
Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Proof

General

A Generic Interface
for Proof Development

David Aspinall

LFCS, University of Edinburgh

http://www.dcs.ed.ac.uk/home/proofgen

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Introduction

Background
Why Proof General?

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Background

• Terminology: machine proof

− formal machine representation of mathematical/logical proof

• Machine proofs useful in

− specification, development, verification of software and hardware

− teaching mathematical proof and formal logic

− mathematical research

• Terminology: proof assistant (or prover)

− a computerized helper for developing machine proofs

• Terminology: proof script

− input to proof assistant which constructs a machine proof

− stored in a file

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Why Proof General?

• Many proof assistants still have a primitive interface

− It’s easy to program!

− Logicians unafraid of cryptic codes (?)

• But a modern interface has advantages:

− Saves time for experts, providing short-cuts

− Helpful to novices, providing hints

− Opens the way to higher-level interactions

• A generic interface is attractive

− Can hook-up to many proof assistants

− Use the same mechanism for interaction

Proof General aims to be a generic interface, useful both to novices
and to experts.

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Architecture

Generic aspects of proof assistants
Choose Emacs

System architecture

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Generic aspects of proof assistants

• Proof scripts have a common structure:

− declarations and definitions, and

− goal . . .save sequences

• Interaction has a common structure:

− User issues declaration or definition

− User enters goal-directed proof dialogue

? user gives proof step; system responds with subgoal list

? repeat

• Primitive interfaces have common structure:

− Command-line interface: proof assistant shell

How can we build a system to exploit these common structures?

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Choose Emacs

• The world’s best text editor also provides a user-interface toolkit!

• Choosing emacs has pros

− portability: runs on NT, Unix, Linux, . . .

− extensive libraries

− user familiarity, easy user-customization

− interpreted scripting language for development: Emacs Lisp

• . . .and cons

− hard to learn and over complicated

− the original bloatware

− interoperability limited (live in Emacs!)

− single-threaded

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

System architecture

Emacs Proof

+---------------------------+ Engine

| | +---------+

| | | |

| |--->| |

| |<---| |

| | | |

| | +---------+

+---------------------------+ ^

^ | ^ | File

| | | v System

| v | +---------------+

| | |

USER +--->| |

+---------------+

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

User Features

Simplified communication
Script management

Proof by Pointing
User friendliness

Other Emacs features

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Simplified communication

• Hide irrelevant information

− shell hidden

− but still available for emergencies

• Buffer display model: two-of-three window panes

− script

− goals or response

• Script buffer centred around “latest” proof command

• Goals buffer centred around working subgoal

• Response buffer displays relevant messages

− urgent messages

− result of non-proof step (search results, command feedback)

• Customizable to use three buffers and multiple windows

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Script management

• Synchronizes editor with proof assistant

• Provides visual feedback

blue background — processed text

pink background — text being processed

• Highlighted text is locked to prevent accidental editing

• Connects with prover’s history mechanism, for retraction

− undo individual steps within a proof

− block-structure outside proof

• Connects with prover’s file handling

− extend synchronization to multiple files

− dependencies communicated or deduced automatically

• Avoids using cut-and-paste or “load file” commands

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Proof by Pointing

• Click on subterm of goal

− generates proof command to simplify/solve goal

− inserts command into proof

− executes it

• Support from proof assistant required!

− annotations to markup term-structure

− communication of position in AST

− proof command generation

• Many possibilities

− context-sensitive menus

− other gestures (e.g. drag term to rearrange equation)

− not yet implemented

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

User friendliness

• Toolbar

− buttons to start proof, process step, undo step, finish proof, . . .

• Menus

− change display modes, start/stop proof assistant, . . .

− all commands available here

• Easy preference setting

• Online documentation

− variety of formats

− links to proof assistant documentation

• . . .and of course, magical short-cut key sequences like

C-c C-RET proof-goto-point

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Other Emacs features

• Syntax highlighting

− decoration of proof scripts and prover output

• Symbol fonts

− glyphs for logical symbols, greek letters, etc

φ −→ ψ instead of phi --> psi

• Tags

− search for definitions and proofs amongst many files

• Item menu

− navigate to definitions and proofs in current window

• Remote proof assistant

− run prover on different machine using rsh or ssh

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Implementation

Implementation notes
Instantiation mechanism

Example instantiation
Development model

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Implementation notes

• Emacs Lisp

− about 7000 loc for generic part

− 30 – 500 loc for specific part for each assistant

• Support in proof assistant (optional)

− output markup for robustness

− file loading messages

− proof by pointing machinery

• Emacs Lisp issues

− fairly primitive, but has some CL macros and CLOS emulation

− use define-derived-mode for inheritance

− slow, but built-ins and byte-code compilation improve matters

− docstrings are wonderful

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Instantiation mechanism

• 80 configuration settings, split up into:

− Regexps to recognize proof script

− Regexps to recognize prover messages

− Commands to control prover

− Hooks to configure behaviour

• Some important settings:

proof-prog-name command to start prover

proof-shell-annotated-prompt-regexp matches end of prover output

proof-goal-command-regexp matches goal command in script

proof-shell-start-goals-regexp matches start of goals output

proof-shell-eager-annotation-start matches important messages

• One line to add autoloads, name, customizations for new prover

• Use define-derived-mode for new script, goals, response, shell

• With new “easy configure” mechanism, no Elisp necessary!

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Example instantiation

(require ’proof-easy-config) ; easy configure mechanism

(proof-easy-config

’demoisa "Isabelle Demo"

proof-prog-name "isabelle"

proof-terminal-char ?\;

proof-comment-start "(*"

proof-comment-end "*)"

proof-goal-command-regexp "^Goal"

proof-save-command-regexp "^qed"

proof-goal-with-hole-regexp "qed_goal \"\\(\\(.*\\)\\)\""

proof-save-with-hole-regexp "qed \"\\(\\(.*\\)\\)\""

proof-non-undoables-regexp "undo\\|back"

proof-goal-command "Goal \"%s\";"

proof-save-command "qed \"%s\";"

proof-kill-goal-command "Goal \"PROP no_goal_set\";"

proof-showproof-command "pr()"

proof-undo-n-times-cmd "pg_repeat undo %s;"

proof-auto-multiple-files t

proof-shell-cd-cmd "cd \"%s\""

proof-shell-prompt-pattern "[ML-=#>]+>? "

proof-shell-interrupt-regexp "Interrupt"

proof-shell-start-goals-regexp "Level [0-9]"

proof-shell-end-goals-regexp "val it"

proof-shell-quit-cmd "quit();"

proof-assistant-home-page

"http://www.cl.cam.ac.uk/Research/HVG/isabelle.html"

proof-shell-annotated-prompt-regexp "^\\(val it = () : unit\n\\)?ML>? "

proof-shell-error-regexp

"***\\|^.*Error:\\|^uncaught exception \\|^Exception- "

proof-shell-init-cmd

"fun pg_repeat f 0 = () | pg_repeat f n = (f(); pg_repeat f (n-1));"

proof-shell-proof-completed-regexp "\\(\\(.\\|\n\\)*No subgoals!\n\\)"

proof-shell-eager-annotation-start "^\\[opening \\|^###\\|^Reading")

(provide ’demoisa)

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Development model

• Incremental genericity

− generalize as necessary

− occasionally extend and redesign core

• Developer/maintainer in each camp

− Emacs and prover support for each prover

− adds specific features, generalizes if useful elsewhere

− serves as primary user/tester

• CVS server, access to whole repository for all

• Frequent pre-release versions, quick response to bugs

• Extreme techniques . . . ?

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Appraisal

Benefits of Proof General
Usage

Comparison

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Benefits of Proof General

• A nice front-end for doing real work

• By construction, suggests a protocol for proof assistants

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Usage

• Currently supported proof assistants, target users:

User community Other interfaces?

LEGO 30 no

Coq 80 yes

Isabelle 150 yes

Isabelle/Isar 30 no

Plastic 5 no

• Several other possible systems (HOL variants, Agda, . . .)

• Use in teaching

− 1999 Types Summer School: 50 students learning LEGO, Coq, and
Isabelle

− CAFR MSc and PhD course at Edinburgh

• Version 3.0 announced 1st December

− 150 visits in 2 days, 60 downloads

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Comparison

• There’s more sophistication elsewhere:

− Graphical representations

? proof-trees

? direct manipulation

− Structure editing

− Integrated environments

• However, Proof General has complementary advantages:

− familiarity, uniformity

− portability, adaptability

− easy instantiation

− easy modification

Proof General achieves a lightweight, useful interface at little cost

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Future

• Evolutionary

− More features — completion, favourites, theory browser

− More proof assistants

• Revolutionary

− Factor out script management, use for programming languages

− Use standard markup mechanisms (MathML, XML, ATerms)

− Focus on protocols, move away from Emacs

− Middleware layer connects proof engine to front-end (CORBA?)

• Imaginary

− Prover-independent syntax mechanisms

− Logic and theory mappings, standard taxonomies

− Distributed proof development, theorem proving agents

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

Credits

• People

− Thomas Kleymann

− Yyves Bertot and Project CROAP

− Dilip Sequeira

− Healfdene Goguen

− Markus Wenzel

− others . . .

• Funding

− LFCS

− EPSRC Grant for LEGO

− EC BRA Types

Introduction
Architecture
User Features
Implementation
Appraisal
Future
Credits
The End

The End

Version 1.9 of 1999/12/14 20:37:57, processed December 14, 1999

