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Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Background

• Terminology: machine proof

− formal machine representation of mathematical/logical proof

• Machine proofs useful in

− specification, development, verification of software and hardware

− teaching mathematical proof and formal logic

− mathematical research

• Terminology: proof assistant (or prover )

− a computerized helper for developing machine proofs

• Terminology: proof script

− input to proof assistant which constructs a machine proof

− stored in a file
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Why Proof General?

• Many proof assistants still have a primitive interface

− It’s easy to program!

− Logicians unafraid of cryptic codes (?)

• But a modern interface has advantages:

− Saves time for experts, providing short-cuts

− Helpful to novices, providing hints

− Opens the way to higher-level interactions

• A generic interface is attractive

− Can hook-up to many proof assistants

− Use the same mechanism for interaction

Proof General aims to be a generic interface, useful both to novices
and to experts.
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Architecture

Generic aspects of proof assistants
Choose Emacs

System architecture
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Generic aspects of proof assistants

• Proof scripts have a common structure:

− declarations and definitions, and

− goal . . .save sequences

• Interaction has a common structure:

− User issues declaration or definition

− User enters goal-directed proof dialogue

? user gives proof step; system responds with subgoal list

? repeat

• Primitive interfaces have common structure:

− Command-line interface: proof assistant shell

How can we build a system to exploit these common structures?
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Choose Emacs

• The world’s best text editor also provides a user-interface toolkit!

• Choosing emacs has pros

− portability: runs on NT, Unix, Linux, . . .

− extensive libraries

− user familiarity, easy user-customization

− interpreted scripting language for development: Emacs Lisp

• . . .and cons

− hard to learn and over complicated

− the original bloatware

− interoperability limited (live in Emacs!)

− single-threaded
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System architecture

Emacs Proof

+---------------------------+ Engine

| | +---------+

| | | |

| |--->| |

| |<---| |

| | | |

| | +---------+

+---------------------------+ ^

^ | ^ | File
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User Features

Simplified communication
Script management

Proof by Pointing
User friendliness

Other Emacs features
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Simplified communication

• Hide irrelevant information

− shell hidden

− but still available for emergencies

• Buffer display model: two-of-three window panes

− script

− goals or response

• Script buffer centred around “latest” proof command

• Goals buffer centred around working subgoal

• Response buffer displays relevant messages

− urgent messages

− result of non-proof step (search results, command feedback)

• Customizable to use three buffers and multiple windows
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Script management

• Synchronizes editor with proof assistant

• Provides visual feedback

blue background — processed text

pink background — text being processed

• Highlighted text is locked to prevent accidental editing

• Connects with prover’s history mechanism, for retraction

− undo individual steps within a proof

− block-structure outside proof

• Connects with prover’s file handling

− extend synchronization to multiple files

− dependencies communicated or deduced automatically

• Avoids using cut-and-paste or “load file” commands
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Proof by Pointing

• Click on subterm of goal

− generates proof command to simplify/solve goal

− inserts command into proof

− executes it

• Support from proof assistant required!

− annotations to markup term-structure

− communication of position in AST

− proof command generation

• Many possibilities

− context-sensitive menus

− other gestures (e.g. drag term to rearrange equation)

− not yet implemented
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User friendliness

• Toolbar

− buttons to start proof, process step, undo step, finish proof, . . .

• Menus

− change display modes, start/stop proof assistant, . . .

− all commands available here

• Easy preference setting

• Online documentation

− variety of formats

− links to proof assistant documentation

• . . .and of course, magical short-cut key sequences like

C-c C-RET proof-goto-point
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Other Emacs features

• Syntax highlighting

− decoration of proof scripts and prover output

• Symbol fonts

− glyphs for logical symbols, greek letters, etc

φ −→ ψ instead of phi --> psi

• Tags

− search for definitions and proofs amongst many files

• Item menu

− navigate to definitions and proofs in current window

• Remote proof assistant

− run prover on different machine using rsh or ssh
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Implementation

Implementation notes
Instantiation mechanism

Example instantiation
Development model
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Implementation notes

• Emacs Lisp

− about 7000 loc for generic part

− 30 – 500 loc for specific part for each assistant

• Support in proof assistant (optional)

− output markup for robustness

− file loading messages

− proof by pointing machinery

• Emacs Lisp issues

− fairly primitive, but has some CL macros and CLOS emulation

− use define-derived-mode for inheritance

− slow, but built-ins and byte-code compilation improve matters

− docstrings are wonderful
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Instantiation mechanism

• 80 configuration settings, split up into:

− Regexps to recognize proof script

− Regexps to recognize prover messages

− Commands to control prover

− Hooks to configure behaviour

• Some important settings:

proof-prog-name command to start prover

proof-shell-annotated-prompt-regexp matches end of prover output

proof-goal-command-regexp matches goal command in script

proof-shell-start-goals-regexp matches start of goals output

proof-shell-eager-annotation-start matches important messages

• One line to add autoloads, name, customizations for new prover

• Use define-derived-mode for new script, goals, response, shell

• With new “easy configure” mechanism, no Elisp necessary!
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Example instantiation

(require ’proof-easy-config) ; easy configure mechanism

(proof-easy-config

’demoisa "Isabelle Demo"

proof-prog-name "isabelle"

proof-terminal-char ?\;

proof-comment-start "(*"

proof-comment-end "*)"

proof-goal-command-regexp "^Goal"

proof-save-command-regexp "^qed"

proof-goal-with-hole-regexp "qed_goal \"\\(\\(.*\\)\\)\""

proof-save-with-hole-regexp "qed \"\\(\\(.*\\)\\)\""

proof-non-undoables-regexp "undo\\|back"

proof-goal-command "Goal \"%s\";"

proof-save-command "qed \"%s\";"

proof-kill-goal-command "Goal \"PROP no_goal_set\";"

proof-showproof-command "pr()"

proof-undo-n-times-cmd "pg_repeat undo %s;"

proof-auto-multiple-files t

proof-shell-cd-cmd "cd \"%s\""

proof-shell-prompt-pattern "[ML-=#>]+>? "

proof-shell-interrupt-regexp "Interrupt"

proof-shell-start-goals-regexp "Level [0-9]"

proof-shell-end-goals-regexp "val it"

proof-shell-quit-cmd "quit();"

proof-assistant-home-page

"http://www.cl.cam.ac.uk/Research/HVG/isabelle.html"

proof-shell-annotated-prompt-regexp "^\\(val it = () : unit\n\\)?ML>? "

proof-shell-error-regexp

"\\*\\*\\*\\|^.*Error:\\|^uncaught exception \\|^Exception- "

proof-shell-init-cmd

"fun pg_repeat f 0 = () | pg_repeat f n = (f(); pg_repeat f (n-1));"

proof-shell-proof-completed-regexp "\\(\\(.\\|\n\\)*No subgoals!\n\\)"

proof-shell-eager-annotation-start "^\\[opening \\|^###\\|^Reading")

(provide ’demoisa)
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Development model

• Incremental genericity

− generalize as necessary

− occasionally extend and redesign core

• Developer/maintainer in each camp

− Emacs and prover support for each prover

− adds specific features, generalizes if useful elsewhere

− serves as primary user/tester

• CVS server, access to whole repository for all

• Frequent pre-release versions, quick response to bugs

• Extreme techniques . . . ?
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Appraisal

Benefits of Proof General
Usage

Comparison
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Benefits of Proof General

• A nice front-end for doing real work

• By construction, suggests a protocol for proof assistants
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Usage

• Currently supported proof assistants, target users:

User community Other interfaces?

LEGO 30 no

Coq 80 yes

Isabelle 150 yes

Isabelle/Isar 30 no

Plastic 5 no

• Several other possible systems (HOL variants, Agda, . . . )

• Use in teaching

− 1999 Types Summer School: 50 students learning LEGO, Coq, and
Isabelle

− CAFR MSc and PhD course at Edinburgh

• Version 3.0 announced 1st December

− 150 visits in 2 days, 60 downloads
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Comparison

• There’s more sophistication elsewhere:

− Graphical representations

? proof-trees

? direct manipulation

− Structure editing

− Integrated environments

• However, Proof General has complementary advantages:

− familiarity, uniformity

− portability, adaptability

− easy instantiation

− easy modification

Proof General achieves a lightweight, useful interface at little cost
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Future

• Evolutionary

− More features — completion, favourites, theory browser

− More proof assistants

• Revolutionary

− Factor out script management, use for programming languages

− Use standard markup mechanisms (MathML, XML, ATerms)

− Focus on protocols, move away from Emacs

− Middleware layer connects proof engine to front-end (CORBA?)

• Imaginary

− Prover-independent syntax mechanisms

− Logic and theory mappings, standard taxonomies

− Distributed proof development, theorem proving agents
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Credits

• People

− Thomas Kleymann

− Yyves Bertot and Project CROAP

− Dilip Sequeira

− Healfdene Goguen

− Markus Wenzel

− others . . .

• Funding

− LFCS

− EPSRC Grant for LEGO

− EC BRA Types
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The End
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