#use"hol.ml";; needs "Library/products.ml";; #use "TacticRecording/main.ml";; prioritize_real();; AIM: CONT_COMPOSE (Library/analysis.ml) - used by John in his Proof Style paper (* ** LEMMA1 from HOL Light's 100/arithmetic_geometric_mean.ml ** *) let LEMMA_1 = prove (`!x n. x pow (n + 1) - (&n + &1) * x + &n = (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`, CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES] THENL [REAL_ARITH_TAC; REWRITE_TAC[ARITH_RULE `1 <= SUC n`]] THEN SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; SUB_REFL] THEN REWRITE_TAC[real_pow; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN ASM_REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC);; let LEMMA_1 = prove (`!x n. x pow (n + 1) - (&n + &1) * x + &n = (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`, CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN HILABEL "induction" (INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES] THENL [HILABEL "base case" REAL_ARITH_TAC; ALL_TAC] THEN HILABEL "step case" (REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; SUB_REFL] THEN REWRITE_TAC[real_pow; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN ASM_REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC)));; let LEMMA_1 = theorem_wrap "LEMMA_1" LEMMA_1;; top_thm ();; print_executed_proof true;; print_flat_proof true;; print_packaged_proof ();; print_thenl_proof ();; print_gv_proof ();; let gtr = !the_goal_tree;; let h = gtree_to_hiproof gtr;; let h' = (trivsimp_hiproof o dethen_hiproof) h;; g `!x n. x pow (n + 1) - (&n + &1) * x + &n = (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`;; e (CONV_TAC (ONCE_DEPTH_CONV SYM_CONV));; e (GEN_TAC);; e (INDUCT_TAC);; (* *** Subgoal 1 *** *) e (REWRITE_TAC [SUM_CLAUSES_NUMSEG;ARITH_EQ;ADD_CLAUSES]);; e (REAL_ARITH_TAC);; (* *** Subgoal 2 *** *) e (REWRITE_TAC [SUM_CLAUSES_NUMSEG;ARITH_EQ;ADD_CLAUSES]);; e (REWRITE_TAC [ARITH_RULE `1 <= SUC n`]);; e (SIMP_TAC [ARITH_RULE `k <= n ==> SUC n - k = SUC (n - k)`; SUB_REFL]);; e (REWRITE_TAC [real_pow;REAL_MUL_RID]);; e (REWRITE_TAC [REAL_ARITH `k * x * x pow n = (k * x pow n) * x`]);; e (ASM_REWRITE_TAC [SUM_RMUL;REAL_MUL_ASSOC;REAL_ADD_LDISTRIB]);; e (REWRITE_TAC [GSYM REAL_OF_NUM_SUC; REAL_POW_ADD]);; e (REAL_ARITH_TAC);; print_executed_proof true;; print_packaged_proof ();; print_thenl_proof ();; (* LEMMA 2 *) let LEMMA_2 = prove (`!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`, REPEAT STRIP_TAC THEN REWRITE_TAC[LEMMA_1] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_POW_LE]);; let LEMMA_2 = theorem_wrap "LEMMA_2" LEMMA_2;; print_executed_proof true;; print_flat_proof true;; print_packaged_proof ();; print_gv_proof ();; g `!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`;; (* LEMMA 3 *) let LEMMA_3 = prove (`!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i) ==> x(n + 1) * (sum(1..n) x / &n) pow n <= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`, REPEAT STRIP_TAC THEN ABBREV_TAC `a = sum(1..n+1) x / (&n + &1)` THEN ABBREV_TAC `b = sum(1..n) x / &n` THEN SUBGOAL_THEN `x(n + 1) = (&n + &1) * a - &n * b` SUBST1_TAC THENL [MAP_EVERY EXPAND_TAC ["a"; "b"] THEN ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; LE_1; REAL_ARITH `~(&n + &1 = &0)`] THEN SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; SUM_SING_NUMSEG] THEN REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&0 <= a /\ &0 <= b` STRIP_ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["a"; "b"] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_DIV THEN (CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE_NUMSEG; REAL_ARITH_TAC]) THEN ASM_SIMP_TAC[ARITH_RULE `p <= n ==> p <= n + 1`]; ALL_TAC] THEN ASM_CASES_TAC `b = &0` THEN ASM_SIMP_TAC[REAL_POW_ZERO; LE_1; REAL_MUL_RZERO; REAL_POW_LE] THEN MP_TAC(ISPECL [`n:num`; `a / b`] LEMMA_2) THEN ASM_SIMP_TAC[REAL_LE_DIV] THEN REWRITE_TAC[REAL_ARITH `&0 <= x - a + b <=> a - b <= x`; REAL_POW_DIV] THEN SUBGOAL_THEN `&0 < b` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_POW_LT] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_POW_ADD] THEN UNDISCH_TAC `~(b = &0)` THEN CONV_TAC REAL_FIELD);; let LEMMA_3 = theorem_wrap "LEMMA_3" LEMMA_3;; print_executed_proof true;; print_flat_proof true;; print_thenl_proof ();; print_packaged_proof ();; print_gv_proof ();; g `!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i) ==> x(n + 1) * (sum(1..n) x / &n) pow n <= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`;; print_flat_proof true;; e (STRIP_TAC);; e (STRIP_TAC);; e (STRIP_TAC);; e (ABBREV_TAC `a = sum (1..n + 1) x / (&n + &1)`);; e (ABBREV_TAC `b = sum (1..n) x / &n`);; e (SUBGOAL_THEN `x (n + 1) = (&n + &1) * a - &n * b` SUBST1_TAC);; (* *** Subgoal 1 *** *) e (EXPAND_TAC "a");; e (EXPAND_TAC "b");; e (ASM_SIMP_TAC [REAL_DIV_LMUL; REAL_OF_NUM_EQ; LE_1; REAL_ARITH `~(&n + &1 = &0)`]);; e (SIMP_TAC [SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; SUM_SING_NUMSEG]);; e (REAL_ARITH_TAC);; (* *** Subgoal 2 *** *) e (SUBGOAL_THEN `&0 <= a /\ &0 <= b` STRIP_ASSUME_TAC);; (* *** Subgoal 2.1 *** *) e (EXPAND_TAC "a");; e (EXPAND_TAC "b");; e (CONJ_TAC);; (* *** Subgoal 2.1.1 *** *) e (MATCH_MP_TAC REAL_LE_DIV);; e (CONJ_TAC);; (* *** Subgoal 2.1.1.1 *** *) e (MATCH_MP_TAC SUM_POS_LE_NUMSEG);; e (ASM_SIMP_TAC [ARITH_RULE `p <= n ==> p <= n + 1`]);; (* *** Subgoal 2.1.1.2 *** *) e (REAL_ARITH_TAC);; (* *** Subgoal 2.1.2 *** *) e (MATCH_MP_TAC REAL_LE_DIV);; e (CONJ_TAC);; (* *** Subgoal 2.1.2.1 *** *) e (MATCH_MP_TAC SUM_POS_LE_NUMSEG);; e (ASM_SIMP_TAC [ARITH_RULE `p <= n ==> p <= n + 1`]);; (* *** Subgoal 2.1.2.2 *** *) e (REAL_ARITH_TAC);; (* *** Subgoal 2.2 *** *) e (ASM_CASES_TAC `b = &0`);; (* *** Subgoal 2.2.1 *** *) e (ASM_SIMP_TAC [REAL_POW_ZERO;LE_1;REAL_MUL_RZERO;REAL_POW_LE]);; (* *** Subgoal 2.2.2 *** *) e (ASM_SIMP_TAC [REAL_POW_ZERO;LE_1;REAL_MUL_RZERO;REAL_POW_LE]);; e (MP_TAC (ISPECL [`n`;`a / b`] LEMMA_2));; e (ASM_SIMP_TAC [REAL_LE_DIV]);; e (REWRITE_TAC [REAL_ARITH `&0 <= x - a + b <=> a - b <= x`; REAL_POW_DIV]);; e (SUBGOAL_THEN `&0 < b` ASSUME_TAC);; (* *** Subgoal 2.2.2.1 *** *) e (ASM_REAL_ARITH_TAC);; (* *** Subgoal 2.2.2.2 *** *) e (ASM_SIMP_TAC [REAL_LE_RDIV_EQ;REAL_POW_LT]);; e (MATCH_MP_TAC EQ_IMP);; e (AP_THM_TAC);; e (AP_TERM_TAC);; e (REWRITE_TAC [REAL_POW_ADD]);; e (UNDISCH_TAC `~(b = &0)`);; e (CONV_TAC REAL_FIELD);; (* AGM *) let AGM = prove (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) ==> product(1..n) a <= (sum(1..n) a / &n) pow n`, INDUCT_TAC THEN REWRITE_TAC[ARITH; PRODUCT_CLAUSES_NUMSEG] THEN REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `x:num->real` THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH; SUM_SING_NUMSEG] THEN REAL_ARITH_TAC; REWRITE_TAC[ADD1] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x(n + 1) * (sum(1..n) x / &n) pow n` THEN ASM_SIMP_TAC[LEMMA_3; GSYM REAL_OF_NUM_ADD; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[LE_REFL; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]]);; g `!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) ==> product(1..n) a <= (sum(1..n) a / &n) pow n`;; e (INDUCT_TAC);; (* *** Subgoal 1 *** *) e (REWRITE_TAC [ARITH;PRODUCT_CLAUSES_NUMSEG]);; (* *** Subgoal 2 *** *) e (REWRITE_TAC [ARITH;PRODUCT_CLAUSES_NUMSEG]);; e (REWRITE_TAC [ARITH_RULE `1 <= SUC n`]);; e (X_GEN_TAC `x:num->real`);; e (ASM_CASES_TAC `n = 0`);; (* *** Subgoal 2.1 *** *) e (ASM_REWRITE_TAC [PRODUCT_CLAUSES_NUMSEG;ARITH;SUM_SING_NUMSEG]);; e (REAL_ARITH_TAC);; (* *** Subgoal 2.2 *** *) e (REWRITE_TAC [ADD1]);; e (STRIP_TAC);; e (MATCH_MP_TAC REAL_LE_TRANS);; e (EXISTS_TAC `x (n + 1) * (sum (1..n) x / &n) pow n`);; e (ASM_SIMP_TAC [LEMMA_3; GSYM REAL_OF_NUM_ADD; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]);; e (GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM]);; e (MATCH_MP_TAC REAL_LE_RMUL);; e (ASM_SIMP_TAC [LE_REFL; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]);; g `!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i)) ==> product(1..n) a <= (sum(1..n) a / &n) pow n`;; e (INDUCT_TAC THEN REWRITE_TAC [ARITH;PRODUCT_CLAUSES_NUMSEG] THEN REWRITE_TAC [ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `x:num->real` THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC [PRODUCT_CLAUSES_NUMSEG;ARITH;SUM_SING_NUMSEG] THEN REAL_ARITH_TAC; REWRITE_TAC [ADD1] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `x (n + 1) * (sum (1..n) x / &n) pow n` THEN ASM_SIMP_TAC [LEMMA_3; GSYM REAL_OF_NUM_ADD; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC [LE_REFL; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]]);;