(* Title: HOL/ex/Primes.ML ID: $Id$ Author: Christophe Tabacznyj and Lawrence C Paulson Copyright 1996 University of Cambridge The "divides" relation, the greatest common divisor and Euclid's algorithm See H. Davenport, "The Higher Arithmetic". 6th edition. (CUP, 1992) *) eta_contract:=false; (************************************************) (** Greatest Common Divisor **) (************************************************) (*** Euclid's Algorithm ***) val [gcd_eq] = gcd.simps; val prems = goal thy "[| !!m. P m 0; \ \ !!m n. [| 0 P m n \ \ |] ==> P (m::nat) (n::nat)"; by (res_inst_tac [("u","m"),("v","n")] gcd.induct 1); by (case_tac "n=0" 1); by (asm_simp_tac (simpset() addsimps prems) 1); by Safe_tac; by (asm_simp_tac (simpset() addsimps prems) 1); qed "gcd_induct"; Goal "gcd(m,0) = m"; by (Simp_tac 1); qed "gcd_0"; Addsimps [gcd_0]; Goal "0 gcd(m,n) = gcd (n, m mod n)"; by (Asm_simp_tac 1); qed "gcd_non_0"; Delsimps gcd.simps; Goal "gcd(m,1) = 1"; by (simp_tac (simpset() addsimps [gcd_non_0]) 1); qed "gcd_1"; Addsimps [gcd_1]; (*gcd(m,n) divides m and n. The conjunctions don't seem provable separately*) Goal "(gcd(m,n) dvd m) & (gcd(m,n) dvd n)"; by (res_inst_tac [("m","m"),("n","n")] gcd_induct 1); by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [gcd_non_0]))); by (blast_tac (claset() addDs [dvd_mod_imp_dvd]) 1); qed "gcd_dvd_both"; bind_thm ("gcd_dvd1", gcd_dvd_both RS conjunct1); bind_thm ("gcd_dvd2", gcd_dvd_both RS conjunct2); (*Maximality: for all m,n,f naturals, if f divides m and f divides n then f divides gcd(m,n)*) Goal "(f dvd m) --> (f dvd n) --> f dvd gcd(m,n)"; by (res_inst_tac [("m","m"),("n","n")] gcd_induct 1); by (ALLGOALS (asm_full_simp_tac (simpset() addsimps[gcd_non_0, dvd_mod]))); qed_spec_mp "gcd_greatest"; (*Function gcd yields the Greatest Common Divisor*) Goalw [is_gcd_def] "is_gcd (gcd(m,n)) m n"; by (asm_simp_tac (simpset() addsimps [gcd_greatest, gcd_dvd_both]) 1); qed "is_gcd"; (*uniqueness of GCDs*) Goalw [is_gcd_def] "[| is_gcd m a b; is_gcd n a b |] ==> m=n"; by (blast_tac (claset() addIs [dvd_anti_sym]) 1); qed "is_gcd_unique"; (*USED??*) Goalw [is_gcd_def] "[| is_gcd m a b; k dvd a; k dvd b |] ==> k dvd m"; by (Blast_tac 1); qed "is_gcd_dvd"; (** Commutativity **) Goalw [is_gcd_def] "is_gcd k m n = is_gcd k n m"; by (Blast_tac 1); qed "is_gcd_commute"; Goal "gcd(m,n) = gcd(n,m)"; by (rtac is_gcd_unique 1); by (rtac is_gcd 2); by (asm_simp_tac (simpset() addsimps [is_gcd, is_gcd_commute]) 1); qed "gcd_commute"; Goal "gcd(gcd(k,m),n) = gcd(k,gcd(m,n))"; by (rtac is_gcd_unique 1); by (rtac is_gcd 2); by (rewtac is_gcd_def); by (blast_tac (claset() addSIs [gcd_dvd1, gcd_dvd2] addIs [gcd_greatest, dvd_trans]) 1); qed "gcd_assoc"; Goal "gcd(0,m) = m"; by (stac gcd_commute 1); by (rtac gcd_0 1); qed "gcd_0_left"; Goal "gcd(1,m) = 1"; by (stac gcd_commute 1); by (rtac gcd_1 1); qed "gcd_1_left"; Addsimps [gcd_0_left, gcd_1_left]; (** Multiplication laws **) (*Davenport, page 27*) Goal "k * gcd(m,n) = gcd(k*m, k*n)"; by (res_inst_tac [("m","m"),("n","n")] gcd_induct 1); by (Asm_full_simp_tac 1); by (case_tac "k=0" 1); by (Asm_full_simp_tac 1); by (asm_full_simp_tac (simpset() addsimps [mod_geq, gcd_non_0, mod_mult_distrib2]) 1); qed "gcd_mult_distrib2"; Goal "gcd(m,m) = m"; by (cut_inst_tac [("k","m"),("m","1"),("n","1")] gcd_mult_distrib2 1); by (Asm_full_simp_tac 1); qed "gcd_self"; Addsimps [gcd_self]; Goal "gcd(k, k*n) = k"; by (cut_inst_tac [("k","k"),("m","1"),("n","n")] gcd_mult_distrib2 1); by (Asm_full_simp_tac 1); qed "gcd_mult"; Addsimps [gcd_mult]; Goal "[| gcd(k,n)=1; k dvd (m*n) |] ==> k dvd m"; by (subgoal_tac "m = gcd(m*k, m*n)" 1); by (etac ssubst 1 THEN rtac gcd_greatest 1); by (ALLGOALS (asm_simp_tac (simpset() addsimps [gcd_mult_distrib2 RS sym]))); qed "relprime_dvd_mult"; Goalw [prime_def] "[| p: prime; ~ p dvd n |] ==> gcd (p, n) = 1"; by (cut_inst_tac [("m","p"),("n","n")] gcd_dvd_both 1); by Auto_tac; qed "prime_imp_relprime"; (*This theorem leads immediately to a proof of the uniqueness of factorization. If p divides a product of primes then it is one of those primes.*) Goal "[| p: prime; p dvd (m*n) |] ==> p dvd m | p dvd n"; by (blast_tac (claset() addIs [relprime_dvd_mult, prime_imp_relprime]) 1); qed "prime_dvd_mult"; (** Addition laws **) Goal "gcd(m, m+n) = gcd(m,n)"; by (res_inst_tac [("n1", "m+n")] (gcd_commute RS ssubst) 1); by (rtac (gcd_eq RS trans) 1); by Auto_tac; by (asm_simp_tac (simpset() addsimps [mod_add_self1]) 1); by (stac gcd_commute 1); by (stac gcd_non_0 1); by Safe_tac; qed "gcd_add"; Goal "gcd(m, n+m) = gcd(m,n)"; by (asm_simp_tac (simpset() addsimps [add_commute, gcd_add]) 1); qed "gcd_add2"; Goal "gcd(m, k*m+n) = gcd(m,n)"; by (induct_tac "k" 1); by (asm_simp_tac (simpset() addsimps [gcd_add, add_assoc]) 2); by (Simp_tac 1); qed "gcd_add_mult"; (** More multiplication laws **) Goal "gcd(m,n) dvd gcd(k*m, n)"; by (blast_tac (claset() addIs [gcd_greatest, dvd_trans, gcd_dvd1, gcd_dvd2]) 1); qed "gcd_dvd_gcd_mult"; Goal "gcd(k,n) = 1 ==> gcd(k*m, n) = gcd(m,n)"; by (rtac dvd_anti_sym 1); by (rtac gcd_dvd_gcd_mult 2); by (rtac ([relprime_dvd_mult, gcd_dvd2] MRS gcd_greatest) 1); by (stac mult_commute 2); by (rtac gcd_dvd1 2); by (stac gcd_commute 1); by (asm_simp_tac (simpset() addsimps [gcd_assoc RS sym]) 1); qed "gcd_mult_cancel";