
Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Proof

General

A Generic Tool
for Proof Development

David Aspinall

LFCS, University of Edinburgh

http://www.lfcs.informatics.ed.ac.uk/proofgen

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Introduction

Background
Why Proof General?

What is Proof General?

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Background

• Terminology: machine proof

− formal machine representation of mathematical/logical proof

• Machine proofs useful in

− specification, development, verification of software and hardware

− teaching mathematical proof and formal logic

− mathematical research

• Terminology: proof assistant (or prover)

− an interactive computerized helper for developing machine proofs

• Terminology: proof script

− user-level input to prover which constructs a machine proof

− may contain procedural proofs (LCF style), or declarative proofs
(Mizar style)

− stored in a file, like a program

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Why Proof General?

• Many proof assistants still have only a primitive interface

− It’s easy to program!

− Experts unafraid of cryptic command language

• But a modern interface has advantages:

− Saves time for experts, providing short-cuts

− Helps novices, providing hints

− Opens the way to higher-level interactions

• A generic interface is attractive:

− Saves time for implementors, can concentrate on logical bits

− Helps users try different systems, using the same interactions

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

What is Proof General?

• A generic interface based on Emacs

• It provides many useful features, including:

− script centred development

− script management

− proof by pointing

− helpful toolbar and menus

− coloured output and special fonts for maths, . . .

• It presently has support for Isabelle(/Isar), Coq, LEGO, Plastic, HOL98

• More support and development is on the way . . .

An idea: a generic tool to help proof development.
An attitude: be useful both to novices and to experts.

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Architecture

Generic aspects of proof assistants
Choose Emacs

System architecture

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Generic aspects of proof assistants

• Interaction has a common structure

− User makes declarations or definitions

− User enters proof dialogue

? user gives proof step; system responds (e.g. subgoal list)

? repeat

• Proof scripts have a common structure, similarly:

− declarations and definitions, and

− goal . . .save sequences

• Primitive interfaces have common structure:

− Command-line interface: proof assistant shell

How can we build a system to exploit these common structures?

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Choose Emacs

• The world’s best text editor also provides a user-interface toolkit!

• Choosing emacs has pros

− user familiarity: Emacs already used to write scripts

− portability: runs on MS Windows, Unix, Linux, . . .

− interpreted scripting language for development: Emacs Lisp

− extensive libraries, easy user-customization

• . . .and cons

− hard to learn and over complicated

− the original bloatware

− interoperability limited (live in Emacs!)

− single-threaded

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

System architecture

Emacs Proof

+-------------------------+ Engine

| | +---------------+

| | | |

| |--->| |

| |<---| |

| | | |

| | +---------------+

+-------------------------+ ^

^ | ^ | File

| | | v System

| v | +---------------+

| | |

USER +--->| |

+---------------+

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

User Features

Script centered development
Script management

Proof by Pointing
User friendliness

Other Emacs features

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Script centered development

• Hide irrelevant information

− shell hidden

− but still available for emergencies

• Buffer display model: two-of-three window panes

− script

− goals or response

• Script buffer centred around “latest” proof command

• Goals buffer centred around working subgoal

• Response buffer displays other relevant messages

− urgent messages

− result of non-proof step (search results, command feedback)

• Customizable to use three buffers and multiple windows

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Script management

• Synchronizes editor with proof assistant

• Provides visual feedback

blue background — processed text

pink background — text being processed

• Highlighted text is locked to prevent accidental editing

• Connects with prover’s history mechanism, for retraction

− undo individual steps within a proof

− block-structure outside proof

• Connects with prover’s file handling

− extend synchronization to multiple files

− dependencies communicated or deduced automatically

• Avoids using cut-and-paste or “load file” commands

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Proof by Pointing

• Click on subterm of goal

− generates proof command to simplify/solve goal

− inserts command into proof

− executes it

• Support from proof assistant required!

− annotations to markup term-structure

− communication of position in AST

− proof command generation

• Many possibilities

− context-sensitive menus

− other gestures (e.g. drag term to rearrange equation)

− not yet implemented

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

User friendliness

• Toolbar

− buttons to start proof, process step, undo step, finish proof, . . .

• Menus

− change display modes, start/stop proof assistant, . . .

− all commands available here

• Easy preference setting

• Online documentation

− variety of formats

− links to proof assistant documentation

• . . .and of course, speedy short-cut key sequences like

C-c C-RET proof-goto-point

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Other Emacs features

• Syntax highlighting

− decoration of proof scripts and prover output

• Symbol fonts

− glyphs for logical symbols, greek letters, etc

φ −→ ψ instead of phi --> psi

• Tags

− search for definitions and proofs amongst many files

• Item menu

− navigate to definitions and proofs in current window

• Remote proof assistant

− run prover on different machine using rsh or ssh

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Implementation

Implementation notes
Instantiation mechanism

Example instantiation
Development model

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Implementation notes

• Main implementation in Emacs Lisp

− 7000 loc for generic parts

− 30 – 500 loc per assistant for prover specific parts

• Support in proof assistant (optional)

− output markup for robustness

− file loading messages

− proof by pointing machinery

• Emacs Lisp issues

− fairly primitive, but has some CL macros (and CLOS emulation)

− slow, but built-ins and byte-code compilation improve matters

− easy to learn and use, docstrings are wonderful

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Instantiation mechanism

• 80 configuration settings total; may only need half. Organized as:

− Regexps to recognize proof script

− Regexps to recognize prover messages

− Commands to control prover

− Hooks to configure behaviour

• Some important examples:

proof-goal-command-regexp matches goal command in script

proof-shell-start-goals-regexp matches start of goals output

proof-prog-name command to start prover

proof-shell-insert-hook hook to tweak prover input

• One line to add autoloads, name, customizations for new prover

• Use define-derived-mode for new script, goals, response, shell

• With new “easy configure” mechanism, no Elisp necessary!

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Example instantiation

(require ’proof-easy-config) ; easy configure mechanism

(proof-easy-config

’demoisa "Isabelle Demo"

proof-prog-name "isabelle"

proof-terminal-char ?\;

proof-comment-start "(*"

proof-comment-end "*)"

proof-goal-command-regexp "^Goal"

proof-save-command-regexp "^qed"

proof-goal-with-hole-regexp "qed_goal \"\\(\\(.*\\)\\)\""

proof-save-with-hole-regexp "qed \"\\(\\(.*\\)\\)\""

proof-non-undoables-regexp "undo\\|back"

proof-goal-command "Goal \"%s\";"

proof-save-command "qed \"%s\";"

proof-kill-goal-command "Goal \"PROP no_goal_set\";"

proof-showproof-command "pr()"

proof-undo-n-times-cmd "pg_repeat undo %s;"

proof-auto-multiple-files t

proof-shell-cd-cmd "cd \"%s\""

proof-shell-prompt-pattern "[ML-=#>]+>? "

proof-shell-interrupt-regexp "Interrupt"

proof-shell-start-goals-regexp "Level [0-9]"

proof-shell-end-goals-regexp "val it"

proof-shell-quit-cmd "quit();"

proof-assistant-home-page

"http://www.cl.cam.ac.uk/Research/HVG/isabelle.html"

proof-shell-annotated-prompt-regexp "^\\(val it = () : unit\n\\)?ML>? "

proof-shell-error-regexp

"***\\|^.*Error:\\|^uncaught exception \\|^Exception- "

proof-shell-init-cmd

"fun pg_repeat f 0 = () | pg_repeat f n = (f(); pg_repeat f (n-1));"

proof-shell-proof-completed-regexp "\\(\\(.\\|\n\\)*No subgoals!\n\\)"

proof-shell-eager-annotation-start "^\\[opening \\|^###\\|^Reading")

(provide ’demoisa)

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Development model

• Successive generalization

− generalize as needed

− sometimes extend and redesign core, as needed

− LEGO mode −→ Proof Mode −→ Proof General

• Developer/maintainer in each camp

− Emacs and prover support for each prover

− adds specific features, generalizes if useful elsewhere

− serves as primary user/tester

• CVS server, access to whole repository for all developers

• Frequent pre-release versions, quick response to bugs

• Open source, user contributions welcomed

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Appraisal

Usage
Comparison

Benefits of Proof General

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Usage

• Target users of currently supported proof assistants:

User community Other interfaces?

LEGO 30 no

Coq 80 yes

Isabelle 200 yes

Isabelle/Isar 20 no

Plastic 5 no

HOL98 200 yes

• Other possible systems (HOL variants, Agda, VDM, ACL2, . . .)

• Use in teaching

− 2000 EEF Foundations school in Deduction and Theorem Proving

− 1999 Types Summer School: 50 learning LEGO, Coq, and Isabelle

− MSc/PhD course in formal reasoning at Edinburgh

• Current version is 3.1, about 100 registered users as of May 2000.

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Comparison

• There’s more sophistication elsewhere:

− Graphical representations: proof-trees, direct manipulation

− Structure editing, integrated environments, . . .

• However, Proof General has complementary aspects:

− intended for day-to-day proof, not an experiment in HCI

− draws on familiarity (text editor), uniformity (between systems)

− scales to large proofs

− portable, easy to adapt and extend

Proof General occupies a middle ground in interface technology

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Benefits of Proof General

• A nice front-end for doing real work!

• Is being used by experts, doesn’t get in their way (much)

• But is also used for teaching novices

• Replaying proofs is trivial

• By construction, it suggests a protocol for interactive proof

− New project to design standard extensible protocol . . .

• Very easy to install; self-configuring

• Very easy to adapt to new systems, to get basic features

Proof General achieves a lightweight, useful interface at little cost

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

Future

• Evolutionary

− More features — completion, favourites, theory browser

− More proof assistants

• Revolutionary

− Factor out script management, use for programming languages

− Standardize markup mechanism (XML, MathML, OpenMath, ATerms)

− Focus on protocols, move away from purely Emacs

− Middleware layer connects proof engine to front-ends (CORBA)

• Imaginary

− Prover-independent syntax mechanisms

− Logic and theory mappings, standard taxonomies

Working title of next project: Proof General Kit

Introduction
Architecture
User Features
Implementation
Appraisal
Future
The End

The End

New Users, Developers Welcome!

• Enjoy using Proof General

• Add support for another prover

• Undertake a project

• Contribute to future design

Credits :

• Thomas Kleymann,

• Yyves Bertot and CtCoq

• Dilip Sequeira, • Healfdene Goguen,

• Markus Wenzel, David von Oheimb, . . .

• Funding: LFCS, EPSRC LEGO, EC BRA Types

For more, visit http://www.lfcs.informatics.ed.ac.uk/proofgen
Version 1.15 of 2000/05/17 07:15:47, processed May 17, 2000.

