
Proof General:
A Generic Tool

for Proof Development

David Aspinall

October 1999
LFCS, University of Edinburgh, U.K.
http://www.dcs.ed.ac.uk/home/da

Abstract. This note describes Proof General, a tool for developing machine proofs with an interactive
proof assistant. Interaction is based around a proof script, which is the target of a proof development.
Proof General provides a powerful user-interface with relatively little effort, alleviating the need for a
proof assistant to provide its own GUI, and providing a uniform appearance for diverse proof assis-
tants.
Proof General has a growing user base and is currently used for several interactive proof systems,
including Coq, LEGO, and Isabelle. Support for others is on the way. Here we give a brief overview of
what Proof General does and the philosophy behind it; technical details are available elsewhere. The
program and user documentation are available on the web at http://www.lfcs.informatics.ed.ac.
uk/proofgen.

1 Background

Proof General is a generic interface for interactive proof assistants.
A proof assistant is a computerized helper for developing machine proofs. There

are many uses for machine proofs, both during the specification, development, and
verification of software and hardware systems, and in the development and teaching of
mathematical proof and formal logic. Proof General helps with developing proof scripts.

A proof script is a sequence of commands sent to a proof assistant to construct a ma-
chine proof. A script is usually stored in a file. Roughly, a proof script is like a program
written in a scripting programming language, and in particular, a language which has
an interactive interpreter. Proof General uses a technique called script management
to help the user write a proof script without using cut-and-paste or repeatedly typ-
ing “load file” commands. Proof General has a sophisticated implementation of script
management which covers large developments spread across multiple files.

A guiding philosophy behind Proof General is to provide an interface which is use-
ful to novices and expert-users alike. Some interfaces for theorem provers are aimed at
novices and become infeasible for large developments; others are aimed at experts
but have steep learning curves or require changes in work methods, discouraging
their take-up. With this in mind, Proof General builds on the programmable text edi-
tor Emacs, the powerful everyday editor of many computer scientists. Emacs brings
many advantages. It is available on most platforms, including Unix, Linux, and NT.
Although it once had a reputation for being hard to learn, modern versions of Emacs

http://www.lfcs.informatics.ed.ac.uk/proofgen
http://www.lfcs.informatics.ed.ac.uk/proofgen


are very user-friendly, supporting the whole gamut of current GUI technologies and
providing easy customization mechanisms.

Another important aspect of Proof General is that it is generic. It provides a uniform
interface and interaction mechanism for different back-end proof assistants. It exploits
the deep similarities between systems by hiding some of their superficial differences.
This generic aspect is no empty claim or untested design goal; Proof General is already
in use for three different proof assistants: Coq, LEGO, and Isabelle. Support for more is
on the way.

The present implementation of Proof General is oriented towards proof assistants
based on a single-threaded interactive command interpreter (or shell), where interac-
tion consists of a dialogue between the user and the system. Several proof assistants
have this kind of architecture, allowing more elaborate interfaces to be built on top. As
a spin-off, building Proof General has suggested some useful design guidelines for the
command protocol which should be implemented in a proof assistant shell.

To summarize, Proof General provides a fairly elaborate yet unobtrusive interface.
It gives the proof assistant user many useful features, and allows the proof assistant
implementor to concentrate on the proof engine.

2 Features of Proof General

Simplified communication

The proof assistant’s shell is hidden from the user. Communication takes place via two
or three buffers (Emacs text widgets). The script buffer holds input, the commands to
construct a proof. The goals buffer displays the current list of subgoals to be solved.
The response buffer displays other output from the proof assistant. The user sees only
the output from the latest proof step, rather than a screen full of output. Nonetheless,
the user can still access the shell to examine it or run commands.

Script management

Proof script editing is connected to the proof process, maintaining consistency be-
tween the edit window and the state of the proof assistant. Visual feedback on the
state of the assistant is given by colouring the background of the text in the editing
windows. Parts of a proof script that have been processed are displayed in blue and
moreover can be locked to prevent accidental editing. Parts of the script currently being
processed by the proof assistant are shown in red. The screenshot in Figure 1 shows
script managament in action.

Multiple file handling

Script management also works across multiple files. When a script is loaded in the edi-
tor, it is coloured to reflect whether the proof assistant has processed it in this session.
Proof General communicates with the assistant to discover dependencies between
script files. If I want to edit a file which has been processed already, Proof General will
retract the file and all the files which depend on it, unlocking them. Thus the editor is
connected to the theory dependency or make system of the proof assistant.



Proof by Pointing

Clicking on a subterm of a goal can apply an appropriate rule or tactic automatically, or
display a menu of choices. Proof General relies on support in the assistant to mark-up
subterms and generate tactics for this feature, since it is specific to the prover’s syntax
and logic. Subterm mark-up also makes it easy to explore compilicated terms, and cut
and paste from within them.

Syntax highlighting and symbol fonts

Proof scripts are decorated: proof commands are highlighted and different fonts can
be used for definitions and assumptions, for example. Symbol fonts can be used to
display proper glyphs for logical operators, Greek letters, etc, which occur throughout
mathematical proofs.

Toolbar and menus

A toolbar includes buttons for examining the proof state, starting a proof, manoeuvring
in the proof script, saving a proof, searching for a theorem, interrupting the assistant,
and getting help. A menu gives access to further commands, and a useful collection of
user preferences. Using the toolbar, you can replay proofs without knowing any low-
level commands of the proof assistant or any Emacs short-cuts.

Tags and definitions menu

Using a TAGS file, one can quickly locate the definition and uses of an identifier, au-
tomatically searching many files. Using a definitions menu, one can quickly navigate
within a proof script to find particular definitions, declarations and proofs.

Remote proof assistant

A proof assistant can be run remotely, perhaps across the internet, while Proof General
and the proof script reside locally.

3 Proof General in Use

Figure 1 shows a screenshot of Proof General running in a single window on the screen.
The window is split into two parts. The upper half displays the proof script Group.thy
which is being processed. This is a script written for Isabelle using the new Isar proof
language [4]. The lower half displays the current list of subgoals which are to be solved
to complete the proof. Instead of this split window, it is perfectly possible to have
separate windows on the screen, as the user likes. Proof General is even happy to run
on a plain console, although graphical facilities will be reduced (e.g. no toolbar).

In the script file, the cursor appears at the end of the locked region, which has a blue
background to indicate it has already been processed. The arrow buttons on the toolbar
are used to manipulate the locked region, by sending commands to the proof assistant,



Fig. 1. Using Proof General

or by issuing undo steps. In this manner, a user can replay a proof interactively, without
needing to know any low-level commands needed to start the proof assistant, or issue
proof and undo steps. And without the extreme tedium of cut-and-paste.

4 Further Details

Technical references. Proof General has a detailed user manual [1] which also contains
instructions for instantiating it to new proof assistants. The ideas of script manage-
ment and proof by pointing were adapted from the CtCoq system [3]; proof by pointing
in Proof General is described in an LFCS technical report [2]. (Proof General goes be-
yond CtCoq in some ways, but is less sophisticated in others; the biggest difference
is that CtCoq provides its own GUI based on structure editing, which Proof General
specifically avoids.) Future papers will describe the architecture of Proof General in
more detail, including design guidelines for interactive proof development protocols,
and plans for future directions.

Implementation. Proof General is implemented in Emacs Lisp. There is a generic core
(about 7000 lines) which implements the toolbar, menus, script management, and pro-



cess handling features. Each supported proof assistant has some additional Emacs
Lisp (30 – 500 lines) for prover-specific configuration: setting regular expressions and
command strings, and perhaps providing extra features. For robust operation and fea-
tures like proof by pointing, the proof assistant may need modification to output special
messages for Proof General.

Availability and System requirements. Proof General is easy to install, and is available
free of charge (with sources and documentation) for research and educational use. The
current release is Proof General 3.0. For best results, it requires a recent version of
XEmacs (21.1 or later), alongside recent versions of one or more proof assistants: Coq
(6.3 or later), Isabelle (version 99 or later), or Lego (version 1.3.1). Details of where to
obtain these components can be found on the web page mentioned below. Success
is guaranteed with a Unix (or Linux) environment, although XEmacs and some proof
assistants are available for other operating systems, and there is nothing operating
system specific in Proof General itself.

Acknowledgements. Many people have contributed to the design and code, both in the
generic basis and for the prover-specific instances. For each instance of Proof General,
we try to encourage somebody familiar with the proof assistant to develop and main-
tain the prover-specific code, perhaps also enhancing to the generic basis. In order
of appearance, the main workers on Proof General have been: T. Kleymann, Y. Bertot,
D. Sequeira, H. Goguen, D. Aspinall, P. Loiseleur, M. Wenzel, P. Callaghan. Many other
people provided useful feedback, including: P. Brisset, R. Burstall, M. Hofmann, J. McK-
inna, and D. von Oheimb. Thomas Kleymann originated the Proof General project. David
Aspinall is the present manager.

For more information about Proof General, please visit the home page at http://

www.lfcs.informatics.ed.ac.uk/proofgen.

References

1. D. Aspinall, H. Goguen, T. Kleymann, and D. Sequira. Proof General. System documentation, see http://www.

dcs.ed.ac.uk/home/proofgen, 1999.
2. Yves Bertot, Thomas Kleymann, and Dilip Sequeira. Implementing proof by pointing without a structure editor.

Technical Report ECS-LFCS-97-368, University of Edinburgh, 1997. Also published as Rapport de recherche de
l’INRIA Sophia Antipolis RR-3286.

3. Yves Bertot and Laurent Théry. A generic approach to building user interfaces for theorem provers. Journal of
Symbolic Computation, 25(7):161–194, February 1998.

4. Markus Wenzel. Isar — a generic interpretative approach to readable formal proof documents. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics, 12th Inter-
national Conference, TPHOLs’99, Lecture Notes in Computer Science 1690. Springer-Verlag, 1999.

http://www.lfcs.informatics.ed.ac.uk/proofgen
http://www.lfcs.informatics.ed.ac.uk/proofgen
http://www.dcs.ed.ac.uk/home/proofgen
http://www.dcs.ed.ac.uk/home/proofgen

	Background
	Features of Proof General
	Proof General in Use
	Further Details

