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Introduction

Background
Why Proof General?

What is Proof General?
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Background

• Terminology: machine proof

− formal machine representation of mathematical/logical proof

• Machine proofs useful in

− specification, development, verification of software and hardware

− teaching mathematical proof and formal logic

− mathematical research

• Terminology: proof assistant (or prover )

− an interactive computerized helper for developing machine proofs

• Terminology: proof script

− user-level input to prover which constructs a machine proof

− may contain procedural proofs (LCF style), or declarative proofs
(Mizar style)

− stored in a file, like a program
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Why Proof General?

• Many proof assistants still have only a primitive interface

− It’s easy to program!

− Experts unafraid of cryptic command language

• But a modern interface has advantages:

− Saves time for experts, providing short-cuts

− Helps novices, providing hints

− Opens the way to higher-level interactions

• A generic interface is attractive:

− Saves time for implementors, can concentrate on logical bits

− Helps users try different systems, using the same interactions
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What is Proof General?

• A generic interface based on Emacs

• It provides many useful features, including:

− script centred development

− script management

− proof by pointing

− helpful toolbar and menus

− coloured output and special fonts for maths, . . .

• It presently has support for Isabelle(/Isar), Coq, LEGO, Plastic, HOL98

• More support and development is on the way . . .

An idea: a generic tool to help proof development.
An attitude: be useful both to novices and to experts.
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Architecture

Generic aspects of proof assistants
Choose Emacs

System architecture
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Generic aspects of proof assistants

• Interaction has a common structure

− User makes declarations or definitions

− User enters proof dialogue

? user gives proof step; system responds (e.g. subgoal list)

? repeat

• Proof scripts have a common structure, similarly:

− declarations and definitions, and

− goal . . .save sequences

• Primitive interfaces have common structure:

− Command-line interface: proof assistant shell

How can we build a system to exploit these common structures?
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Choose Emacs

• The world’s best text editor also provides a user-interface toolkit!

• Choosing emacs has pros

− user familiarity: Emacs already used to write scripts

− portability: runs on MS Windows, Unix, Linux, . . .

− interpreted scripting language for development: Emacs Lisp

− extensive libraries, easy user-customization

• . . .and cons

− hard to learn and over complicated

− the original bloatware

− interoperability limited (live in Emacs!)

− single-threaded
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System architecture

Emacs Proof

+-------------------------+ Engine

| | +---------------+

| | | |

| |--->| |

| |<---| |

| | | |

| | +---------------+

+-------------------------+ ^

^ | ^ | File

| | | v System

| v | +---------------+

| | |

USER +--->| |

+---------------+
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User Features

Script centered development
Script management

Proof by Pointing
User friendliness

Other Emacs features
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Script centered development

• Hide irrelevant information

− shell hidden

− but still available for emergencies

• Buffer display model: two-of-three window panes

− script

− goals or response

• Script buffer centred around “latest” proof command

• Goals buffer centred around working subgoal

• Response buffer displays other relevant messages

− urgent messages

− result of non-proof step (search results, command feedback)

• Customizable to use three buffers and multiple windows
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Script management

• Synchronizes editor with proof assistant

• Provides visual feedback

blue background — processed text

pink background — text being processed

• Highlighted text is locked to prevent accidental editing

• Connects with prover’s history mechanism, for retraction

− undo individual steps within a proof

− block-structure outside proof

• Connects with prover’s file handling

− extend synchronization to multiple files

− dependencies communicated or deduced automatically

• Avoids using cut-and-paste or “load file” commands
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Proof by Pointing

• Click on subterm of goal

− generates proof command to simplify/solve goal

− inserts command into proof

− executes it

• Support from proof assistant required!

− annotations to markup term-structure

− communication of position in AST

− proof command generation

• Many possibilities

− context-sensitive menus

− other gestures (e.g. drag term to rearrange equation)

− not yet implemented
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User friendliness

• Toolbar

− buttons to start proof, process step, undo step, finish proof, . . .

• Menus

− change display modes, start/stop proof assistant, . . .

− all commands available here

• Easy preference setting

• Online documentation

− variety of formats

− links to proof assistant documentation

• . . .and of course, speedy short-cut key sequences like

C-c C-RET proof-goto-point
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Other Emacs features

• Syntax highlighting

− decoration of proof scripts and prover output

• Symbol fonts

− glyphs for logical symbols, greek letters, etc

φ −→ ψ instead of phi --> psi

• Tags

− search for definitions and proofs amongst many files

• Item menu

− navigate to definitions and proofs in current window

• Remote proof assistant

− run prover on different machine using rsh or ssh
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Implementation

Implementation notes
Instantiation mechanism

Example instantiation
Development model
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Implementation notes

• Main implementation in Emacs Lisp

− 7000 loc for generic parts

− 30 – 500 loc per assistant for prover specific parts

• Support in proof assistant (optional)

− output markup for robustness

− file loading messages

− proof by pointing machinery

• Emacs Lisp issues

− fairly primitive, but has some CL macros (and CLOS emulation)

− slow, but built-ins and byte-code compilation improve matters

− easy to learn and use, docstrings are wonderful
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Instantiation mechanism

• 80 configuration settings total; may only need half. Organized as:

− Regexps to recognize proof script

− Regexps to recognize prover messages

− Commands to control prover

− Hooks to configure behaviour

• Some important examples:

proof-goal-command-regexp matches goal command in script

proof-shell-start-goals-regexp matches start of goals output

proof-prog-name command to start prover

proof-shell-insert-hook hook to tweak prover input

• One line to add autoloads, name, customizations for new prover

• Use define-derived-mode for new script, goals, response, shell

• With new “easy configure” mechanism, no Elisp necessary!
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Example instantiation

(require ’proof-easy-config) ; easy configure mechanism

(proof-easy-config

’demoisa "Isabelle Demo"

proof-prog-name "isabelle"

proof-terminal-char ?\;

proof-comment-start "(*"

proof-comment-end "*)"

proof-goal-command-regexp "^Goal"

proof-save-command-regexp "^qed"

proof-goal-with-hole-regexp "qed_goal \"\\(\\(.*\\)\\)\""

proof-save-with-hole-regexp "qed \"\\(\\(.*\\)\\)\""

proof-non-undoables-regexp "undo\\|back"

proof-goal-command "Goal \"%s\";"

proof-save-command "qed \"%s\";"

proof-kill-goal-command "Goal \"PROP no_goal_set\";"

proof-showproof-command "pr()"

proof-undo-n-times-cmd "pg_repeat undo %s;"

proof-auto-multiple-files t

proof-shell-cd-cmd "cd \"%s\""

proof-shell-prompt-pattern "[ML-=#>]+>? "

proof-shell-interrupt-regexp "Interrupt"

proof-shell-start-goals-regexp "Level [0-9]"

proof-shell-end-goals-regexp "val it"

proof-shell-quit-cmd "quit();"

proof-assistant-home-page

"http://www.cl.cam.ac.uk/Research/HVG/isabelle.html"

proof-shell-annotated-prompt-regexp "^\\(val it = () : unit\n\\)?ML>? "

proof-shell-error-regexp

"\\*\\*\\*\\|^.*Error:\\|^uncaught exception \\|^Exception- "

proof-shell-init-cmd

"fun pg_repeat f 0 = () | pg_repeat f n = (f(); pg_repeat f (n-1));"

proof-shell-proof-completed-regexp "\\(\\(.\\|\n\\)*No subgoals!\n\\)"

proof-shell-eager-annotation-start "^\\[opening \\|^###\\|^Reading")

(provide ’demoisa)
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Development model

• Successive generalization

− generalize as needed

− sometimes extend and redesign core, as needed

− LEGO mode −→ Proof Mode −→ Proof General

• Developer/maintainer in each camp

− Emacs and prover support for each prover

− adds specific features, generalizes if useful elsewhere

− serves as primary user/tester

• CVS server, access to whole repository for all developers

• Frequent pre-release versions, quick response to bugs

• Open source, user contributions welcomed
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Appraisal

Usage
Comparison

Benefits of Proof General
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Usage

• Target users of currently supported proof assistants:

User community Other interfaces?

LEGO 30 no

Coq 80 yes

Isabelle 200 yes

Isabelle/Isar 20 no

Plastic 5 no

HOL98 200 yes

• Other possible systems (HOL variants, Agda, VDM, ACL2, . . . )

• Use in teaching

− 2000 EEF Foundations school in Deduction and Theorem Proving

− 1999 Types Summer School: 50 learning LEGO, Coq, and Isabelle

− MSc/PhD course in formal reasoning at Edinburgh

• Current version is 3.1, about 100 registered users as of May 2000.
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Comparison

• There’s more sophistication elsewhere:

− Graphical representations: proof-trees, direct manipulation

− Structure editing, integrated environments, . . .

• However, Proof General has complementary aspects:

− intended for day-to-day proof, not an experiment in HCI

− draws on familiarity (text editor), uniformity (between systems)

− scales to large proofs

− portable, easy to adapt and extend

Proof General occupies a middle ground in interface technology
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Benefits of Proof General

• A nice front-end for doing real work!

• Is being used by experts, doesn’t get in their way (much)

• But is also used for teaching novices

• Replaying proofs is trivial

• By construction, it suggests a protocol for interactive proof

− New project to design standard extensible protocol . . .

• Very easy to install; self-configuring

• Very easy to adapt to new systems, to get basic features

Proof General achieves a lightweight, useful interface at little cost
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Future

• Evolutionary

− More features — completion, favourites, theory browser

− More proof assistants

• Revolutionary

− Factor out script management, use for programming languages

− Standardize markup mechanism (XML, MathML, OpenMath, ATerms)

− Focus on protocols, move away from purely Emacs

− Middleware layer connects proof engine to front-ends (CORBA)

• Imaginary

− Prover-independent syntax mechanisms

− Logic and theory mappings, standard taxonomies

Working title of next project: Proof General Kit
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The End

New Users, Developers Welcome!

• Enjoy using Proof General

• Add support for another prover

• Undertake a project

• Contribute to future design

Credits :
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