1

1.

2.

2

[y

3

1.

2.

Commentary on PGIP
[Version 1.2, 2003/07/16 21:02:58, IATEX: July 16, 2003]

David Aspinall Christoph Lath
July 16, 2003

This document gives commentary on the definition of PGIP. The commentary is indended as a
set of notes to help implementors of PGIP-enabled prover components; it does not (yet) form a
complete description or motivation for the protocol. The RELAX-NG schemas for PGIP message
and the PGML markup language are given in the appendix.

Basics

The PGIP protocol is intended as a mechanism for conducting interactive proof using PGIP-
enabled software components. The aim of interaction is to produce one or more proof scripts.

A proof script has a textual representation as primary and resides in a file.

PGIP communication

A pair of components communicate by opening a channel (typically a Unix pipe or socket),
where one end is designated the proof assistant (class pa; think server) and the other end is
designated the proof general interface (class pg; think client).

PGIP communication proceeds by exchanging PGIP packets as XML documents belonging to
the PGIP markup schema. A PGIP packet is contained by the <pgip> element.

The interface sends command requests to the prover, and processes responses which are
returned. Unlike classical RPC conventions which are single-request single-response, a com-
mand request may cause several command responses, and it is occasionally possible that the
prover generates “orphan” responses which do not correspond to any request from the inter-
face.

Each PGIP packet contains a single PGIP message, along with identifying header information.
The PGIP message may be a command request or a command response.

The interface should only attempt to send commands to the prover when it has received a
ready message. On startup, the prover may issue some orphan responses, followed by a
ready message.

Despite the classifications of pa and pg, the communicating components do not have to be
exactly the prover and interface. It is also possible to have non-prover components which
provide auxiliary services, and filtering components which process PGIP command streams.

PGIP and PGML markup

PGIP and PGML are separate document types:

e PGML describes the markup for displayed text/graphics from the prover
e PGIP describes the protocol for interacting with the prover
PGIP contains PGML in the same (default) namespace, so PGIP messages may contain PGML

documents in certain places. PGML text is embedded with root <pgm1>, which allows easy
filtering by components concerned with display.

4 Prover to interface configuration

<usespgip>

e The prover reports which version of PGIP it supports.

<usespgml>

e The prover reports which version of PGML it supports.

<pgmlconfig>

e The prover reports its configuration for PGML.

e PGML can be configured for particular symbols. The prover reports the collection of symbols it
will understand as input and omit as output, along with optional ASCII defaults. PGML symbol
conventions define a large fixed set of named glyphs.

<haspref>

e The prover reports a user-level preference setting, along with a type and possible a default
value.

<prefval>

e The prover reports a change in one of its preference settings, perhaps triggered by the interface.

<guiconfig>

e The prover specifies some basic object types it will let the interface manipulate (for example:
theorem, theory, tactic, etc), together with the operations which are supported for those types.

e opn are commands which combine object values of the prover, in a functional manner. The
opcmd should be some text fragment which produces the operation. The operations could be
triggered in the interface by a drag-and-drop operation, or menu selection.

e iopn are operations which require some interactive input. They are configured
e proofopn are commands which produce text suitable for use as <proofstep>.

e As a general convention, if several operations are possible to produce a desired target object,
then the prover will offer them in the choice that they were configured.

5 Prover control commands

<proverinit>

¢ Reset the prover to its initial state.

<proverexit>

e Exit the prover gracefully.

<startquiet>

e Ask the prover to turn off its output.

<stopquiet>

e Ask the prover to turn on its output again.

6 Prover output

<ready>

e The prover should issue a ready/ message when it starts up, and each time it has completed
processing a command from the interface.

e The interface should not send a command request until it has seen a ready/ message. Input
which is sent before then may cause buffer overflow, and more seriously, risks changing the
prover state in an unpredictable way in case the previous command request fails.

<displayarea>

e PGIP assumes a display model which contains (at least) two display areas: the message area
and the displayarea.

e Typically, both areas are shown in a single window. The display area is a possibly graphical
area whereas the message area is a scrollable text widget that appears (for example) below
the display area.

e The interface should maintain a display of all message area output that appears in response
to a particular command. Between successive commands (i.e. on the first new message in
response to the next command), the interface may (optionally) clear the message area.

e The interface should simply replace display area output whenever new display area output
appears.

e Additional features may be desirable, such as allowing the user to keep a history of previous
displays somehow (display pages by forwards/backwards keys; messages by text scrollbar).

e Occasionally, the prover may like to send hints that displays should be cleared, in <cleardisplay>
commands. These should be obeyed.

e The interface is free to implement these displays in different ways, or even supress them entirely,
insofar as that makes sense.
<normalresponse>

¢ All ordinary output from the prover appears under the normalresponse element. Typically the
output will cause some effect on the interface display, although the interface may choose not to
display some responses.

e A response which has attribute urgent = "y" should always be displayed to the user.

e A PGIP command may generate any number of normal responses, possibly over a long period
of time, before the ready response is sent.

<errorresponse>
e The errorresponse element indicates an error condition has occurred.
e The fatality attribute of the error suggests what the interface should do:

— anonfatal error does not need any special action;

— a fatal error implies that the last command issued from the interface has failed (a recov-
erable error condition);

— apanic error implies an unrecoverable error condition: the connection between the com-
ponents should be torn down.

The location attibute allows for file/line-number locations to identify error positions, for example,
for when a file is being read directly by the prover.

A PGIP command may cause at most one error response to be generated. If an error response
occurs, it must be the last response before a ready message.

<scriptinsert>

e This response contains some text which should be inserted literally into the proof script being
constructed.

e The suggestion is that the interface immediately inserts this text, parses it, and sends it back
to the proof assistant to conduct the next step in the proof. This protocol allows for “proof-by-
pointing” or similar behaviour.

<metainforesponse>

e The metainforesponse element is used to categorize other kinds of prover-specific meta-
information sent from the prover to the interface.

e At present, no generic meta-information is defined. Possible uses include output of dependency
information, proof hints applicable for the current proof step, etc.

e Provers are free to implement their own meta-information responses which specific interfaces
may interpret. This allows an method for extending the protocol incrementally in particular
cases. Extensions which prove particularly useful may be incorporated into future versions.

Here are some example message patterns allowed by the PGIP message model:

provermsg provermsg provermsg

<ready/> <normalresponse> <normalresponse>
<normalresponse> <errorresponse>
<ready/> <ready/>

The provermsg is a message sent to the proof assistant and the responses are shown below. Re-
sponses all end in a ready message; the only possible exception is a panic error response, which
indicates that the proof assistant has died (perhaps committed suicide) already.

7 Proof control commands

The PGIP proof model is to assume that the prover maintains a state which consits of a single
possibly-open proof within a single possibly-open theory. [FIXME: explain further]

4

<goal>

e open a goal in ambient context

<proofstep>

¢ a specific proof command (perhaps configured via opcmd)

<undostep>

e undo the last proof step issued in currently open goal

<closegoal>

e complete & close current open proof (succeeds iff goal proven)

<abortgoal>

e give up on current open proof, close proof state, discard history

<giveupgoal>

e close current open proof, record as proof obl'n (sorry)

<postponegoal>

e close current open proof, retaining attempt in script (oops)

<forget>

o forget a theorem (or named target), outdating dependent theorems

<restoregoal>

1.

e re-open previously postponed proof, outdating dependent theorems

Further notes:

Some of these operations have an effect on the proof script, namely: <goal> <proofstep>
<closegoal> <postponegoal> <giveupgoal>. These operations will trigger a response which
includes a <scriptinsert> message to insert the corresponding command into the proof script
if it is successfully processed.

The other operations are meta-operations which correspond to script management behaviour:
i.e., altering the interface’s idea of "current position” in the incremental processing of a file.

As a later possibility, we may allow the prover provide a way to retain undo history across
different proofs. For now we assume it does not, so we must replay a partial proof for a goal
which is postponed.

We assume theorem names are unique amongst theorems and open/goals within the currently
open theory. Individual proof steps may also have anchor names which can be passed to forget.

The interface manages outdating of the theorem dependencies within the open theory. By
constrast, theory dependencies are managed by the prover and communicated to the interface.

8 Theory/file commands

PGIP assumes that the prover manages a notion of theory, and that there is a connection between
theories and files. Specifically, a file may define some number of theories. The interface will use files
to record the theories it constructs (but will only construct one theory per file).

PGIP assumes that the proof engine has three main states:

top level inspection/navigation of theories only
open theory may issue proof steps to construct objects, make defs, etc.

open theory & open proof may issue proof steps with aim of completing proof of some theorem.
Prover records undo history for each step, but discards this history on proof completion.

This model only allows a single open theory. Nonetheless, it should be possible for the interface
to provide extra structure and maintain an illusion of more than one open theory, without the prover
needing to implement this directly. This can be done by judicious opening and closing of files, and
automatic proof replay. Later on, we might extend PGIP to allow multiple open proofs to implemented
within the prover to provide extra efficiency, to avoid too much proof replaying.

<loadtheory>

¢ load a file possibly containing a theory definition

<opentheory>
e begin construction of a new theory. The text allows some additional arguments to be given (e.g.
ancestors)
<closetheory>

e complete construction of the currently open theory, saving it in the promised file.

<retracttheory>

e retract a theory. Applicable to open & closed theories.

<openfile>
¢ lock a file for constructing a proof text in the interface. The prover may check that the opened
file does not already correspond to a processed theory.
<closefile>
¢ unlock a file, suggesting it has been processed completely (but incrementally via interface). A
paranoid prover might want to check the file nonetheless.
<abortfile>

¢ unlock a file, suggesting it hasn’t been processed

PGIP supposes that the interface has only partial knowledge about theories, and so the interface
relies on the prover to send hints. Specifically, the next two messages may be sent from the prover.
When the interface asks for a theory to be loaded, there may be a number of <informtheoryloaded>
responses from the prover, and similarly for retraction.

6

<informfileloaded>

e prover informs interface a particular file is loaded

<informfileretracted>

e prover informs interface a particular file is outdated

© 00 N O OO »~ W0 N =

A Schemas for PGIP and PGML

A.1 pgip.rnc

#

RELAX NG Schema for PGIP, the Proof General Interface Protocol
#

Authors: David Aspinall , LFCS, University of Edinburgh

Christoph Lueth, University of Bremen

#

Version: $1d: pgip.rnc,v 1.12 2003/07/16 20:57:00 da Exp $

#

Status: Experimental.

For additional commentary, see the Proof General Kit white paper,
available from http://www.proofgeneral.org/ kit

#

Advertised version: 1.0

#

[See rnc—temp—devel—notes.txt for possible changes to below — da]

include “pgml.rnc” # include PGML grammar
start = pgip | pgips # pgips is the type of a log between
two components.
pgip = element pgip { # A PGIP packet contains:
pgip-attrs , # attributes with header information;
(provermsg # either a message sent TO the prover,
| kitmsg)} # or an interface message

pgips = element pgips { pgip+ }

pgip_-attrs =
attribute origin { text }7?, # name of sending PGIP component
attribute id { text }, # session identifier for component process
attribute class { pgip-class }, # general categorization of message
attribute refseq { xsd:positivelnteger }?, # message sequence this message responds to
attribute refid { text }7, # message id this message responds to
attribute seq { xsd:positivelnteger } # sequence number of this message

”

pgip_class = "pa # for a message sent TO the proof assistant
| "pg” # for a message sent TO proof general

provermsg =
proverconfig # query Prover configuration, triggering interface configuration
| provercontrol # control some aspect of Prover
| proofcmd # issue a proof command
| filecmd # issue a file command
kitmsg =
kitconfig # messages to configure the interface
| proveroutput # output messages from the prover, usually display in interface
| fileinfomsg # information messages concerning

57

58

59 # ==========PROVER CONFIGURATION ==========
60

61 proverconfig =

62 askpgip # what version of PGIP do you support?

63 | askpgml # what version of PGML do you support?

64 | askconfig # tell me about objects and operations
65 | askprefs # what preference settings do you offer?
66 | setpref # please set this preference value

67 | getpref # please tell me this preference value

68
69
70 name_attr = attribute name { token } # identifiers must be XML tokens
71

72 prefcat_attr = attribute prefcategory { text} # e.g. "expert”, "internal”, etc.
73 # could be used for tabs in dialog

74

75 askpgip = element askpgip

empty }
element askpgmi empty }
element askconfig empty }

{
76 askpgml {
{

element askprefs { empty }
{
{

77 askconfig
78 askprefs

79 setpref = element setpref name_attr, prefcat_attr?, text }
so getpref = element getpref name_attr, prefcat_attr? }

81

82

83 # ==========INTERFACE CONFIGURATION ==========

84

g5 kitconfig =

86 usespgip # | support PGIP, version

87 | usespgml # | support PGML, version

88 | pgmliconfig # configure PGML symbols

89 | haspref # | have a preference setting

9 | prefval # the current value of a preference is

91 | addids # inform the interface about some known objects

92 | delids # retract some known identifers

93 | menuadd # add a menu entry

94 | menudel # remove a menu entry

95 | guiconfig # configure the following object types and operations

96

o7 # version reporting

s version_attr = attribute version { text }

9s usespgml = element usespgml { version_attr }

10 usespgip = element usespgip { version_attr }

101

12 # PGML configuration

103 pgmlconfig = element pgmlconfig { pgmlconfigure+ }

104

105 # Types for config settings: corresponding data values should conform
16 # to representation for corresponding XML Schema 1.0 Datatypes.

107 # (This representation is verbose but helps for error checking later)
108

109 pgiptype = pgipbool | pgipint | pgipstring | pgipchoice
110 pgipbool = element pgipbool { empty }

1 pgipint = element pgipint { empty }

12 pgipstring = element pgipstring { empty }

113 pgipchoice = element pgipchoice { pgipchoiceitem+ }

114 pgipchoiceitem = element pgipchoiceitem { tag-attr?, pgiptype }
15 tag_attr = attribute tag { text }
116

17 # preferences

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

default_attr = attribute default { text }
descr_attr = attribute descr { text }

haspref = element haspref {
name_attr, descr_attr?, prefcat_attr?,
default_attr?, pgiptype

}

prefval = element prefval { name_attr, text }

menu items (incomplete)
path_attr = attribute path { text }

menuadd = element menuadd { path_attr?, name_attr?, text }
menudel = element menudel { path_attr?, name_attr?, text }

GUI configuration information: objects, types, and operations

guiconfig =
element guiconfig { objtypex, opnx, iopnx, proofopnx }

objtype = element objtype { name_attr, descr_attr?, icon? }

icon = element icon { xsd:base64Binary } # image data for an icon

opsrc = element opsrc { list { tokenx } } # source types: a space separated list

optrg = element optrg { token } # the single target type

opcmd = element opcmd { text } # prover command, with printf—style ”%1”—args
opn = element opn { name_attr, opsrc, optrg, opcmd }

proof operations (no target sort: result is a proofcmd for script)
proofopn = element proofopn { name_attr, opsrc, opcmd }

interactive operations — require some input
iopn = element iopn { name_attr, inputform, opsrc, optrg, opcmd }
inputform = element inputform { field+ }

a field has a PGIP config type (int, string, bool, choice(c1...cn))
and a name; under that name, it will be substituted into the command
Ex. field name=number opcmd="rtac %1 Y%number”

field = element field {

name_attr , pgiptype,
element prompt { text }

identifier tables: these list known items of particular objtype.
Might be used for completion or menu selection.

May have a nested structure (but objtypes do not).

objtype_attr = attribute objtype { token } # the name of an objtype
idtable = element idtable { objtype_attr, (identifier | idtable)x* }

addids = element addids { idtable }
delids = element delids { idtable }

identifier = element identifier { token }

10

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

provercontrol =
proverinit # reset prover to its initial state
| proverexit # exit prover

| startquiet # stop prover sending proof state displays, non—urgent messages
| stopquiet # turn on normal proof state & message displays
proverinit = element proverinit { empty }

proverexit = element proverexit { empty } # exit prover
startquiet = element startquiet { empty }
stopquiet = element stopquiet { empty }
========== GENERAL PROVER OUTPUT/RESPONSES ==========
proveroutput =
ready # prover is ready for input
| cleardisplay # prover requests a display area to be cleared
| normalresponse # prover outputs some display text
| errorresponse # prover indicates an error condition, with error message
| scriptinsert # some text to insert literally into the proof script
| metainforesponse # prover outputs some meta—information to interface

ready = element ready { empty }

displayarea = "message” # the message area (response buffer)
| "display” # the main display area (goals buffer)

cleardisplay =
element cleardisplay {
attribute area {
displayarea | "all” } }

displaytext = (text | pgml)x # grammar for displayed text
normalresponse =

element normalresponse {
attribute area { displayarea },

attribute category { text }?, # optional extra category (e.g. tracing/debug)
attribute urgent { "y” }?, # indication that message must be displayed
displaytext

}

fatality = "nonfatal” | "fatal” | "panic” # degree of errors

errorresponse =

element errorresponse {
attribute fatality { fatality },
attribute location { text }?7,
attribute locationline { xsd:positivelnteger }?,
attribute locationcolumn { xsd:positivelnteger }?,
displaytext

}

scriptinsert =

11

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

257
258
259
260
261
262
263
264
265

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295
296
297
298
299
300

element scriptinsert {
text
}
metainformation is an extensible place to put system—specific information
value = element value { name_attr?, text } # generic value holder
metainforesponse =

element metainforesponse {
attribute infotype { text }, # categorization of data

value = } # data values
proofcmd =
goal # open a goal in ambient context

proofstep # a specific proof command (perhaps configured via opcmd)
undostep # undo the last proof step issued in currently open goal

closegoal # complete & close current open proof (succeeds iff goal proven)
giveupgoal # close current open proof, record as proof obl’n (sorry)

|
|
|
| abortgoal # give up on current open proof, close proof state, discard history
|
| postponegoal # close current open proof, retaining attempt in script (oops)

| forget # forget a theorem (or named target), outdating dependent theorems

| restoregoal # re—open previously postponed proof, outdating dependent theorems

thmname_attr = attribute thmname { text } # theorem names

aname_attr = attribute aname { text } # anchors in proof text

goal = element goal { thmname_attr, text } # text is theorem to be proved
proofstep = element proofstep { aname_attr?, text } # text is proof command
undostep = element undostep { empty }

closegoal = element closegoal { empty }

abortgoal = element abortgoal { empty }

giveupgoal = element giveupgoal { empty }

postponegoal = element postponegoal { empty }

forget = element forget { thyname_attr?, aname_attr? }

restoregoal = element restoregoal { thmname_attr }
========== THEORY/FILE HANDLING COMMANDS ==========
filecmd =
loadtheory # load a file possibly containing a theory definition
| opentheory # begin construction of a new theory.
| closetheory # complete construction of the currently open theory
| retracttheory # retract a theory. Applicable to open & closed theories.
| openfile # lock a file for constructing a proof text
| closefile # unlock a file , suggesting it has been processed
| abortfile # unlock a file , suggesting it hasn’t been processed

fileinfomsg =

informfileloaded # prover informs interface a particular file is loaded
| informfileretracted # prover informs interface a particular file is outdated
url_attr = attribute wurl { text } # typically: filename

thyname_attr = attribute thyname { text } # a corresponding theory name

loadtheory = element loadtheory { url_attr?, thyname_attr? }

12

301
302
303
304
305
306
307
308
309
310
311

© 0O N o o H~ w N o=

opentheory = element opentheory { thyname_attr, text }
closetheory = element closetheory { thyname_attr }
retracttheory = element retracttheory { thyname_attr }
openfile = element openfile { url_attr }

closefile = element closefile { url_attr }

abortfile = element abortfile { url_attr }

informfileloaded =
element informfileloaded { thyname_attr, url_attr }
informfileretracted =

element informfileretracted { thyname_attr, url_attr }
A.2 pgml.rnc
#
RELAX NG Schema for PGML, the Proof General Markup Language
#
Authors: David Aspinall , LFCS, University of Edinburgh
Christoph Lueth, University of Bremen
Version: $1d: pgml.rnc,v 1.3 2003/07/16 14:56:35 da Exp $
#
Status: Complete but experimental version.
#
For additional commentary, see the Proof General Kit white paper,
available from http://www.proofgeneral.org/ kit
#
Advertised version: 1.0
#

pgml_version_attr = attribute version { xsd:NMTOKEN }

pgml =
element pgml {
pgml_version_attr?,
(statedisplay | termdisplay | information | warning | error)x

}

termitem action | nonactionitem
nonactionitem = term | pgmltype | atom | sym

pgml_name_attr = attribute name { text }

kind_attr = attribute kind { text }
systemid_attr = attribute systemid { text }

statedisplay =
element statedisplay {
pgml_name_attr?, kind_attr?, systemid_attr?,
(text | termitem | statepart)=x

}

br = element br { empty }
pgmltext = (text | termitem | br)x

information =
element information { pgml_name_attr?, kind_attr?, pgmltext }

warning = element warning { pgml_name_attr?, kind_attr?, pgmltext }
error = element error { pgml_name_attr?, kind_attr?, pgmltext }
statepart = element statepart { pgml_name_attr?, kind_attr?, pgmltext }

termdisplay

13

element termdisplay { pgml_name_attr?, kind_attr?, pgmltext }

48

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72

pos_attr = attribute pos { text }

term = element term { pos_attr?, kind_attr?, pgmltext }

maybe combine this with term and add extra attr to term?
pgmltype = element type { kind_attr?, pgmltext }

action = element action { kind_attr?, (text

fullname_attr = attribute fullname { text }

atom = element atom { kind_attr?, fullname_attr?, text }

Symbols

symname
sym

attribute name { text }
element sym { symname }

configuring PGML

pgmliconfigure = symconfig # inform symbol support (1/0) for given sym
asciialt = attribute alt { text } # understanding of ASCIlI alt for given sym

symconfig = element symconfig { symname,

14

nonactionitem)x }

asciialt? }

