere).

While IsaWin is usually met with initial approval, in particular from novice
users, it has some drawbacks. Customising or adapting it to other proof assis-
tants requires Standard ML programming, and a good understanding of the data
structures, so it is not possible to adapt a system gradually (unlike with Proof
General), and it is hard to adapt to provers not implemented in Standard ML.
Moreover, it only has a rudimentary proof script management, and integrates
foreign proof scripts only reluctantly.

Thus, Proof General and IsaWin can be considered as complimentary, with
each offering advantages to compensate for the other’s shortcomings. This paper
describes an attempt to combine their advantages in one system based on the
PG Kit infrastructure presented in [4, 5]. The resulting system has an event-
based architecture and focuses on managing proof scripts as the central artefact.
A generic interactive protocol language allows one to connect different user in-
terfaces (called displays); thus, IsaWin becomes one particular user interface in
this setting.

In the remainder of this paper, we describe the particular aspects of Proof
General and IsaWin that we want to build on, followed by a outline design of
the new system. We close by briefly mentioning related work, and our vision for
the future evolution of the project.

2 Proof General Basic Concepts

Emacs Proof General is the present incarnation of Proof General, based on
the ubiquitous Emacs text editor.3 For Proof General, a proof consists of the
user-editable formal text (or proof script) which, when processed by the machine,
constructs a representation of a proof in a formal system. The target proof script
is the central focus of development.

It doesn’t matter whether the proof script contains a tactic-style procedural
proof, or a declarative proof description. The interface relies on the underlying
proof assistant being able to process a proof script interactively and incremen-
tally, in a textual dialogue: the user issues a proof command, and the system
responds. A distinction is made between proper proof script commands, which
belong in the text, and improper commands, which do not. Proper commands
include statements of propositions to be proved, and the contents of their proofs.
Improper commands include undo steps, commands for inspecting terms and for
querying a database of available theorems. The proper commands are stored in
the proof script file, and coloured according to progress in the proof: crucially,
regions which have been processed by the proof assistant are coloured blue and
should not be edited. This is the idea of script management as described in [8].
3 Several flavours of Emacs are supported, including XEmacs and GNU Emacs, run-

ning on numerous platforms.



Proof General meets IsaWin 3

Fig. 1. The Proof General interface. The window is split into two panes, the bottom
displaying the output from the proof assistant, the top displaying the proof script,
coloured according to progress.

Proof General provides a simple browsing metaphor for replaying proofs, via
a toolbar for navigating in a proof script, see Fig. 1 for a screenshot. Behind
the scenes, this works by sending commands to issue proof steps and undo proof
steps. The undo behaviour relies on the built-in history of the proof assistant,
which typically forgets the history between steps of a proof once the proof has
been completed.4 The undo behaviour splits the proof script into regions (or
spans) of consecutive lines which are atomic for undo. Spans are treated linearly
within the file, although they have a dependency structure which expresses de-
pendencies within the proof development itself: it is possible to display this de-
pendency within the interface, to highlight the auxiliary lemmas used in proving
a theorem, for example.

Proof General provides an advanced implementation of script management
which synchronises file editing between the proof assistant and editor in a two-
way communication. Files are used to store proof scripts, representing parts of
developments. If the user completes processing a proof script file, Proof General
informs the prover; if the prover reads another file during processing, it will
inform Proof General. Similarly for undo operations at the file level.

Technically, Proof General is implemented mostly in Emacs Lisp, interfac-
ing with other Emacs packages, notably including X-Symbol [26] for displaying

4 This is initially counter-intuitive to new users, although they soon get a feel for it.



4 David Aspinall and Christoph Lüth

mathematical symbols. A considerable effort has been made into making it easy
to adapt Proof General to new proof assistants, and it can be possible to configure
by setting only a handful of variables, with little or no Emacs lisp programming.
But the mechanism is tiresome: we try to anticipate and cater for many dif-
ferent proof assistant behaviours within Proof General. Moreover, for advanced
features (such as proof-by-pointing [7] and proof-dependency visualisation [18,
21]), dedicated support from the proof assistant is inevitably required.

3 Proof General Kit Basic Concepts

To address the limits of the Proof General model, and particularly of the Emacs
Lisp implementation, Proof General (PG) Kit has been designed [4, 5]. The cen-
tral idea is to use the experience of connecting to diverse provers to prescribe a
uniform protocol for interaction. Instead of tediously adapting Proof General to
each prover, Proof General will call the shots, by introducing a uniform protocol
for interactive proof, dubbed PGIP, which each prover must support.

As well as controlling the progress of the interactive proof, PGIP is respon-
sible for initialization and book-keeping tasks which require communication be-
tween the proof assistant and the interface architecture. It includes messages to
configure (proof assistant specific) user-level menus and preferences; messages to
display status or error dialogues, and messages to retrieve theory files. PGIP is
based on messages sent in an XML format.

Apart from communicating the intent of a proof interaction, we want to com-
municate a representation of it; for example, by displaying a list of subgoals to be
solved to complete some proof. To help with this, PG Kit includes another XML
format, PGML, the Proof General Markup Language. The markup language is
intended for displaying concrete syntax. It includes representations for mathe-
matical symbols, along with the possibility of hidden annotations which express
term structure. These annotations can be used to implement sub-term cut-and-
paste, proof-by-pointing or similar features [7]. Of course, there are already lan-
guages for XML-based document formats designed for displaying mathematics
(MathML, [24]), and transferring mathematical content between applications
(OpenMath, [20]). Later on, we hope to use these languages with PGML. At the
moment, it is more feasible to implement our own simple markup scheme since
both MathML and OpenMath go further into the abstract structure of terms
than we need, or than we can easily accommodate in a generic way.

PGIP and PGML are described in full elsewhere [5], including DTDs for the
languages, and the description of the architecture into which they fit (described
more in Sec. 5). There is not yet a complete implementation of Proof General
Kit, but experimental progress on several fronts.5 The work described below will
be a major advance.

5 Isabelle2003 uses PGIP messages to configure PG’s menus, and supports PGML
output.



Proof General meets IsaWin 5

Fig. 2. The IsaWin interface. The main window shows the notepad and folder naviga-
tion bar on the top, and the ongoing proof below. Two auxiliary windows open here
allow the search for theorems, and show the history of the proof.

4 IsaWin Basic Concepts

IsaWin is the instantiation of a generic graphical user interface called GenGUI
for the Isabelle proof assistant. It provides a more abstract, less syntax-oriented
interface to Isabelle (and related provers), based on the visual metaphor of a
notepad. All objects of interest, such as proofs, theorems, tactics, sets of rewriting
rules etc. are visualised by icons on a notepad, and manipulated there using
mouse gestures. More complex objects such as proofs can be manipulated by
opening them in a separate sub-window. IsaWin offers self-contained history
support, proof-by-pointing, dependency management and session management.

The interface is based on the concept of direct manipulation: a continuous
representation of the objects and actions of interest with a meaningful visual
metaphor and incremental, syntax-free operations, i.e. user gestures such as
dropping an object onto another, pop-up menus or mouse clicks. Objects are
visualised by icons on a notepad (see Fig. 2). The icon is given by the type of
the object, which determines the available operations. Hence, when users see
an object visualised by a theorem icon, they know that if they drop this object
onto another theorem object, the theorem prover will attemp to combine them
by forward resolution, whereas if the theorem is dropped onto on ongoing proof,



6 David Aspinall and Christoph Lüth

a new proof step using backward resolution with this theorem will be attempted.
The type of an object further determines the operations appearing in its pop-
up menu and whether (and how) it can be opened into a separate sub-window.
The interface also keeps track of dependencies, i.e. if one object is used as an
argument to construct another object, and if objects are changed or outdated,
all dependent objects are outdated as well.

Drag&drop is resolved by a table indexed with the types of the dropped and
the receiving object respectively. The history is represented internally, as the
sequence of operations used to construct an object. This has some advantages,
as it allows an abstract manipulation of proofs; for example, we can cut out
parts from proof scripts and make them into reusable tactics. But moreover it
has severe disadvantages: as proof scripts are an external representation of the
history, a generic script management is not very straightforward to implement,
and indeed IsaWin only offers limited script management, compared to Proof
General. IsaWin has its own format to save and read proofs, and while it has some
limited support to produce proof scripts in Isabelle’s native format, it cannot
parse them. This makes it hard to use IsaWin on proof scripts not developed
using IsaWin.

Technically, GenGUI is an implemented completely in Standard ML (SML).
IsaWin is the instantiation of GenGUI with a particular Isabelle-specific module.
To customise it (adding or changing icons, shortcut buttons, or menu entries),
one has to change this module. To adapt GenGUI to another proof assistant,
one implements a different module with a given signature, containing the object
types, operations and the drag&drop table. This requires a good understanding
of the signature (and of SML), and also makes adaption to provers not imple-
mented in SML cumbersome.

For us, the experience with GenGUI and IsaWin has shown that the imple-
mentation of an interface as an add-on in the same programming language as the
proof assistant leads to a non-modular architecture, which makes the interface
difficult to reuse. It also makes the interface less robust: if the prover diverges or
returns a run-time error, the interface diverges or stops as well. For these rea-
sons, not many different adaptations of GenGUI exist, and in comparison with
Proof General, GenGUI has not fully delivered on its promise of genericity.

A better architecture is to keep interface and proof assistant separate, and
specify their interaction cleanly and in a language independent way — which
is precisely what PGIP does. Proof scripts, understood broadly as the sequence
of proof steps leading to a goal, are the main artefacts the user is constructing
when working with a proof assistant, and as such should be represented and
manipulated explicitly, rather than implicitly as in GenGUI.

5 System Architecture

The system is a synthesis of two existing designs. From the users’ point of view,
nothing much should change; their experience when working with the new system
should by and large by the same as working with IsaWin or Proof General.



Proof General meets IsaWin 7

Hence, the main novelty of this system will be its internal architecture and
communication protocols, which we will be describe in this section.

The system is an implementation of the PG Kit architecture presented in [4],
which comprises a central proof mediator, connected to several displays engines
and a proof assistant. The different components communicate in the interface
protocol language PGIP (see above).

The mediator maintains the overall state, the proof scripts, and their de-
pendencies. It sends commands to, and receives status messages from the proof
assistant; at the same time, it receives user input from the display, and keeps
the displays up-to-date. In principle, we can connect to more than one proof
assistant at the same time, but presently we cannot interchange any data (such
as proofs or theorems).

A display engine or display for short visualises the proof assistant’s state,
proofs, theorems, and so on. There can be more than one display connected
to the main broker, and there are different kinds of displays. A simple line-
oriented display displays lines of text and relays command lines typed by the
user; this corresponds to Emacs Proof General. Slightly more sophisticated, a
graphical display translates user gestures (drag&drop and so on) into textual
prover commands; thus, IsaWin becomes another specific display module in this
architecture. Other possible displays could include a web interface (either client-
side by running an applet in a browser, or server-side by embedding the mediator
into a web server via techniques such as servlets, ASP or CGI). We further
distinguish between active and passive displays. An active display allows the
user to enter commands, whereas a passive display primarily visualises proofs,
possibly allowing active browsing.6

Proof
Assistant

Proof
Assistant

Graphical User
Interface

Emacs

Prover
Encapsulation

File System Theory Store

History

Event Broker

Display:
PGWin

Display:
Emacs

PG Mediator

Tcl

PGIP

PGIP

Lisp

Fig. 3. System Architecture

6 In [4], these have been called input engines and display engines.



8 David Aspinall and Christoph Lüth

Fig. 3 shows the system architecture. Rounded boxes denote separate com-
ponents, and square boxes denote the different modules of the mediator. The
implementation is based on the notion of an event. Events are generated either
from user input, or change of state in the prover. The mediator is the central
event broker; it receives input events, updates its internal state, and sends on
change events to other parts of the system as necessary. Events are structured:
they contain PGIP messages.

5.1 Implementing the Mediator

The mediator is implemented in Concurrent Haskell, using the Glasgow Haskell
Compiler, with events as first-class values in Haskell [22]. That is, we have a
polymorphic datatype of events containing a value of any type, with operations
to synchronise on an event, sequence an action with an event, combine two events
via deterministic choice, and others:

Event a
sync :: Event a -> IO a
(>>>=) :: Event a-> (a-> IO b)-> Event b
(+>) :: Event a-> Event a-> Event a

This allows us to write concurrent functional programs in a notation reminiscent
of process algebras such as the π-calculus [19].

We implement the mediator as a set of Haskell modules, loosely coupled (by
Unix pipes) to the other components. The mediator contains one central event
broker, and one event handling module for each loosely coupled module, such
as displays and proof assistants (see Fig. 3). This architecture combines the
advantages of loose and tight coupling, and offers the flexibility of a component-
based framework such as CORBA without its implementation and performance
overhead.

Events contain PGIP messages. To model PGIP faithfully in Haskell, we
use HaXML [25]. From a given DTD, HaXML generates a series of Haskell
datatypes, one for each element, along with functions to read and write XML.
The advantage is that the type security given by the DTD extends into our
program, making it nearly impossible to send messages containing invalid XML,
and detecting the reception of invalid XML immediately.

There are different types of events, corresponding to different elements in the
PGIP DTD, represented by different types in the mediator. These include:

– Command events (type DispCmd) are commands input by the user. Com-
mands are generated by active displays, either by interpreting gestures or by
the user typing a command line (or in fact mixtures of the two), and then
handled by the event broker.

– Display message events (DispMsg) contain messages to be displayed, such as
a new proof assistant state, error or warning messages. Display events are
generated by the event broker from proof response events, or as an answer
to user input (e.g. trying to browse beyond the end of the history).



Proof General meets IsaWin 9

– Prover commands (ProverCmd) are commands sent to the prover encapsula-
tion, either generated from command events, or when replaying proof scripts.
They contain PGIP which is sent on the corresponding proof assistant.

– Prover message events (ProverMsg) are messages from the proof assistant in
response to proof commands, containing e.g. a new proof assistant state, or
an error returned by the prover. They are interpreted by the event broker,
which updates its internal states accordingly, and updates the connected
displays.

– Display configuration events (DispConfig) configure the display, adding or
changing menus, shortcut buttons, icons, or the drag&drop table. These are
sent by the proof assistant to the broker, and passed on to all connected
displays.

– An interrupt event (DispINT) signals that the user wants to interrupt what-
ever the proof assistant is doing currently. Interrupt events are ordinary
events to the event broker, but they cause the module handling the proof
assistant to send an out-of-band message, to the proof assistant, such as a
user interrupt signal (SIGINT) on Posix systems.

To illustrate the event concept, we follow a typical event around the system.
Assume that the user enters a command, e.g. by pressing a button on the GUI
or merrily typing on his keyboard. This command results in a DispCmd event
being sent from the display to the event broker. The event broker looks up the
current proof from its internal state, and which prover handles this proof. It
sends a ProverCmd event to the prover encapsulation, updates the display with
the new command, and appends the command to the history. Some time later,
the proof assistant returns a result, generating a ProverMsg event which is sent
to the event broker. If it is an error message, all outstanding commands to that
prover are flushed (if one proof command fails, it usually makes no sense to try
subsequent ones). If the command succeeds, the prover’s new state will be noted.
In any case, a DispMsg event containing either the error message, or the new
prover state, will be sent to all displays.

As we can see, this is asynchronous: users can type ahead of the prover. This
way, proof replay is not any more different from normal user input, and both
can be handled in a uniform way.

5.2 Displays

All display engines, even such seemingly different ones like Emacs and IsaWin,
serve to visualise display messages originating mainly from the event broker.
Crucially, later display messages refer to earlier ones. For example, in a line-
oriented interface, when we replay a proof, we want to mark previously display
lines as “replayed” (by colouring them differently). Moreover, user input pertains
to the previously displayed messages: in a line-oriented interface, users may
change a line in a proof, and in a graphical interface, users may click on icons,
or drag and drop them.

In order to subsume different display engines in a uniform framework, we
use the notion of an object as introduced by the generic graphical user interface



10 David Aspinall and Christoph Lüth

(see Sect. 4 above). An object is anything the system needs to keep track of:
most prominently, ongoing proofs, but also auxiliary objects such as theorems,
tactics, rewrite rules, and so on. In PGWin, an object corresponds to an icon
on the desktop; in Emacs, an object corresponds to a span, which is a particular
line range in a particular text buffer.

All display engines have to implement certain operations, such as display
warnings, errors and status messages; create a new object; update a previously
displayed object; outdate an object; receive user input; etc. Technically, we define
a type class Display, which defines the operations that a display has to imple-
ment, for example creating and updating objects, generating command events
(DispCmd), and receiving display message events (DispMsg):

class Display d where
newObject :: d-> ObjId -> ObjType -> DispAttr -> IO ()
updObject :: d-> ObjId -> ObjText -> IO ()
bind :: d-> IO (Event DispCmd)
send :: d-> DispMsg-> IO ()

Every kind of display engine is modelled by a different type, but all are instances
of the display class:

instance Display PGWin where
-- definition of functions follows ...

instance Display Emacs where
-- definition of functions follows ...

All displays are kept in one heterogeneous list (using existential types [14]):
display events are sent to all elements of this list, and the command events
generated by all displays are the command events of each display combined with
the obvious extension of the binary choice operator (+>) to lists of events.

5.3 PGWin

As explained above, IsaWin is organised around types and objects. User gestures
are translated into commands by a table indexed with the types of the objects.
In IsaWin, this table was implemented as an ML structure. Here, this table,
along with the types of the proof assistant, the icons and many other details of
the visual appearance are determined by display configuration messages, which
form part of PGIP. Thus, when connecting a proof assistant to the mediator,
the proof assistant sends configuration messages which tell the system the types
of objects the proof knows about, and the commands triggered by drag&drop.
There are further display configuration messages to add, change, or delete a
custom menu’s entries, configuration options, or shortcut buttons. This flexibility
can also exploited by the user, so the user can change the appearance of the
desktop on-the-fly by adding or deleting shortcut buttons or menu entries with
user-defined tactics attached to them.

The display handler translates user gestures into prover commands, which
are textually represented, stored and displayed. As opposed to IsaWin, where



Proof General meets IsaWin 11

commands were stored in an internal abstract representation, this has distinct
advantages: it accustomises users to the syntax of the command language, since
they will see it appearing in the history, it allows users to textually enter com-
mands as well, giving them full access to proof tactics or customised proof pro-
cedures, and finally, it allows mixed textual and graphical user input.

The PGWin display engine is implemented in HTk, a functional encapsula-
tion of the graphical user interface library and toolkit Tcl/Tk into Haskell [12].
Thus, the PGIP events are translated into Tcl code within Haskell, which is
then sent on to the Tcl/Tk interpreter wish (see Fig. 3). A future, alternative
graphical display engine might communicate externally in PGIP; but there is
still a considerable amount of implementation work to organise the graphical
interface which we believe is better done in Haskell than in an untyped scripting
language like Tcl.

6 Conclusions and Outlook

This paper has described the concepts underlying the synthesis of the Proof
General and IsaWin interfaces into one combined interface. The new interface
has an event-based architecture based on the PG Kit, and consists of several
components communicating in the PGIP proof protocol. In the first instance, we
view this advance largely as a refactoring of existing designs: the user experience
when working with the new system be broadly similar to the present IsaWin.
However, the aspects that will make the system more useful to expert users
will be improved as mentioned above, for example, in the ability to view and
import proof scripts. Moreover, the open architecture opens the way to more
easily implementing new interaction mechanisms, and developing a truly generic
high-level interface.

State of the implementation. Currently, implementation of a first prototype to be
demonstrated at UITP’03 is under way; thus, it is too early to say anything about
the usability and success of the resulting system. However, we believe that the
concepts introduced and explained in this paper are of sufficient general interest.

Related Work. Many other projects such as OMEGA [6], OMRS [10], Pros-
per [9], and HELM [1] also address the problems of interoperability. OMEGA
has developed into the MathWeb project, providing an web-based mathematics
infrastructure, which is perhaps closest in scope to our work. MathWeb uses an
an XML-based interchange format called OMDoc [13] to communicate math-
ematical documents (proofs, theories, and so on). While OMDoc is targeted
towards exchanging documents, and not interactive proof, enabling our system
to exchange OMDoc documents, and thus connect it to MathWeb would be ben-
eficial: it would allow MathWeb to make use of interactive proof assistants, and
would allow PG Kit to tap into the vast supply of MathWeb documents. Prosper
uses another approach to interoperability, aiming at connecting different auto-
mated proof tools together: at the core of the system an LCF prover kernel is



12 David Aspinall and Christoph Lüth

used to guarantee logical consistency. This is a more logic-centred view, with an
emphasis on the exchange of proofs and theorems, and hence complimentary to
our work.

Outlook. At the moment, proof scripts are still stored in the proof assistant’s
native format. A future item on the agenda is the definition and implementation
of a generic scripting language, which would allow the exchange of replayable
proofs, or even parts of proofs, between different proof assistants. This would
also allow us to consider generic manipulation of proof developments, such as
dependency analysis or lemma-lifting. Adding foreign exchange formats such as
OMDoc would be a worthwhile addition as well, as it extends the scope of our
system. More technically, the use of a versioning repository to store proofs would
be a useful feature for advanced users; hopefully, a free off-the-self solution such
as Subversion [23] could be used here.

Acknowledgements. DA was supported by the MRG project (IST-2001-33149)
which is funded by the EC under the FET proactive initiative on Global Com-
puting.

References

1. Andrea Asperti et al. HELM: Hypertextual electronic library of mathematics,
2002. See web page hosted at http://helm.cs.unibo.it/, University of Bologna.

2. D. Aspinall, H. Goguen, T. Kleymann, and D. Sequeira. Proof General, 2003.
System documentation, see http://www.proofgeneral.org/doc.

3. David Aspinall. Proof General: A generic tool for proof development. In Graf and
Schwartzbach [11], pages 38–42.

4. David Aspinall. Protocols for interactive e-proof, 2000. Available from http:

//www.proofgeneral.org/doc.
5. David Aspinall. Proof General Kit. White paper. Available from http://www.

proofgeneral.org/kit, 2002.
6. Christoph Benzmüller et al. ΩMega: Towards a mathematical assistant. In

William McCune, editor, 14th International Conference on Automated Deduction
— CADE-14, LNAI 1249. Springer, 1997.

7. Yves Bertot, Thomas Kleymann, and Dilip Sequeira. Implementing proof by point-
ing without a structure editor. Technical Report ECS-LFCS-97-368, University of
Edinburgh, 1997. Also published as Rapport de recherche de l’INRIA Sophia An-
tipolis RR-3286.

8. Yves Bertot and Laurent Théry. A generic approach to building user interfaces
for theorem provers. Journal of Symbolic Computation, 25(7):161–194, February
1998.

9. Louise A. Dennis et al. The PROSPER toolkit. In Graf and Schwartzbach [11].
10. Fausto Giunchiglia, Paolo Pecchiari, and Carolyn Talcott. Reasoning theories:

Towards an architecture for open mechanized reasoning systems. In F. Baader
and K.U. Schulz, editors, ”Frontiers of Combining Systems - First International
Workshop” (FroCoS’96), Kluwer’s Applied Logic Series (APLS), pages 157–174,
1996.



Proof General meets IsaWin 13

11. Susanne Graf and Michael Schwartzbach, editors. Tools and Algorithms for the
Construction and Analysis of Systems TACAS 2000, LNCS 1785. Springer, 2000.

12. HTk — graphical user interfaces for Haskell programs, 2002. http://www.

informatik.uni-bremen.de/htk.
13. Michael Kohlhase. OMdoc: Towards an OpenMath representation of mathematical

documents. Available from http://www.mathweb.org/omdoc/.
14. Konstantin Laufer. Type classes with existential types. Journal of Functional

Programming, 6(3):485 – 517, May 1996.
15. Christoph Lüth, Haykal Tej, Kolyang, and Bernd Krieg-Brückner. TAS and

IsaWin: Tools for transformational program developkment and theorem proving. In
J.-P. Finance, editor, Fundamental Approaches to Software Engineering FASE’99,
LNCS 1577, pages 239– 243. Springer, 1999.

16. Christoph Lüth and Burkhart Wolff. Functional design and implementation of
graphical user interfaces for theorem provers. Journal of Functional Programming,
9(2):167– 189, March 1999.

17. Christoph Lüth and Burkhart Wolff. More about TAS and IsaWin: Tools for
formal program development. In T. Maibaum, editor, Fundamental Approaches to
Software Engineering FASE 2000, LNCS 1783, pages 367– 370. Springer, 2000.

18. Fiona McNeil. On the use of dependency tracking in theorem proving. Master’s
thesis, Division of Informatics, University of Edinburgh, 2000.

19. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

20. The OpenMath Society. http://www.nag.co.uk/projects/openmath/omsoc/.
21. Olivier Pons, Yves Bertot, and Laurence Rideau. Notions of dependency in proof

assistants. In Proc. User Interfaces for Theorem Provers, UITP’98, 1998.
22. George Russell. Events in haskell and how to implement them. In International

Conference on Functional Programming ICFP’01, 2001.
23. Subversion. A compelling replacement for CVS. Available from http://

subversion.tigris.org/, 2003.
24. Mathematical markup language (MathML). W3C Recommendation, 1999. http:

//www.w3.org/TR/REC-MathML/.
25. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators or

type-based translation? In International Conference on Functional Programming
ICFP’99, pages 148– 159. ACM Press, 1999.

26. Christoph Wedler. Emacs package X-Symbol. Available from http://x-symbol.

sourceforge.net, 2003.


