
Using
Palm OS® Emulator

Document Number 3060-001

CONTRIBUTORS

Written by Brian Maas
Production by <dot>PS Document Production Services
Engineering contributions by Keith Rollin, Derek Johnson, Greg Wilson, Owen Emry

Copyright © 1996 - 2002, Palm, Inc. or its subsidiaries. All rights reserved. This documentation may be
printed and copied solely for use in developing products for Palm OS software. In addition, two (2) copies
of this documentation may be made for archival and backup purposes. Except for the foregoing, no part of
this documentation may be reproduced or transmitted in any form or by any means or used to make any
derivative work (such as translation, transformation or adaptation) without express written consent from
Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE
DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES,
TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW,
STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS
SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING
NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE
DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF
INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION
WITH THIS DOCUMENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint, and
PalmSource are registered trademarks of Palm, Inc. Palm, the Palm logo, MyPalm, PalmGear, PalmPix,
PalmPower, AnyDay, EventClub, HandMAIL, the HotSync logo, PalmGlove, PalmPowered, the Palm
trade dress, Smartcode, Simply Palm, WeSync, and Wireless Refresh are trademarks of Palm, Inc. All other
brands are trademarks or registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISC.

Using Palm OS Emulator
Document Number 3060-001
March 2002
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
5470 Great America Pkwy.
Santa Clara, CA 95052
USA
www.palmos.com

http://www.palmos.com/dev/support/docs/
http://www.palmos.com

Palm, Inc. Development Publications FrameMaker Templates 3

Table of Contents
 About This Document 11

Who Should Read This Book 11
What This Book Contains 11
Palm OS SDK Documentation 13
Additional Resources 13
What’s New for Palm OS Emulator 3.5 14
What’s New for Palm OS Emulator 3.4 14

1 Understanding Palm OS Emulator Concepts 15
About Palm OS Emulator 15
Feature Overview. 16

Standard Handheld Features. 17
Extended Emulation Features 17
Debugging Features 18

Getting Help with Palm OS Emulator 18

2 Installing Palm OS Emulator 19
Prerequisites . 19

Palm OS Emulator Runtime Requirements. 19
Using ROM Images. 19

Downloading Palm OS Emulator 20
Versions of Palm OS Emulator 21

Profile Versions . 22
Loading ROM Images 22

Downloading a ROM Image Obtained from Palm 22
Transferring a ROM Image from a Handheld. 23
Transferring a ROM File in Windows 23
Transferring a ROM File on a Macintosh. 24
Transferring a ROM File on a Unix System. 25
Transferring a ROM Image over a USB Connection 25

Using a ROM Image in Palm OS Emulator 26
Dragging and Dropping a ROM Image 27

4 Palm, Inc. Development Publications FrameMaker Templates

3 Running Palm OS Emulator 29
Starting Palm OS Emulator 29

Command Line Options. 29
Palm OS Emulator Start Up 35

Using Emulation Sessions 38
Configuring a New Session 38
The Difference between the New Menu Item and the Open Menu

Item . 40
Dragging and Dropping Files 40
Saving and Restoring Session State 41
Saving the Screen 41

Changing Emulator’s Appearance 42
Other Options on the Skins Dialog Box 42

Modifying the Runtime Environment 43
Palm OS Emulator Properties 43
Preferences Files . 45

Installing Applications 45
Using the Install Menu 46
Using the Autoload Facility 46

Using Serial Communication 47
Using the HotSync Application 48

Performing a Network Hotsync Operation with Palm OS
Emulator on Windows 48

Performing a HotSync Operation with a Null Modem Cable . 50
Emulating Expansion Memory 52
Emulating a Handheld Reset 53

4 Palm OS Emulator User Interface Summary 55
Palm OS Emulator Display. 56
Using the Menus . 56
Using the Hardware Buttons 61
Entering Data . 62
Using Control Keys . 62

5 Testing Applications Using Palm OS Emulator 65
Testing Software . 65

Palm, Inc. Development Publications FrameMaker Templates 5

Debug Options. 65
Logging Options . 69

Using Gremlins to Automate Testing 74
Gremlin Characteristics 74
Gremlin Horde Settings 75
Running a Gremlin Horde 76
Stepping and Stopping Gremlins 78
Gremlin Snapshots 79
Logging while Gremlins Are Running. 79
Using Gremlin Events. 80

Setting Breakpoints . 81
Setting the Data Breakpoint 82
Setting Conditional Breakpoints 82

Debugging with External Debug Tools 83
Connecting Emulator with Palm Debugger 84
Connecting Emulator with the GDB Debugger 84
Connecting the Emulator with External Debuggers 85

Tracing Your Code . 86
Using Reporter to View Realtime Traces 87

Profiling Your Code . 87

6 Palm OS Emulator Error Handling 91
About Errors and Warnings 92
Detecting an Error Condition. 92
Error Condition Types. 95
Error Messages . 95

7 Palm OS Emulator Advanced Topics 107
Using Emulator Skin Files 107

How Skin Files Work 107
Installing Additional Skin Files. 108
Modifying or Creating Skin Files 109

Creating Demonstration Versions of Palm OS Emulator 115
Bound Emulation Session Limitations 115

Sending Commands to Palm OS Emulator 116
RPC2 Packet Format 117

6 Palm, Inc. Development Publications FrameMaker Templates

8 Host Control API Reference 119
About the Host Control API 119
Constants . 120

Host Error Constants 120
Host Function Selector Constants. 124
Host ID Constants 124
Host Platform Constants 124
Host Signal Constants 125

Data Types. . 125
HostBoolType . 126
HostClockType . 126
HostDirEntType . 126
HostDIRType . 126
HostFILEType . 127
HostGremlinInfoType. 127
HostIDType . 128
HostPlatformType 128
HostSignalType . 128
HostSizeType . 128
HostStatType . 128
HostTimeType . . 130
HostTmType. . 130
HostUTimeType . 131

Functions . 131
HostAscTime . 132
HostClock . . 132
HostCloseDir . 133
HostCTime . 133
HostDbgClearDataBreak 133
HostDbgSetDataBreak 134
HostErrNo . 134
HostExportFile. . 135
HostFClose . 135
HostFEOF . . 136
HostFError . 136

Palm, Inc. Development Publications FrameMaker Templates 7

HostFFlush . 136
HostFGetC . 137
HostFGetPos . 137
HostFGetS. . 137
HostFOpen . 138
HostFPrintF . . 138
HostFPutC . 138
HostFPutS. . 139
HostFRead . 139
HostFree . 139
HostFReopen . 140
HostFScanF . 140
HostFSeek. . 141
HostFSetPos . . 141
HostFTell . 142
HostFWrite . 142
HostGestalt . 142
HostGetDirectory 143
HostGetEnv . . 143
HostGetFile . 143
HostGetFileAttr . 144
HostGetHostID . 144
HostGetHostPlatform. 145
HostGetHostVersion 145
HostGetPreference 146
HostGMTime . 147
HostGremlinCounter 147
HostGremlinIsRunning 147
HostGremlinLimit 148
HostGremlinNew 148
HostGremlinNumber 148
HostImportFile . 149
HostImportFileWithID 149
HostIsCallingTrap 150
HostIsSelectorImplemented 150

8 Palm, Inc. Development Publications FrameMaker Templates

HostLocalTime. . 151
HostLogFile . . 151
HostMalloc . 151
HostMkDir . 152
HostMkTime . 152
HostOpenDir . 152
HostProfileCleanup 153
HostProfileDetailFn 153
HostProfileDump 154
HostProfileGetCycles 154
HostProfileInit . . 155
HostProfileStart . 156
HostProfileStop . 157
HostPutFile . 157
HostReadDir . 158
HostRealloc . 158
HostRemove. . 158
HostRename. . 159
HostRmDir . 159
HostSaveScreen . 159
HostSessionClose 160
HostSessionCreate 160
HostSessionOpen 161
HostSessionQuit . 161
HostSessionSave 162
HostSetFileAttr . 163
HostSetLogFileSize 163
HostSetPreference 164
HostSignalResume 164
HostSignalSend . 165
HostSignalWait . 166
HostSlotHasCard. 167
HostSlotMax. . 167
HostSlotRoot . 168
HostStat . 168
HostStrFTime . 169
HostTime . 170

Palm, Inc. Development Publications FrameMaker Templates 9

HostTmpFile . 170
HostTmpNam . . 170
HostTraceClose . 171
HostTraceInit . 171
HostTraceOutputB 172
HostTraceOutputT 172
HostTraceOutputTL 174
HostTraceOutputVT 175
HostTraceOutputVTL 176
HostTruncate . 176
HostUTime . 177

Reference Summary 177
Host Control Database Functions 177
Host Control Directory Handler Functions. 178
Host Control Environment Functions 178
Host Control File Chooser Support Functions 179
Host Control Gremlin Functions 179
Host Control Debugging Functions 180
Host Control Logging Functions 180
Host Control Preference Functions 180
Host Control Profiling Functions 181
Host Control RPC Functions 181
Host Control Standard C Library Functions 182
Host Control Time Functions 184
Host Control Tracing Functions 185

9 Debugger Protocol Reference 187
About the Palm Debugger Protocol 187

Packets . 188
Packet Structure . 188
Packet Communications. 190

Constants . 190
Packet Constants 190
State Constants . 191
Breakpoint Constants 191

10 Palm, Inc. Development Publications FrameMaker Templates

Command Constants 191
Data Structures . . 192

_SysPktBodyCommon 192
SysPktBodyType . 193
SysPktRPCParamType 193
BreakpointType . 194

Debugger Protocol Commands 194
Continue . 194
Find . 196
Get Breakpoints . 197
Get Routine Name 198
Get Trap Breaks . 200
Get Trap Conditionals. 201
Message . 202
Read Memory . 203
Read Registers . . 204
RPC . 205
Set Breakpoints . 206
Set Trap Breaks . 207
Set Trap Conditionals 208
State . 209
Toggle Debugger Breaks. 211
Write Memory . . 212
Write Registers. . 213

Summary of Debugger Protocol Packets 214

A Structure Access Notifications 217

B Unsupported Traps 225
System Use Only Traps 226
Internal Use Only Traps 227
Kernel Traps . . 228
Obsolete Traps . 229
Unimplemented Traps. 229
Unimplemented NOP Traps 229
Unimplemented Rare Traps 230

Using Palm OS Emulator 11

About This
Document
Using Palm OS® Emulator provides you with conceptual, guidance
and reference information on how you can use Palm OS Emulator to
test your Palm OS applications.

Who Should Read This Book
If you are a Palm OS application developer, whether you are writing
your first Palm OS application or you are an experienced Palm OS
application developer, then this book is for you. Palm OS Emulator
is a valuable tool for testing and debugging Palm OS applications.

In most cases, you will need to download ROM images for Palm OS
Emulator from the Palm OS Developer Program’s Resource
Pavilion. As a result, you should join the Palm OS Developer
Program. For more information, see “Loading ROM Images” on
page 22.

What This Book Contains
This book starts with a general overview of Palm OS Emulator, and
continues with detailed procedural and reference information that
describes how to use Emulator to test your Palm OS applications. It
contains the following chapters:

• Chapter 1, “Understanding Palm OS Emulator Concepts,” on
page 15 provides a conceptual overview of Palm OS
Emulator.

• Chapter 2, “Installing Palm OS Emulator,” on page 19
describes what you need to do to get Palm OS Emulator
installed and ready to use on your desktop computer.

• Chapter 3, “Running Palm OS Emulator,” on page 29
describes how to customize and use emulation sessions.

About This Document
What This Book Contains

12 Using Palm OS Emulator

• Chapter 4, “Palm OS Emulator User Interface Summary,” on
page 55 provides a reference for Emulator’s command menus
and keyboard input functions.

• Chapter 5, “Testing Applications Using Palm OS Emulator,”
on page 65 describes how to use Palm OS Emulator to test
and debug programs you have written for Palm OS.

• Chapter 6, “Palm OS Emulator Error Handling,” on page 91
provides details about Emulator’s error handling and
reporting features.

• Chapter 7, “Palm OS Emulator Advanced Topics,” on
page 107 describes how to use Emulator skin files, how to
create a demonstration version of your application, and
discusses how you can send commands to Emulator.

• Chapter 8, “Host Control API Reference,” on page 119
describes the host control API, which provides functions that
an emulated application can use to call into Palm OS
Emulator for certain services.

• Chapter 9, “Debugger Protocol Reference,” on page 187
describes the API for sending commands and responses
between a debugging host, such as Palm Debugger, and a
debugging target, which can be a Palm Powered™ handheld
ROM or an emulator program such as Palm OS Emulator.

• Palm OS Emulator monitors applications for direct structure
accesses. Appendix A, “Structure Access Notifications” on
page 217 lists the conditions for when Emulator does not
notify you of structure accesses.

• Emulator also monitors any application use of Palm OS
system traps. Appendix B, “Unsupported Traps” on page 225
lists the traps that will not be supported in future Palm OS
releases.

About This Document
Palm OS SDK Documentation

Using Palm OS Emulator 13

Palm OS SDK Documentation
The following documents, which are part of the Palm OS Software
Development Kit documentation set, will also be useful when you
are developing and testing Palm OS applications.

Additional Resources
• Documentation

Palm publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

Palm and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training/

Document Description

Palm OS Programmer’s
API Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion, vol. I and
Palm OS Programmer’s
Companion, vol. II,
Communications

A guide to application programming for the Palm OS. These
volumes contain conceptual and “how-to” information that
complements Palm OS Programmer’s API Reference.

Palm OS Programming
Development Tools Guide

A guide to the tools that can be used to develop, test, and
debug Palm OS applications: Palm Simulator, Palm Debugger,
Palm Reporter, console window, and resource overlay tools.

Constructor for Palm OS A guide describing how to use Constructor for Palm OS to
build graphical user interfaces for Palm OS applications.

Palm File Format
Specification

Data layout specifications of installable files (PRC), databases
(PDB), and webclipping applications (PQA).

Web Clipping Developer's
Guide

A guide for developing wireless applications using
"lightweight" HTML.

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training/

About This Document
What’s New for Palm OS Emulator 3.5

14 Using Palm OS Emulator

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

What’s New for Palm OS Emulator 3.5
• Support for Palm m125, Palm m130, Palm515, and Palm i705.

• Support for HandEra TRGpro and HandEra 330.

• Allow access to UI data structures in support of
PalmOSGlue. See Appendix A, “Structure Access
Notifications” on page 217 for more information.

What’s New for Palm OS Emulator 3.4
• Common, cross-platform dialog boxes.

• Support for multiple file selection in the Install Application
dialog box.

• New preferences for control skin appearance.

• Detection of direct structure access.

• Detection of memory leaks.

• Detection of Overlay Manager errors.

• Enhanced support for processing when errors and warnings
occur.

• Gremlin minimization function, including new Palm event
files.

• Host Constrol API functions HostDbgClearDataBreak,
HostDbgSetDataBreak, HostImportFileWithID, and
HostSessionSave.

http://www.palmos.com/dev/support/kb/

Using Palm OS Emulator 15

1
Understanding Palm
OS Emulator
Concepts
This chapter describes Palm OS® Emulator and provides overview
information on how you can use it to test and debug programs you
have written for Palm OS.

This edition covers Palm OS Emulator 3.5.

Note: Palm OS Emulator has previously been referred to as POSE or
Poser. The name Palm OS Emulator is used throughout this book
and in new versions of other Palm documentation. In this chapter,
Emulator is sometimes used as an abbreviated form of Palm OS
Emulator.

• “About Palm OS Emulator” on page 15

• “Feature Overview” on page 16

• “Getting Help with Palm OS Emulator” on page 18

About Palm OS Emulator
Palm OS Emulator is a hardware emulator program for the Palm
Powered™ platform, which means that it emulates the Palm
hardware in software, providing you with the ability to test and
debug Palm OS software on a Macintosh, Unix, or Windows-based
desktop computer.

When you run a Palm OS application with Palm OS Emulator on
your desktop computer, Palm OS Emulator fetches instructions,
updates the handheld screen display, works with special registers,
and handles interrupts in exactly the same manner as does the
processor inside of Palm Powered handhelds. The difference is that

Understanding Palm OS Emulator Concepts
Feature Overview

16 Using Palm OS Emulator

Palm OS Emulator executes these instructions in software on your
desktop computer.

Feature Overview
Palm OS Emulator displays an on-screen image that looks exactly
like a Palm Powered handheld, as shown in Figure 1.1.

Figure 1.1 Palm OS Emulator display

You can select which type of Palm Powered handheld you want to
emulate. You can also specify whether you want Palm OS Emulator
to display the screen in double size, which continues to provide an
accurate representation and makes the Palm screen easier to view.

You can use the mouse on your desktop computer just as you use
the stylus on a Palm Powered handheld. You can even use the
Graffiti® power writing software with Palm OS Emulator and your
mouse. And Palm OS Emulator includes additional keyboard
shortcuts that you can use on your desktop computer.

You can use Palm OS Emulator to perform some debugging of your
applications, and you can use Emulator with external debug tools to

Understanding Palm OS Emulator Concepts
Feature Overview

Using Palm OS Emulator 17

perform extensive debugging of your applications. When you
connect Emulator with Palm Debugger, you can debug in exactly
the same manner as debugging with your application running on an
actual hardware handheld. For more information about Palm
Debugger, see Palm OS Programming Development Tools Guide.

Standard Handheld Features
Palm OS Emulator accurately emulates Palm Powered hardware,
and includes the following features:

• an exact replica of the Palm Powered handheld display,
including the Graffiti area and its surrounding icons

• emulation of the Palm stylus with the desktop computer
pointing device (mouse)

• emulation of the Palm Powered handheld hardware buttons,
including:

– power on/off button

– application buttons

– up and down buttons

– reset button

– HotSync® button

• ability to zoom the display for enhanced readability and
presentation

• screen backlighting

• communications port emulation for modem communications
and synchronizing

Extended Emulation Features
Palm OS Emulator also provides the following capabilities on your
desktop computer that extend the standard Palm Powered
handheld interface.

• ability to enter text with the desktop computer

• configurable memory size, up to 16 MB

Understanding Palm OS Emulator Concepts
Getting Help with Palm OS Emulator

18 Using Palm OS Emulator

Debugging Features
Palm OS Emulator provides a large number of debugging features
that help you to detect coding problems and unsafe application
operations. Palm OS Emulator includes the following debugging
features and capabilities:

• use of an automated test facility called Gremlins, which
repeatedly generates random events

• support for external debuggers, including Palm Debugger,
the Metrowerks CodeWarrior debugger, and gdb

• monitoring of application actions, including various memory
access and memory block activities

• logging of application activities, including events handled,
functions called, and CPU opcodes executed by the
application

• profiling of application performance

Getting Help with Palm OS Emulator
Palm OS Emulator is constantly evolving, and Palm is always
interested in hearing your comments and suggestions.

Palm provides a forum (emulator-forum@news.palmos.com) for
questions and comments about Palm OS Emulator. To subscribe to
the forum, see:

http://www.palmos.com/dev/support/forums/

You can get the latest information about Palm OS Emulator in the
Palm developer zone on the Internet:

http://www.palmos.com/dev/

Note: The source code for Palm OS Emulator is available at:

http://www.palmos.com/dev/tools/emulator/

You can create your own emulator by modifying this source code.

http://www.palmos.com/dev/support/forums/
http://www.palmos.com/dev/
http://www.palmos.com/dev/tools/emulator/

Using Palm OS Emulator 19

2
Installing Palm OS
Emulator
This chapter describes what you need to do to get Palm OS®
Emulator installed and ready to use on your desktop machine.

• “Prerequisites” on page 19

• “Downloading Palm OS Emulator” on page 20

• “Versions of Palm OS Emulator” on page 21

• “Loading ROM Images” on page 22

• “Using a ROM Image in Palm OS Emulator” on page 26

Prerequisites
This section describes the software you need to use Palm OS
Emulator.

Palm OS Emulator Runtime Requirements
Palm OS Emulator requires one of the following runtime
environments:

• A 32-bit Windows platform: either Windows 95, Windows
98, Windows NT, Windows ME, Windows 2000, or Windows
XP. Emulator is a multi-threaded 32-bit program. It does not
run on Windows 3.1, even with Win32s installed.

• MacOS 8.6 or later with Carbon 1.2.5 or later

• Unix: some versions, including Linux

Using ROM Images
To run Palm OS Emulator, you need to transfer a ROM image to it.
The ROM image contains all of the code used for a specific version
of the Palm OS. You can obtain ROM images for different Palm OS

Instal l ing Palm OS Emulator
Downloading Palm OS Emulator

20 Using Palm OS Emulator

versions from the Palm Resource Pavilion, or you can tell Palm OS
Emulator to download the ROM from a handheld that has been
placed in the handheld cradle and connected to the desktop
computer. For more information about transferring a ROM image to
Palm OS Emulator, see “Loading ROM Images” on page 22.

When you download ROM images from the Palm Resource
Pavilion, you can also obtain debug ROM images. Debug ROM
images contain additional error checking and reporting functions
that can help you debug Palm OS applications.

For more information about testing and debugging applications
with Palm OS Emulator, see “Testing Applications Using Palm OS
Emulator” on page 65.

Downloading Palm OS Emulator
The most recent released version of Palm OS Emulator for
Macintosh, Windows, and Unix is always posted on the Internet in
the Palm developer zone:

http://www.palmos.com/dev

Follow the links from the developer zone main page to the Emulator
page to retrieve the released version of Emulator. If you want to test-
drive the version of Palm OS Emulator that is currently under
development, follow links from the developer zone page to the
Emulator seed page.

The Palm OS Emulator package that you download includes the
files shown in Table 2.1.

Note: For the Unix version of Palm OS Emulator, the source code is
provided rather than the executables listed in the table below.

http://www.palmos.com/dev/

Install ing Palm OS Emulator
Versions of Palm OS Emulator

Using Palm OS Emulator 21

Versions of Palm OS Emulator
Each released version of Palm OS Emulator has a version number
that uses the following scheme:

<majorVers>.<minorVers>

Each field has the following semantics:

Table 2.1 Files Included in the Palm OS Emulator Package

File name Description

• Emulator.exe (Windows)

• Palm OS Emulator
(Macintosh)

Main Palm OS Emulator executable

• Emulator_Profile.exe
(Windows)

• Palm OS Emulator -
Profile (Macintosh)

Palm OS Emulator with added profiling
facilities

Docs (directory) Palm OS Emulator documents, including:

• _ReadMe.txt, which describes the
files in the Docs directory

• _News.txt, which describes
changes in the most recent version

• _OldNews.txt, which describes
previous version changes

• _Building.txt, which describes
how to build Emulator executables

• ROM Transfer.prc
(Windows, Macintosh)

• ROM_Transfer.prc (Unix)

Palm OS application used to transfer the
ROM image from your handheld to your
desktop.

HostControl.h C/C++ header file declaring functions that
can be used to control Palm OS Emulator.
For more information about the Host
Control API, see Chapter 8, “Host Control
API Reference.”

Instal l ing Palm OS Emulator
Loading ROM Images

22 Using Palm OS Emulator

majorVers The major version number.

minorVers The minor version number.

Profile Versions
Palm OS Emulator includes a profile version, which has the word
profile appended to the program name. The profile version adds the
ability to perform selective profiling of your program’s execution,
and to save the results to a file.

The code required to add profiling capability slows down your
application, even when you are not using profiling. That means that
you are better off using the non-profiling version of Palm OS
Emulator if you don’t expect to use the profiling capabilities.

For more information about profiling with Palm OS Emulator, see
“Profiling Your Code” on page 87.

Loading ROM Images
Because Palm OS Emulator emulates the Palm Powered™
hardware, all components of the hardware must be present. This
includes a ROM image file, which is not shipped with the Emulator.
There are two ways to obtain a ROM image:

• download a ROM image from the Palm Resource Pavilion

• transfer a ROM image from a handheld

Downloading a ROM Image Obtained from
Palm
To download a debug ROM image from Palm, see:

http://www.palmos.com/dev

The ROM image files are found in the Resource Pavilion.

The Resource Pavilion is an area for developers who have registered
as members of the Palm OS Developer Program. You can find
instructions for joining the Palm OS Developer Program at the
developer site.

http://www.palmos.com/dev/

Install ing Palm OS Emulator
Loading ROM Images

Using Palm OS Emulator 23

Transferring a ROM Image from a Handheld
To transfer a ROM image from a handheld, follow these steps:

1. Install the Palm OS application named ROM Transfer.prc
on your handheld. You can use the Install program in the
Palm Desktop organizer software and then synchronize with
the handheld to install this program.

2. Place the handheld in the HotSync® cradle that is connected
to your desktop computer.

3. Follow the steps in the appropriate section below.

Transferring a ROM File in Windows
This section describes how to transfer a ROM image from a
handheld on a Windows-based desktop computer. Before
proceeding, you must have the ROM Transfer.prc program
installed on the handheld, as described in the previous section.

If you are running the program for the first time, Palm OS Emulator
presents the Startup dialog box shown in Figure 2.1. Click
Download to begin the transfer of a ROM image from a handheld.

Figure 2.1 Palm OS Emulator Startup Dialog Box

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran, as described in
“Palm OS Emulator Start Up” on page 35.

To transfer a new ROM image for Palm OS Emulator to use, you can
right-click on the Palm OS Emulator display (the Palm Powered
handheld image) and select Transfer ROM.

Instal l ing Palm OS Emulator
Loading ROM Images

24 Using Palm OS Emulator

Palm OS Emulator opens a Transfer ROM dialog box that will guide
you through the process.

Transferring a ROM File on a Macintosh
This section describes how to transfer a ROM image from a
handheld on a Macintosh desktop computer. Before proceeding,
you must have the ROM Transfer.prc program installed on the
handheld, as described in the previous section.

If you are running the program for the first time, Palm OS Emulator
presents the dialog box shown in Figure 2.2.

Figure 2.2 Running Palm OS Emulator for the First Time on a
Macintosh System

You can dismiss this dialog box and choose Transfer ROM from the
File menu.

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran. To transfer a new
ROM image for Palm OS Emulator to use, select Transfer ROM
from the File menu.

Palm OS Emulator opens a Transfer ROM dialog box that will guide
you through the process.

Install ing Palm OS Emulator
Loading ROM Images

Using Palm OS Emulator 25

Transferring a ROM File on a Unix System
This section describes how to transfer a ROM image from a
handheld on a Unix-based desktop computer. Before proceeding,
you must have the ROM Transfer.prc program installed on the
handheld, as described in the previous section.

When running the program on a Unix system, Palm OS Emulator
presents the dialog box shown in Figure 2.3.

Figure 2.3 Running Palm OS Emulator for the First Time on a
Unix System

You can dismiss this dialog box and choose Transfer ROM from the
File menu to begin the transfer of a ROM image from a handheld.

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran. To transfer a new
ROM image for Palm OS Emulator to use, select Transfer ROM
from the File menu.

Palm OS Emulator opens a Transfer ROM dialog box that will guide
you through the process.

Transferring a ROM Image over a USB
Connection
Palm OS Emulator supports transferring ROM images over a USB
connection. To use a USB connection, Palm OS Emulator needs the
USB driver support provided by the Palm Desktop software.

Instal l ing Palm OS Emulator
Using a ROM Image in Palm OS Emulator

26 Using Palm OS Emulator

On Windows, you need to have Palm Desktop 4.0.1 or later installed
to get the USB driver. You must make the library for the USB driver
(the file USBPort.dll) available to Emulator. Either copy this file
from the Palm Desktop software’s directory to the Emulator
directory, or move it into the Windows system directory.

On Macintosh, you need to have Palm Desktop 2.6.3 or later
installed to get the USB driver.

Using a ROM Image in Palm OS Emulator
Once you have transferred a ROM image to disk, you need to create
a new session that is based on the image. To initiate the new session,
you select New from the popup menu. Table 2.2 shows the first step
in creating a new session for each transfer method.

After you initiate the session, Palm OS Emulator presents the new
session dialog box, which is described in “Configuring a New
Session” on page 38. The Windows version of this dialog box is
shown in Figure 2.4.

Table 2.2 Initiating a New Session after Transferring a ROM
Image

Method Used to
Initiate ROM Transfer

New Session Method

Clicked Download
initial dialog box in
Windows

Click New in the dialog box.

Selected Transfer
ROM in Windows

Select either New or Close from the File
menu.

Selected Transfer
ROM on a Macintosh

Select New from the File menu.

Selected Transfer
ROM on Unix

Select New from the File menu.

Install ing Palm OS Emulator
Using a ROM Image in Palm OS Emulator

Using Palm OS Emulator 27

Figure 2.4 New Session Dialog Box

After you select your parameters and click OK, Palm OS Emulator
begins an emulation session.

Dragging and Dropping a ROM Image
You can use drag and drop to start a new Emulator session in either
of two ways:

• Drag and drop a ROM image file onto the Emulator screen to
start a new session.

• Drag and drop a ROM image file onto the Emulator
executable or shortcut (alias) to start the Palm OS Emulator
program.

You can also drag and drop other file types, as described in
“Dragging and Dropping Files” on page 40.

Instal l ing Palm OS Emulator
Using a ROM Image in Palm OS Emulator

28 Using Palm OS Emulator

Using Palm OS Emulator 29

3
Running Palm OS
Emulator
This chapter describes how to use emulation sessions and how to
customize the emulation sessions.

• “Starting Palm OS Emulator” on page 29

• “Using Emulation Sessions” on page 38

• “Changing Emulator’s Appearance” on page 42

• “Modifying the Runtime Environment” on page 43

• “Installing Applications” on page 45

• “Using Serial Communication” on page 47

• “Using the HotSync Application” on page 48

• “Emulating Expansion Memory” on page 52

• “Emulating a Handheld Reset” on page 53

Starting Palm OS Emulator
Run Palm OS Emulator just like you would any other program.
When Palm OS Emulator starts up, it displays an image of a
handheld, as shown in Figure 1.1 on page 16.

Command Line Options
If you are running Palm OS Emulator on a Windows-based desktop
computer or on a Unix system, you can supply the session
parameters as command-line parameters. For example:

Emulator -psf C:\Data\Session1.psf

Table 3.1 shows the options that you can specify on the Windows
command line. You can also change most of these options by

Running Palm OS Emulator
Starting Palm OS Emulator

30 Using Palm OS Emulator

starting a new session with the New menu, as described in
“Configuring a New Session” on page 38.

Note that the command line option specifications are not case
sensitive.

Table 3.1 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

-d <key>=<value> A preference file property and
its associated value, as
specified in the preference
file.

Changes preferences that are
stored in the preferences file.

This option is a synonym for
the -preference option.
For more information, see
“Preferences Files” on
page 45.

-horde <num> A Gremlin number The number of the Gremlin
to run after the session is
created or loaded.

Note that this is equivalent
to supplying the same
Gremlin number for the
horde_first and
horde_last options.

-horde_first
<num>

A Gremlin number The first Gremlin to run in a
horde.

-horde_last
<num>

A Gremlin number The last Gremlin to run in a
horde.

Running Palm OS Emulator
Starting Palm OS Emulator

Using Palm OS Emulator 31

-horde_apps <app
name list>

A comma-separated list of
applications.

The list of applications to
which the Gremlin horde is
allowed to switch. The
default is no restrictions.

To specify a list of excluded
applications, use a hyphen
character before a list of
application names. Example:
“-Prefs,HotSync”

-horde_save_dir
<path>

A path name The name of the directory in
which to save session and
log files.

The default log location is
the directory in which the
Palm OS Emulator
application is stored.

-horde_save_freq
<num>

An event count The Gremlin snapshot
frequency.

The default value is to not
save snapshots.

-horde_depth_max
<num>

An event count The maximum number of
Gremlin events to generate
for each Gremlin.

The default value is no
upper limit.

Table 3.1 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

Running Palm OS Emulator
Starting Palm OS Emulator

32 Using Palm OS Emulator

-horde_depth_
switch <num>

An event count The number of Gremlin
events to generate before
switching to another
Gremlin in the horde.

The default is to use the
same value as specified for
the horde_depth_max
option.

-horde_quit_
when_done

None Emulator will exit after
completing the Gremlin
horde.

-pref
<key>=<value>

-preference
<key>=<value>

A preference file property and
its associated value, as
specified in the preference
file.

This option changes
preferences that are stored in
the preferences file. For
more information, see
“Preferences Files” on
page 45.

-psf <fileName> Any valid PSF file name The emulator session file to
load upon start-up. You can
also load a session file with
the Open menu.

-rom <fileName> Any valid ROM file name The name of the ROM file to
use.

-ram <size>

or

-ramsize <size>

One of the following kilobyte
size values:

128K
256K
512K
1024K
2048K
4096K
8192K
16,384K

The amount of RAM to
emulate during the session.

Table 3.1 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

Running Palm OS Emulator
Starting Palm OS Emulator

Using Palm OS Emulator 33

-device <type> One of the following
handheld type values:
Pilot, Pilot1000,
Pilot5000, PalmPilot,
PalmPilotPersonal,
PalmPilotProfessional,
PalmIII, PalmIIIc,
PalmIIIe, PalmIIIx,
PalmV, PalmVx,
PalmVII, PalmVIIEZ,
PalmVIIx, PalmM100,
m100, PalmM105, m105,
PalmM125, m125,
PalmM130, m130,
PalmM500, m500,
PalmM505, m505,
PalmM515, m515,
PalmI705, i705,
Symbol1500,
Symbol1700,
Symbol1740, TRGpro,
HandEra330, Visor,
VisorPlatinum,
VisorPrism, VisorEdge

The handheld type to
emulate during the session.

• Pilot1000 and
Pilot5000 are
synonyms for Pilot.

• PalmPilotPersonal
 and
PalmPilotProfess
ional are synonyms
for PalmPilot.

• The following
handhelds are not
supported: Palm
IIIxe, Palm IIIse,
Symbol handhelds
other than those
listed, Handspring
handhelds other than
those listed, all Acer
handhelds, all Sony
handhelds, all
Samsung handhelds,
all Kyocera
handhelds, and all
Qualcomm
handhelds.

-load_apps <file
name list>

A list of valid file names,
separated by commas

A list of PRC files or other
files to load into the session
after starting up.

Table 3.1 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

Running Palm OS Emulator
Starting Palm OS Emulator

34 Using Palm OS Emulator

-log_save_dir
<path>

A path name The name of the directory in
which to save the standard
log file.

The default log location is
the directory in which the
Palm OS Emulator
application is stored.

-minimize
<pevFileName>

The name of a Palm event file
(PEV).

The Palm event file contains
an event set you want to
minimize. When you invoke
Emulator with this
command line option,
Emulator goes though the
event minimization process,
writes the output files, and
exits. See “Minimizing
Gremlin Events” on page 80
for more information.

-quit_on_exit None If the -run_app option was
specified, this option
indicates that Palm OS
Emulator should quit after
that application terminates.

Table 3.1 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

Running Palm OS Emulator
Starting Palm OS Emulator

Using Palm OS Emulator 35

Palm OS Emulator Start Up
The most common scenario for starting Palm OS Emulator is
without any command line parameters. In this case, Emulator
restarts with saved information from the previous session.

When Palm OS Emulator starts execution, it determines its
configuration by sequencing through the following rules:

1. If the CAPS LOCK key is on, the Startup dialog box is always
displayed. The Startup dialog box is shown in Figure 3.1.

-run_app <app
name>

Application name The name of an application
to run in the session after
starting up. You must
specify the name of the
application, not the name of
the application’s file.

-silkscreen
<type>
or
-skin <type>

The name of a skin. The skin
names are defined by the
handheld-specific SKIN files.
For most handhelds, these
skin names are available:

Generic
Standard-English
Standard-Japanese

The skin types to emulate
during the session. For more
information about skins, see
“Changing Emulator’s
Appearance” on page 42.

Table 3.1 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

Running Palm OS Emulator
Starting Palm OS Emulator

36 Using Palm OS Emulator

Figure 3.1 Palm OS Emulator Startup Dialog Box

NOTE: The dialog box shown in Figure 3.1 is displayed when
you are running Palm OS Emulator on a Windows-based
computer.

If you are using a Macintosh computer, the new session dialog
box shown in Figure 2.2 on page 24 is displayed.

If you are using a Unix system, the new session dialog box shown
in Figure 2.3 on page 25 is displayed.

2. If you are using Windows or Unix with command line
options specified:

– If the CAPS LOCK key is not on, Palm OS Emulator scans
the command line for options. If an error is encountered
on the command line, Palm OS Emulator displays an
error message and then presents the Startup dialog box.

– If a session (PSF) file was specified on the command line,
Palm OS Emulator attempts to load the file. If the file
cannot be loaded, Palm OS Emulator displays an error
message and then presents the Startup dialog box.

– If any other options are specified on the command line,
Palm OS Emulator attempts to start a new session with
those values. If any of the four values is missing, Palm OS

Running Palm OS Emulator
Starting Palm OS Emulator

Using Palm OS Emulator 37

Emulator displays the session configuration dialog box,
as shown in Figure 3.2.

If any of the command line options are not valid, or if the
user cancels the dialog box, Palm OS Emulator displays an
error message and then presents the Startup dialog box.

Figure 3.2 New Session Dialog Box

3. If no command line options are specified, Palm OS Emulator
attempts to reopen the session file from the most recent
session, if one was saved. If the file cannot be opened, Palm
OS Emulator displays an error message, and then presents
the Startup dialog box.

4. Palm OS Emulator attempts to create a new session based on
the setting most recently specified by the user. If an error
occurs, Palm OS Emulator displays an error message, and
then presents the Startup dialog box.

NOTE: When it starts up, Palm OS Emulator looks for the most
recently saved PSF file:
- On Windows and Unix, Emulator uses the full path name of that
file.
- On Macintosh, Emulator uses aliases to locate the file.

If Emulator cannot find that file, it looks for the file name in the
directory in which the Palm OS Emulator executable is located.

Running Palm OS Emulator
Using Emulation Sessions

38 Using Palm OS Emulator

Using Emulation Sessions
Palm OS Emulator uses the concept of an emulation session, which
is a testing or debugging session for a combination of the following
items:

• the handheld type to emulate

• the amount of RAM to emulate

• the ROM file to use for the emulation

You can start new emulation sessions during a single run of Palm
OS Emulator. You can also save the current state of a session and
restore it in a later session. This session describes these features of
Palm OS Emulator.

Configuring a New Session
You can start a new session in Palm OS Emulator by choosing New
from the Palm OS Emulator menu. If you are already running an
emulation session, Palm OS Emulator will optionally ask if you
want to save the session in a Palm OS Emulator session (PSF) file
before starting the new session. You set this option in your
preferences.

Figure 3.3 shows the New Session dialog box, which Palm OS
Emulator displays when you choose New from the menu.

Figure 3.3 Configuring a New Session

You need to make the following choices in this dialog box:

• Select the ROM file on your desktop computer that you want
to use for the session. You can click on the arrow and select

Running Palm OS Emulator
Using Emulation Sessions

Using Palm OS Emulator 39

Other... to navigate to the file. For more information about
ROM files, see “Loading ROM Images” on page 22.

• Select the Palm Powered handheld that you want to emulate
in the session. Only those handhelds that apply to the
selected ROM will be shown in the list. The list may include
the following choices:

• Select the skin that you want displayed on the emulation
screen.

Note that the skin is simply a graphic; it does not change the
ROM or the handheld being emulated. The skin simply
changes the appearance of the Emulator window.

The skin choices available are dependent on the handheld
selection. When you select a handheld, Emulator reads
through the available SKIN files for the skin names that
support the selected handheld.

Alternative skins, such as the Japanese skin, are only
available for certain handheld types. The Generic choice is
always available, even when alternatives are not available.
For additional information, see the section “Changing
Emulator’s Appearance” on page 42.

- Pilot - PalmPilot - Palm III

- Palm IIIc - Palm IIIe - Palm IIIx

- Palm V - Palm Vx - Palm VII

- Palm VII (EZ) - Palm VIIx - Palm m100

- Palm m105 - Palm m125 - Palm m130

- Palm m100 - Palm m105 - Palm m125

- Palm m500 - Palm m505 - Palm m515

- Palm i705 - Symbol 1500 - Symbol 1700

- Symbol1740 - TRGpro - HandEra 330

- Visor - Visor Platinum - Visor Prism

- Visor Edge

Running Palm OS Emulator
Using Emulation Sessions

40 Using Palm OS Emulator

• Select the amount of memory that you want emulated. Note
that Emulator filters out the sizes that are invalid for the
handheld you have chosen to emulate. Depending on the
handheld you are emulating, you can choose from the
following RAM sizes:

– 128 KB

– 256 KB

– 512 KB

– 1024 KB

– 2048 KB

– 4096 KB

– 8192 KB

– 16,384 KB

Note that 1 MB (1024 KB) is most often the right amount of
RAM to emulate. Using 1 MB of RAM tells you if your
application will work properly across the majority of
hardware handhelds available.

After you click OK, Palm OS Emulator begins an emulation session.

The Difference between the New Menu Item
and the Open Menu Item
Both New and Open can be used to initiate an emulator session.
However, the Open menu item is used to open an existing session
file (PSF file) that has been saved from a previous emulator session.
The Open menu item does not allow you to change the ROM file or
handheld being emulated.

Dragging and Dropping Files
You can drag and drop the following file type categories onto the
Palm OS Emulator LCD screen:

• PRC, PDB, and PQA files

• ROM files

• PSF files

Running Palm OS Emulator
Using Emulation Sessions

Using Palm OS Emulator 41

When dragging and dropping files, observe the following rules:

• You can drag and drop only one ROM file at a time.

• You can drag and drop only one PSF file at a time.

• You can drag and drop any number of PRC, PDB, and PQA
files.

NOTE: Drag and drop is not currently supported for the Unix
version of Palm OS Emulator.

Saving and Restoring Session State
You can save the current state of a Palm OS Emulator session to a
session file for subsequent restoration. Palm OS Emulator saves a
session to a session file. The Emulator uses Save and Save As in the
standard manner, with one addition: you can automate what
happens when closing a session by changing the Save options.

Saving the Screen
You can save the current screen to a bitmap file by selecting the Save
Screen menu item, which saves the contents of the emulated Palm
Powered handheld screen.

Figure 3.4 A Palm OS Emulator Screen Shot

Palm OS Emulator saves screen images on Windows-based systems
as BMP bitmap images, saves screen images on MacOS-based
systems as SimpleText image files, and saves screen images on Unix-
based systems as PPM files.

Running Palm OS Emulator
Changing Emulator’s Appearance

42 Using Palm OS Emulator

Changing Emulator’s Appearance
You can change the appearance of Palm OS Emulator by choosing
Settings>Skins. This displays the Skins dialog box, which is shown
in Figure 3.5.

Figure 3.5 Changing Palm OS Emulator Appearance

The Skins dialog box lists the skins that are available for the
handheld that is being emulated.

Emulator comes with a built-in Generic skin, which is sufficient for
testing your application. Note that the skin is simply a graphic.
Selecting a skin changes the appearance of the Emulator window,
but it does not change the ROM or the handheld being emulated.

You can download additional skins from:

http://www.palmos.com/dev/tools/emulator/

For more information about using skin files, see “Using Emulator
Skin Files” on page 107.

Other Options on the Skins Dialog Box
In addition to selecting a skin, use the Skins dialog box to change
these appearance options:

http://www.palmos.com/dev/tools/emulator/

Running Palm OS Emulator
Modifying the Runtime Environment

Using Palm OS Emulator 43

• Select Double scale to display the emulated handheld in
double size; deselect it to display the emulated handheld in
actual size.

• Select White background to display the emulated handheld
LCD background color in white on your monitor. If you are
emulating a handheld that has a green LCD, deselect White
background to display the emulated LCD background color
in green.

• Select Dim skin when inactive to cause the Emulator
window to be dimmed when another window is the active
window. This can be useful in combination with the Stay on
top option.

• Select Stay on top to cause the Emulator window to stay on
top of other windows even when Emulator is not the active
window. This can be useful when you need to switch to other
windows, such as a debugger window.

NOTE: The Stay on top option is supported only on Windows.

Modifying the Runtime Environment
This section describes how you can modify the Palm OS Emulator
runtime environment, including changing the properties and
installing applications in the emulator session.

Palm OS Emulator Properties
Use the Properties dialog box to modify characteristics of your Palm
OS Emulator sessions. To display this dialog box, choose Properties
on Windows or Preferences on Macintosh or Unix. The Properties
dialog box is shown in Figure 3.6.

Running Palm OS Emulator
Modifying the Runtime Environment

44 Using Palm OS Emulator

Figure 3.6 Changing Palm OS Emulator Properties

Table 3.2 describes the options available in the properties dialog
box.
Table 3.2 Palm OS Emulator properties

Option Description

Serial port Specifies which serial port Palm OS Emulator uses to emulate
serial communications on the handheld.

IR port Specifies which port Palm OS Emulator uses to emulate infrared
communications on the handheld.

NOTE: This function is not currently supported.

Mystery Reserved for future use. Not used for current handhelds.

Redirect Netlib
calls to host TCP/
IP

Redirects Netlib calls in emulated software to TCP/IP calls on the
desktop computer.

Running Palm OS Emulator
Installing Applications

Using Palm OS Emulator 45

Preferences Files
Your properties are stored in a preferences file on your computer.
Each property is stored as a text string that you can view with a text
editor. Emulator first looks for the preferences file in the folder
containing the Emulator executable. Otherwise, the location of your
preferences file depends on the type of computer that you are using,
as shown in Table 3.3.

Installing Applications
Palm OS Emulator provides the following ways to install
applications into an Emulator session:

• Drag and drop an application (PRC), database (PDB), or
Palm Query Application (PQA) file directly onto the
Emulator window. See “Dragging and Dropping Files” on
page 40 for more information.

Enable sounds Specifies whether Palm OS Emulator should enable emulation of
handheld sounds.

Closing /
Quitting

Selects what action Palm OS Emulator takes when you close a
session or quit the program.

HotSync user
name

Selects the user account name for synchronizing from Palm OS
Emulator with the desktop computer HotSync® application.

Table 3.2 Palm OS Emulator properties (continued)

Option Description

Table 3.3 Palm OS Emulator Preference File Locations

Platform File name File location

Macintosh Palm OS Emulator Prefs In the Preferences
folder.

Windows Palm OS Emulator.ini In the Windows System
directory.

Unix .poserrc In your home directory.

Running Palm OS Emulator
Installing Applications

46 Using Palm OS Emulator

• Use the Install menu item from the Emulator pop-up menu.
See “Using the Install Menu” on page 46 for more
information.

• Use the autoload facility to create a directory of applications
that are automatically installed into the Emulator session. See
“Using the Autoload Facility” on page 46 for more
information.

Using the Install Menu
Use Install to load applications or databases directly into the
current Palm OS Emulator session.

• For Windows and Unix, right-click on the Palm OS Emulator
screen display and choose Install Application/Database

• On a Macintosh system, select Install Application/Database
from the File menu

Install displays an open file dialog box in which you can choose the
applications (PRC), databases (PDB), or Palm Query Application
(PQA) files that you want installed.

Palm OS Emulator immediately loads the selected files into
emulated RAM. If Palm OS Emulator finds another application or
database with the same creator ID, that application or database is
deleted before the new version is loaded.

IMPORTANT: If you install an application while the Palm OS
Launcher is running, the Launcher does not update its data
structures, and thus does not reflect the fact that a database has
been added or modified. Use Install while an application is
running in the emulated session. A simple method to use is to
switch to the Calculator application when using the Install menu
item.

Using the Autoload Facility
Palm OS Emulator provides an autoload facility, which allows you
to specify installable files that should be automatically installed into

Running Palm OS Emulator
Using Serial Communication

Using Palm OS Emulator 47

the emulation session when you start Emulator. Here’s how you can
use the autoload facility:

• Create a directory named autoload in the same directory as
the Emulator executable file.

• Place the files in the autoload directory that you want to
have automatically installed. You can place application files
(PRC), database files (PDB), and Palm Query Application
(PQA) files in the autoload directory.

When Emulator starts, it will automatically install all of the files that
it finds in the Autoload directory.

NOTE: On Windows and Unix, the -load_apps command line
option causes Emulator to ignore the Autoload directory. The
files listed with the -load_apps command line option are
automatically installed rather than the files in the Autoload
directory.

Using the Autorun Facility
Similar to using the Autoload facility, you can automatically load
and run applications by creating an autorun directory. Place the
applications you want automatically run in the autorun directory.

To have applications automatically run and quit, you create a
directory with the name autorunandquit.

Using Serial Communication
Palm OS Emulator supports emulation of the Palm Powered
handheld serial port connection. It does so by mapping Palm OS
serial port operations to a communications port on the desktop
computer. To select which port the Emulator uses, use Properties
(on Macintosh and Unix computers, this is Preferences), as
described in “Palm OS Emulator Properties” on page 43.

When emulated software accesses the processor serial port
hardware registers, Palm OS Emulator performs the appropriate
actions on the specified serial port on the desktop computer. This
means that serial read and write operations work as follows:

Running Palm OS Emulator
Using the HotSync Application

48 Using Palm OS Emulator

• when outgoing data is written to the UART’s tx register, the
Emulator redirects that data to the desktop computer’s serial
port.

• when the emulated software attempts to read data from the
UART’s rx register, the Emulator reads data from the
desktop computer’s serial port and places the data into that
register.

Using the HotSync Application
You can perform a HotSync operation from your emulated session
in one of two ways:

• If you are using a Windows-based computer, you can use the
Network HotSync option, which greatly simplifies your
communications efforts. This method is described in the
“Performing a Network Hotsync Operation with Palm OS
Emulator on Windows” section below.

• Alternatively, you can use a null-modem cable to connect
two serial ports together and perform a HotSync operation.
This method is described in “Performing a HotSync
Operation with a Null Modem Cable” on page 50.

Performing a Network Hotsync Operation with
Palm OS Emulator on Windows
You do not need to be connected to a network to perform a Network
HotSync operation with Palm OS Emulator. This method can be
used with Emulator and a single Windows computer. However,
other configurations are possible.

In general, you need these two:

• a Windows computer running HotSync Manager

• a computer running Emulator that can access the computer
running HotSync Manager.

The computer running Emulator can be the same Windows
computer that is running HotSync Manager, or it can be a second
computer (either Windows, Macintosh, or Unix). If you are using a
single Windows computer, you don’t need to be connected to a
network. However, if you are using a second computer, you will

Running Palm OS Emulator
Using the HotSync Application

Using Palm OS Emulator 49

need the actual IP address of the Windows computer running
HotSync Manager for step 4 below.

Here is the complete process for performing a Network HotSync
operation:

1. Ensure that you have the Network HotSync application on
your emulated handheld:

– If you are emulating a handheld that did not come with
Network HotSync pre-installed (for example, a Palm III
or Palm m100 handheld), you must first download and
install the Network HotSync application on the emulated
handheld. You can get the Network HotSync files from:

http://www.palm.com/support/downloads/
netsync.html

– If you are emulating a handheld running Palm OS version
3.1 or later, then you may already have the Network
HotSync application installed on the emulated handheld.

2. Configure the HotSync settings on your Windows computer:

– Right-click (use mouse button two) on the HotSync icon
in the system tray.

– In the pop-up menu, select Network to enable Network
HotSync. (A checkmark will appear next to the Network
menu item if it is already enabled.)

3. Configure Palm OS Emulator to Redirect NetLib Calls to
TCP/IP:

– Right-click (use mouse button two) on Emulator.

– In the pop-up menu, select Settings>Properties...

– In the Properties dialog box, click the Redirect NetLib
Calls to TCP/IP checkbox. Click OK to save the changed
properties.

4. Configure the HotSync settings on the emulated handheld:

– From the handheld’s application launcher, tap the
HotSync application to open it.

– Tap Menu to display the HotSync application’s menu.

– Select Options>Modem Sync Prefs...

http://www.palm.com/support/downloads/netsync.html

Running Palm OS Emulator
Using the HotSync Application

50 Using Palm OS Emulator

– In the Modem Sync Preferences dialog box, tap the
Network button. Tap the OK button to save the changed
preferences.

– Tap Menu to display the HotSync application’s menu
again.

– Select Options>LANSync Prefs...

– In the LANSync Preferences dialog box, tap the LANSync
button. Tap the OK button to save the changed
preferences.

– Tap Menu to display the HotSync application’s menu
again.

– Select Options>Primary PC Setup...

– In the Primary PC Setup dialog box, enter the Primary PC
Address (the middle entry field):

- If you are running Emulator and HotSync manager on
the same Windows computer, enter 127.0.0.1

- If you are running Emulator on a second computer, then
enter the actual IP address of the Windows computer
running the Network HotSync operation.

Tap the OK button to save the changed preferences.

– In the HotSync application, tap Modem. Next, tap the
Select Service button under the Modem Sync icon.

– In the Preferences dialog box, tap the Tap to enter phone
field. In the Phone Setup dialog box, enter 00 in the
Phone # entry field. Then tap the OK button. Then tap the
Done button.

– To start the HotSync operation, tap the HotSync icon in
the center of the HotSync dialog box.

Performing a HotSync Operation with a Null
Modem Cable
You can perform a HotSync operation by connecting the serial port
that the HotSync application uses to communicate with the
handheld to another serial port that Palm OS Emulator uses. You
connect these ports together with a null modem cable, such as a
LapLink cable.

Running Palm OS Emulator
Using the HotSync Application

Using Palm OS Emulator 51

For example, if your HotSync application uses the COM1 port,
follow these steps:

1. Select Properties (Preferences on a Macintosh or Unix) and
specify the COM2 port for Palm OS Emulator.

2. Connect COM1 and COM2 together with a null modem
cable.

3. Select HotSync from the Palm OS Emulator menu.

The HotSync application synchronizes with Palm OS Emulator just
as it does with an actual hardware handheld.

TIP: The desktop HotSync application is CPU-intensive, which
is not generally an issue; however, when you are using the
HotSync application with Palm OS Emulator, the two programs
are sharing the same CPU, which can dramatically slow the
synchronization down.

A handy trick to deal with this problem is to click on the Palm OS
Emulator window after the HotSync process starts. This brings the
Emulator back into the foreground and allows it to use more CPU
time, which improves the speed of the overall process.

If your desktop computer has two ports and you use a serial mouse
on one of them, you can temporarily disable the mouse, perform a
synchronization, and re-enable the mouse. Follow these steps:

1. Disable your mouse.

2. Restart Windows.

3. Connect the serial ports together with a null modem cable.

4. Start Palm OS Emulator.

5. Press SHIFT-F10 to display the menu, then H to begin the
HotSync operation.

6. After the HotSync operation completes, re-enable your
mouse.

7. Restart Windows again.

Running Palm OS Emulator
Emulating Expansion Memory

52 Using Palm OS Emulator

TIP: When you first perform a HotSync operation with Palm OS
Emulator, the HotSync application asks you to select a user
name. It is a good idea to create a new user account, with a
different name, for use with the Emulator.

Emulating Expansion Memory
Palm OS 4.0 includes the Expansion Manager, which manages plug-
in memory cards, and the Virtual File System manager, which
supports the management of files on memory cards.

Palm OS Emulator can emulate these cards, which the Expansion
Manager will recognize and mount in the same way it would mount
an actual hardware expansion card. The Virtual File System
Manager will then read from and write to the host operating system
using the mount information associated with the emulated card.
The host operating manipulation is performed using the many file-
related host control functions available. (See “Host Control API
Reference” on page 119 for more information on the host control
API.)

Palm provides an implementation of a file system, called HostFS,
that works in conjunction with Emulator's Host Control API to
mount a local directory on the desktop as a volume or card. You can
download the HostFS application from the Palm OS Emulator web
page.

NOTE: Because Expansion Manager was added in Palm OS
4.0, the HostFS.prc application needs to be installed Emulator
running a ROM file for Palm OS 4.0 or later. (See “Using ROM
Images” on page 19 for more information on using ROM images
with Emulator.)

Once you have installed HostFS.prc in an Emulator session
running at least a Palm OS 4.0 ROM, you are ready to emulate
expansion memory. To specify mount information for card
emulation, use the HostFS Options dialog box shown in Figure 3.7.

Running Palm OS Emulator
Emulating a Handheld Reset

Using Palm OS Emulator 53

Figure 3.7 Palm OS Emulator HostFS Options Dialog Box

The HostFS Options dialog box supports the mounting of up to
eight emulated cards. For each card, you can specify a directory in
the host file system that will serve as the root for the card as
managed by the Virtual File System Manager. You can also specify
whether a particular card is actually mounted.

You can change the HostFS options settings while an emulation
session is running. Changes regarding whether a card is mounted or
not take place immediately; the Palm OS is notified that the card has
been added or removed. Changes regarding the root path take effect
only when the card is mounted.

Emulating a Handheld Reset
Palm OS Emulator can perform any of the standard handheld reset
functions. To perform a reset, select Reset... to open the Reset dialog
box, as shown in Figure 3.8 on page 54.

Running Palm OS Emulator
Emulating a Handheld Reset

54 Using Palm OS Emulator

Figure 3.8 Reset Dialog Box

This dialog box is also available when you click Reset in an error
message dialog box (see Figure 6.1 on page 93 for an example of an
error message dialog box).

Using Palm OS Emulator 55

4
Palm OS Emulator
User Interface
Summary
This chapter provides a description of the user interface for Palm OS
Emulator, including descriptions of the menus and keyboard usage.

• “Palm OS Emulator Display” on page 56

• “Using the Menus” on page 56

• “Using the Hardware Buttons” on page 61

• “Entering Data” on page 62

• “Using Control Keys” on page 62

Palm OS Emulator User Interface Summary
Palm OS Emulator Display

56 Using Palm OS Emulator

Palm OS Emulator Display
The Palm OS Emulator display looks very much like a real Palm
Powered™ handheld. You can use your mouse to perform actions
that you perform with the stylus on handhelds, and you can use the
menus to access Palm OS Emulator functionality.

Using the Menus
You can also access features that are specific to Palm OS Emulator
by choosing menu items:

• If you are using Windows, right-click on the Palm OS
Emulator screen display to access the menu items, or press
SHIFT-F10. The Palm OS Emulator menu displays, as shown
in Figure 4.1.

Figure 4.1 Windows Version of the Palm OS Emulator Menus

Palm OS Emulator User Interface Summary
Using the Menus

Using Palm OS Emulator 57

NOTE: Note that the Windows shortcut keys use ALT rather than
CTRL because CTRL combinations are already used to enter other
Emulator commands. See “Using Control Keys” on page 62 for
more information.

• If you are using a Macintosh, you can either select menu
items from the menu bar or use CTRL-click to display the
pop-up contextual menu. The Macintosh pop-up menu is
shown in Figure 4.2.

Figure 4.2 Macintosh Version of the Palm OS Emulator
Menus

The Macintosh version is only slightly different when
compared to the Windows version: The Macintosh version
uses Quit instead of Exit.

• If you are using Unix, use SHIFT-F10 to display the pop-up
menu. Palm OS Emulator provides a pop-up menu similar to
the Macintosh version.

Table 4.1 provides a brief description of the Palm OS Emulator
menu items.

Palm OS Emulator User Interface Summary
Using the Menus

58 Using Palm OS Emulator

Table 4.1 The Palm OS Emulator Menu Items

Command Description

Exit Exits Palm OS Emulator. Palm OS Emulator prompts you
to save the session to an emulator PSF file before exiting.

New Displays the New Session dialog box. The New Session
dialog box lets you select the session’s ROM file, handheld,
skin, and RAM size. Because only one session can be
active, this command also closes the current emulation
session.

Open Displays the open file dialog box for opening a saved
emulator session file. Because only one session can be
active, this command also closes the current emulation
session.

Note that the Open menu is for opening saved session files
(PSF files), not for opening ROM files. To change the ROM
file for your emulator session, you need to use the New
menu.

Close Closes and optionally saves the current emulator session.

Save Saves the current emulator session to an emulator PSF file.

Save As Saves the current emulator session to an emulator PSF file.

Save Bound Emulator Saves the current emulator session as an executable, which
can be used for demonstration purposes. For more
information, see “Creating Demonstration Versions of
Palm OS Emulator” on page 115. This description includes
important information about the legal use of a bound
emulation session.

Save Screen Saves the current screen image as a bitmap file.

TIP: Save Screen is a very convenient means of
capturing screen images for documentation of Palm OS
applications.

Palm OS Emulator User Interface Summary
Using the Menus

Using Palm OS Emulator 59

Session Info Opens the Session Info dialog, displaying information
about the handheld name, RAM size, and ROM being
emulated, and about the current Emulator PSF file, if you
are currently using a PSF file.

Install Application/
Database

Lets you install an application into the emulator session, in
the same way that a user would install it on the handheld
with the Palm Install tool. For more information, see
“Installing Applications” on page 45.

Export Database Exports a database to your desktop computer as a PDB or
PQA file, or exports an application to your desktop
computer as a PRC file.

HotSync Lets you synchronize the emulator session environment
with the desktop computer. See “Using the HotSync
Application” on page 48 for more information about the
cabling requirements and other considerations for this
menu item.

Reset Resets the current emulation session. For more information
see “Emulating a Handheld Reset” on page 53.

Transfer ROM Lets you download a ROM image from a handheld, and
save the ROM image to disk. You can then initiate a new
session based on that ROM image. For more information,
see “Transferring a ROM Image from a Handheld” on
page 23.

Gremlins>New Create a new Gremlin horde and start running it. For more
information about Gremlins, see “Using Gremlins to
Automate Testing” on page 74.

Gremlins>Step Step a Gremlin, after stopping.

Gremlins>Resume Resume running of the Gremlin.

Gremlins>Stop Stop running the Gremlin.

Table 4.1 The Palm OS Emulator Menu Items (continued)

Command Description

Palm OS Emulator User Interface Summary
Using the Menus

60 Using Palm OS Emulator

Gremlins>Replay Resumes running of Gremlins from data that was
previously saved in a Palm event file (PEV). For more
information, see “Replaying Gremlin Events” on page 80.

 Gremlins>Minimize Takes Gremlin events stored in a Palm event file (PEV) and
identifies the minimal set of events required to produce a
crash. For more information, see “Minimizing Gremlin
Events” on page 80.

Profiling>Start Start profiling your application. This option is only
available with the profiling version of Emulator. For more
information, see “Profiling Your Code” on page 87.

Profiling>Stop Stop profiling your application. This option is only
available with the profiling version of Emulator. For more
information, see “Profiling Your Code” on page 87.

Profiling>Dump Save the profiling information to a file. This option is only
available with the profiling version of Emulator. For more
information, see “Profiling Your Code” on page 87.

Settings>Properties Opens the properties dialog box, as described in “Palm OS
Emulator Properties” on page 43.

Settings>Logging Opens the logging options dialog box, as described in
“Logging Options” on page 69.

Settings>Debugging Opens the debug options dialog box, as described in
“Debug Options” on page 65.

Settings>Error
Handling

Opens the error handling options dialog box, as described
in “Detecting an Error Condition” on page 92.

Settings>Tracing Opens the tracing options dialog box, as described in
“Tracing Your Code” on page 86.

Settings>Skins Opens the skins dialog box, as described in “Changing
Emulator’s Appearance” on page 42.

Table 4.1 The Palm OS Emulator Menu Items (continued)

Command Description

Palm OS Emulator User Interface Summary
Using the Hardware Buttons

Using Palm OS Emulator 61

Using the Hardware Buttons
Palm OS Emulator emulates each of the hardware buttons on Palm
Powered handhelds. You can click on a button to activate it, and you
can press and hold down a button just as you would on a handheld.
As an example, you can click the on/off button to turn a handheld
off and on. Depending on the handheld you are emulating, you can
also press and hold the on/off button to turn the backlighting off
and on.

Palm OS Emulator also lets you activate the hardware buttons with
keyboard equivalents, as shown in Table 4.2.

Settings>HostFS Opens the HostFS options dialog box, as described in
“Emulating Expansion Memory” on page 52.

Settings>Breakpoints Opens the breakpoints dialog box, as described in “Setting
Breakpoints” on page 81.

Table 4.1 The Palm OS Emulator Menu Items (continued)

Command Description

Table 4.2 Keyboard equivalents for the hardware buttons

Button Keyboard equivalent

On/Off ESC

Application Button 1 (usually
Palm Date Book)

F1

Application Button 2 (usually
Palm Address Book)

F2

Application Button 3 (usually
Palm To Do List)

F3

Application Button 4 (usually
Palm Memo Pad or Note Pad)

F4

Up PAGE UP

Down PAGE DOWN

Palm OS Emulator User Interface Summary
Entering Data

62 Using Palm OS Emulator

Entering Data
Palm OS Emulator lets you use your desktop computer pointing
device to tap and to draw Graffiti® characters, just as you do with
the stylus on the handheld.

Emulator also lets you enter text from the desktop computer
keyboard. For example, you can type the text for a note by tapping
in the note text entry area and then using the keyboard.

In addition, Emulator supports copying text to and from the
desktop computer’s clipboard.

Copying text from a desktop computer to Emulator:

• Copy the text to the desktop computer’s clipboard (for
example, on Windows, use CTRL-C).

• Switch to the Emulator window.

• In the Emulator window, open an application that has an
active field that can accept text data. Click on the active field.

• Use CTRL-C, then type the letter P. CTRL-C causes Emulator
to enter the command stroke character (“/”), and the letter P
enters the Paste command.

Copying text from Emulator to a desktop computer:

• In the Emulator window, open an application that has an
active field containing text data. Click on the active field.

• Use CTRL-C, then type the letter C. CTRL-C causes Emulator
to enter the command stroke character (“/”), and the letter C
enters the Copy command.

• Switch to the desktop computer application where you want
to paste the text data.

• Paste the text into the desktop computer application (for
example, on Windows, use CTRL-V).

Using Control Keys
Palm OS Emulator also supports a set of control keys that you can
use for input. These keys, which are shown in Table 4.3, are the same
control keys that you can use with the Palm OS Simulator program.

Palm OS Emulator User Interface Summary
Using Control Keys

Using Palm OS Emulator 63

Table 4.3 Palm OS Emulator Control Keys

Control key combination Description

CTRL+A Displays the menu

CTRL+B Low battery warning

CTRL+C Command character

CTRL+D Confirmation character

CTRL+E Displays the application launcher

CTRL+F Displays the onscreen keyboard

CTRL+M Enters a linefeed character

CTRL+N Jumps to the next field

CTRL+P Jumps to the previous field

CTRL+S Automatic off character

CTRL+T Sets or unsets hard contrasts

CTRL+U Turns backlighting on or off

Palm OS Emulator User Interface Summary
Using Control Keys

64 Using Palm OS Emulator

Using Palm OS Emulator 65

5
Testing Applications
Using Palm OS
Emulator
This chapter describes how you can use Palm OS® Emulator to test
and debug programs you have written for Palm OS.

• “Testing Software” on page 65

• “Using Gremlins to Automate Testing” on page 74

• “Setting Breakpoints” on page 81

• “Debugging with External Debug Tools” on page 83

• “Tracing Your Code” on page 86

• “Profiling Your Code” on page 87

Testing Software
Testing software is probably the most common use of Palm OS
Emulator. This section provides a quick summary of the steps to
load and test an application.

Debug Options
Palm OS Emulator monitors the actions of your application while it
is emulating the operation of the handheld. When your application
performs an action that does not strictly conform to Palm OS’s
programming guidelines, the Emulator displays a dialog box that
explains what is happening.

The debugging options dialog box, which is shown in Figure 5.1,
lets you enable or disable the monitoring activities applied to your
application. Use Debug Options to display this dialog box.

Testing Applications Using Palm OS Emulator
Testing Software

66 Using Palm OS Emulator

Figure 5.1 Palm OS Emulator Debug Options Dialog Box

Table 5.1 describes each of the debugging options.

Table 5.1 Emulator Debugging Options

Option Description

Free chunk access Monitors access to free memory chunks.

No process should ever access the contents of a chunk
that has been deallocated by the MemChunkFree,
MemPtrFree, or MemHandleFree functions.

Hardware register access Monitors accesses to hardware registers by
applications.

For example, Emulator monitors memory ranges
reserved for external LCD controllers, USB controllers,
and Programmable Logic Devices (PLD).

Low memory access Monitors low-memory access by applications.

Low-memory access means an attempt to read from or
write to a memory location in the range 0x0000 to
0x00FF.

Testing Applications Using Palm OS Emulator
Testing Software

Using Palm OS Emulator 67

Low stack access Monitors access to the range of memory below the
stack pointer.

MemMgr data access Monitors access to Memory Manager data structures,
which is restricted to only the Memory Manager.

Memory Manager data structures are the heap
headers, master pointer tables, memory chunk
headers, and memory chunk trailers.

Emulator allows no access to data structures for which
there are PalmOSGlue accessor routine defined.

MemMgr leaks Detects memory leaks. Emulator checks for memory
leaks on SysAppExit.

If Emulator discovers any memory leaks, it writes
information about the leaks to a log file, including
memory location, memory contents, and a stack crawl
of the context that allocated the leaked block of
memory.

It is a good idea to set your compiler’s switch to embed
debug symbols in your code so that you can easily
interpret the stack crawl. With CodeWarrior, you
should set the option Generate MacsBugs Debug
Symbols. With GCC, you should use the Palm OS
specific GCC option -mdebug-labels. With
MacsBugs, you will get each function's name in the text
section immediately after the function's code.

Table 5.1 Emulator Debugging Options (continued)

Option Description

Testing Applications Using Palm OS Emulator
Testing Software

68 Using Palm OS Emulator

MemMgr semaphore Monitors how long the Memory Manager semaphore
has been acquired for write access using the
MemSemaphoreReserve and
MemSemaphoreRelease functions.

Your applications should not be calling these
functions; however, if you must call them, you should
not hold the semaphore for longer than 10
milliseconds.

Offscreen form object Checks for any use of offscreen form objects.

Overlay errors This option controls a facility of Overlay Manager in
the debug version of the ROM files. When this option
is enabled, the omFtrShowErrorsFlag bit of the
omFtrCreator feature is set to true. As a result,
Overlay Manager reports the name of a database that it
cannot validate and the reason why it did not validate.

Proscribed function call Monitors calls to any of the functions on the proscribed
function list. See Appendix B, “Unsupported Traps.”
on page 225 for a list of functions.

Strict International checks Checks for multibyte character display routines.

ROM access Monitors ROM access by applications.

Screen access Monitors LCD screen buffer access by applications.

LCD screen buffer access is defined as reading from or
writing to the memory range indicated by the LCD-
related hardware registers.

Sizeless form object Checks for any use of sizeless form objects (objects
whose height or width is zero).

Table 5.1 Emulator Debugging Options (continued)

Option Description

Testing Applications Using Palm OS Emulator
Testing Software

Using Palm OS Emulator 69

Logging Options
Palm OS Emulator also logs various actions taken by your
application to help you debug and performance tune your code. The
logged information is automatically written to a text file that is
saved in the same directory as the Emulator executable.

Stack almost full Ensures that the stack pointer has not dipped below
the space allocated for it by the kernel.

When this option is enabled, Palm OS Emulator warns
you when the application stack is getting close to full.

Note that you are always notified of a stack overflow,
even if this option is disabled.

System global access Monitors access to system global variables by
applications.

System global variable access is defined as reading
from or writing to a memory location in the range from
0x0100 to the end of the trap dispatch table.

UIMgr data access Checks for any access of User Interface Manager data
structures.

Unlocked chunk access Monitors read access to uninitialized portions of
memory chunks that have been allocated by the
MemHandleNew function.

Warns about the case where you use a stale pointer
from when a moveable chunk is locked and unlocked.
Also catches cases of misusing a pointer to one chunk
to access a subsequent chunk.

Beep every 2 seconds when
a dialog is displayed

Causes Emulator to beep every two seconds while a
message dialog box is displayed. Emulator will stop
beeping after one minute.

Table 5.1 Emulator Debugging Options (continued)

Option Description

Testing Applications Using Palm OS Emulator
Testing Software

70 Using Palm OS Emulator

You can control the logging activity with the logging options dialog
box, which is shown in Figure 5.2. Use Logging Options to display
this dialog box.

Figure 5.2 Palm OS Emulator Logging Options Dialog Box

The logging options dialog box features radio buttons to indicate
logging during normal operations (Normal), and logging while a
Gremlin is running (Gremlins). Both offer the same options, which
are described in Table 5.2

Testing Applications Using Palm OS Emulator
Testing Software

Using Palm OS Emulator 71

Table 5.2 Emulator Logging Options

Option Description

Error messages Logs error messages that are generally fatal
(messages where the Continue button is disabled in
the dialog box containing the error message).

Examples: Address errors, divide-by-zero errors,
calls to SysFatalAlert.

Warning messages Logs any message that is displayed in a dialog box
that can be dismissed by tapping the Continue
button.

Examples: Low memory access, direct screen access,
hardware register access.

Misc Gremlin info Logs information about Gremlins that is mostly
useful for debugging the Gremlins themselves.

Assembly opcodes Logs assembly-level trace information, including
registers, the program counter, opcodes, and related
information.

This option is not yet implemented.

Posted events Logs events that have entered into the system by
way of calls to the EvtAddEventToQueue,
EvtAddUniqueEventToQueue,
EvtEnqueuePenPoint, and EvtEnqueueKey
functions.

Received events Logs events returned by calls to the EvtGetEvent,
EvtGetPen, and EvtGetSysEvent functions.

System calls Logs calls to Palm OS functions.

Application calls Logs calls to functions in your application.

This option is not yet implemented.

Testing Applications Using Palm OS Emulator
Testing Software

72 Using Palm OS Emulator

Serial activity Logs changes in serial port settings, and the
opening and closing of the serial port.

NetLib activity Logs calls to NetLib functions, including
parameter and return values.

ExgMgr activity Logs calls to ExgMgr functions.

RPC activity Logs remote procedure calls.

High-level debugger activity Logs messages received back from an external
debugger, and the messages sent back to the
debugger.

Low-level debugger activity Traces the low-level mechanisms that receive raw
data from external debuggers and send data back to
external debuggers.

Table 5.2 Emulator Logging Options (continued)

Option Description

Testing Applications Using Palm OS Emulator
Testing Software

Using Palm OS Emulator 73

Serial data Logs data sent and received over the serial port.
Data is logged as it is being transferred over the host
serial port

Incoming data follows this path:

1. Serial port

2. Emulated hardware registers

3. Palm OS

4. Palm application

Palm OS Emulator logs the serial port data.

Outgoing data follows this path:

1. Palm application

2. Palm OS

3. Emulated hardware registers

4. Serial port

Again, Palm OS Emulator logs the serial port data.

NetLib data Logs data sent and received via NetLib calls.

ExgMgr data Logs data sent and received via ExgMgr calls.

RPC data Logs data sent and received via remote procedure
calls.

High-level debugger data Logs details of the messages sent to and received
from an external debugger.

Low-level debugger data Logs the raw data being sent to and received from
an external debugger.

Table 5.2 Emulator Logging Options (continued)

Option Description

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

74 Using Palm OS Emulator

Using Gremlins to Automate Testing
You can use Gremlins to automate testing of an application. A
Gremlin generates a series of user input events that test your
application’s capabilities. You can have a Gremlin generate a
specified number of events, or to loop forever, which lets you set up
a Gremlin and allow it to run overnight to thoroughly test your
application.

A Gremlin horde is a range of Gremlins that you want Palm OS
Emulator to run. The Emulator generates a stream of events for each
Gremlin and then moves onto the next Gremlin. The Emulator
cycles through the Gremlins until the maximum number of events
have been generated for the horde.

Palm OS Emulator generates a stream of events for each Gremlin in
the horde until one of the following conditions occurs:

• An error such as a hardware exception or illegal memory
access is generated.

• The maximum number of events for a single Gremlin have
been generated.

• The maximum number of events for the horde have been
generated.

• You stop the horde by choosing Stop or Step from the
Emulator menu or from the Gremlin Status dialog box.

If a Gremlin generates an error, it is halted and Palm OS Emulator
does not include it when cycling through the horde again.

Gremlin Characteristics
Each Gremlin has the following characteristics:

• It generates a unique, random sequence of stylus and key
input events to step through the user interface possibilities of
an application.

• It has a unique “seed” value between 0 and 999

• It generates the same sequence of random events whenever it
is run.

• It runs with a specific application or applications.

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

Using Palm OS Emulator 75

• It displays a report immediately when an error occurs.

Gremlin Horde Settings
For each Gremlin horde, you specify the following:

• The number of the first Gremlin to run. This must be a value
between 0 and 999.

• The number of the last Gremlin to run. This must be a value
between 0 and 999.

• The switching depth of the Gremlin horde. This is the
number of events to run for each Gremlin before switching to
another Gremlin. After this many events have been
generated for the Gremlin, it is suspended, and the next
Gremlin in the horde starts running.

• The maximum number of events for each gremlin in the
horde. The Emulator stops running each Gremlin after it
posts this many events, or after it terminates with an error.

• The first application the Gremlins are to run.

• The set of applications the Gremlins are to run. You can select
a single application, a group of applications, or all
applications.

• Whether warnings and errors are displayed as message
dialogs or as messages written to a log file. See “Logging
while Gremlins Are Running” on page 79 for more
information.

When Palm OS Emulator runs a Gremlin horde, it actually
maintains a separate stream for each Gremlin in the horde. When it
starts a horde, the Emulator first saves the complete state of the
emulation to a session (PSF) file. Then, the Emulator:

• Starts the first Gremlin. When the Gremlin has posted a
number of events equal to the specified switching depth, the
Emulator saves its state to a new file and suspends the
Gremlin.

• Reloads the original session state.

• Starts the second Gremlin and run it until it posts that
number of events, at which time its state is saved to another
file, and the Gremlin is suspended.

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

76 Using Palm OS Emulator

• Runs each Gremlin in the horde, until each has been
suspended or terminated:

– A Gremlin is terminated when an error occurs while the
Gremlin is posting events.

– A Gremlin is suspended when it has posted a number of
events equal to the switching depth for the horde.

• Returns to the first suspended Gremlin in the horde, reloads
its state from the saved file, and resumes its execution as if
nothing else had happened in the meantime.

• Continues cycling through the Gremlins in the horde until
each Gremlin has finished. A Gremlin finishes when either of
these conditions occurs:

– the Gremlin has terminated due to an error

– the Gremlin has posted a total number of events equal to
the maximum specified for the horde.

Running a Gremlin Horde
Select Gremlins>New... to start a Gremlin. The New Gremlin Horde
dialog box displays, as shown in Figure 5.3. Use this dialog box to
specify the characteristics of the Gremlin horde that you want to
run.

TIP: If you wish to run a single Gremlin, simply set the Gremlin
Start Number and Gremlin End Number fields to the same value.

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

Using Palm OS Emulator 77

Figure 5.3 New Gremlin Horde Dialog Box

When Palm OS Emulator runs the example shown in Figure 5.3, the
horde will operate as follows:

• The Emulator will only run the Address application when
generating key and stylus events for this horde.

• The Emulator will use a seed value of 2 for the first Gremlin
in the horde and a seed value of 14 for the last Gremlin in the
horde. It also runs all intervening Gremlins: numbers 3
through 13.

• The Emulator will generate 25 events for each Gremlin before
switching to the next Gremlin in the horde.

• The Emulator will cycle through the Gremlins in the horde
until a total of 1000 events have been generated for each
Gremlin. Thus, a total of 13,000 events will be generated.

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

78 Using Palm OS Emulator

This means that the Emulator will generate the following sequence
of Gremlin events:

1. Gremlin #2 runs and receives twenty-five events, after which
Gremlin 2 is suspended.

2. Gremlin #3 runs and receives twenty-five events, after which
Gremlin #3 is suspended.

3. Similarly, each Gremlin (#4 through #14) runs and receives
twenty-five events, after which it is suspended.

4. The Emulator loops back to Gremlin #2 and runs it, sending
it twenty-five events before again suspending it.

5. Gremlin #3 runs again, receives twenty-five events, and
suspends.

6. This looping through the Gremlins and sending each events
until the switch depth (25) is reached continues until the
maximum number of horde events (1000) have been
generated.

7. All activity for the Gremlin horde completes.

NOTE: If an error occurs while a specific Gremlin is running,
Palm OS Emulator halts that Gremlin rather than suspending it.
This means that the Gremlin is not run when the Emulator next
iterates through the horde.

Stepping and Stopping Gremlins
After the horde starts running, Palm OS Emulator displays the
Gremlin control dialog box, which is shown in Figure 5.4. You can
use the commands in this dialog box to stop, resume, and single-
step a Gremlin. You can also use the Gremlins menu to perform
these actions.

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

Using Palm OS Emulator 79

Figure 5.4 The Gremlin Control Dialog Box

Gremlin Snapshots
When you start a new Gremlin horde, you can specify that you want
Palm OS Emulator to take a snapshot on a regular basis. You specify
a frequency value, as shown in Figure 5.3 on page 77, and the
Emulator saves a session file each time that many Gremlins have
run. Each snapshot is a PSF file that captures the current state of the
emulation. You can open the snapshot in the Emulator as a new
session and begin debugging from that state.

Logging while Gremlins Are Running
Palm OS Emulator lets you specify separate logging options to use
while Gremlins are running. Figure 5.5 shows the Gremlin logging
options dialog box. Each of the options is described in “Logging
Options” on page 69.

Testing Applications Using Palm OS Emulator
Using Gremlins to Automate Testing

80 Using Palm OS Emulator

Figure 5.5 Gremlin Logging Options Dialog Box

Using Gremlin Events
When Gremlins are running, all generated events are saved to a
Palm event file (PEV file). This event file contains a snapshot of the
initial session state and a list of all of the events that Gremlins
generated.

Replaying Gremlin Events

To replay the events stored in a Palm event file, use
Gremlins>Replay... to select the PEV file. Replaying events from a
Palm event file is similar to running the same Gremlin on the same
application over again; however, with the replay function, Emulator
is reading the events from a file rather than generating the same
random events to post to the application.

Minimizing Gremlin Events

Palm OS Emulator provides an event minimization function that
takes events stored in a Palm event file (PEV) and identifies the
minimal set of events required to produce a crash.

To use the Gremlin minimization function, use
Gremlins>Minimize... to select the PEV file. Emulator will open the

Testing Applications Using Palm OS Emulator
Setting Breakpoints

Using Palm OS Emulator 81

Palm events file, and replay the events in it. The minimization
function will go through an iterative process of removing ranges of
events to see if the resulting subset of events still produces a crash.

If a crash still occurs with the subset of events, then those events are
removed, and another range of events is similarly tested. If a crash
does not occur, then the removed events are put back and the
iterative process continues.

The end result is a minimal set of events that produces a crash. (The
crash may not be exactly the same crash caused by the full set of
events.) This minimized set of events is saved to a new Palm event
file, which you can use with the Gremlins>Replay... function. The
minimized set of events is also translated into a sequence of English
instructions that you can use for debugging. This sequence list is
written to a text in the same directory as the Palm events file.

Setting Breakpoints
You can set breakpoints in your code with the Emulator. When Palm
OS Emulator encounters a breakpoint that you have set, it halts and
takes one of the following actions:

• If you are running the Emulator connected to a debugger, the
Emulator sends a message to the debugger, informing it that
the breakpoint was hit. The debugger then handles that
command as it sees fit.

• If the Emulator is not connected to a debugger, the Emulator
displays an error message.

To set a breakpoint, select Breakpoints from the Settings menu. The
Breakpoints dialog box is displayed, as shown in Figure 5.6.

Testing Applications Using Palm OS Emulator
Setting Breakpoints

82 Using Palm OS Emulator

Figure 5.6 Setting a Breakpoint

Setting the Data Breakpoint
You can set exactly one data breakpoint. While your program is
executing, the Emulator watches the specified address range; if it is
written to, the Emulator generates a break. You can specify both the
address and number of bytes in either hexadecimal (0x) or decimal.

Setting Conditional Breakpoints
You can set up to six independent conditional breakpoints. The
Emulator generates a break for a conditional breakpoint when both
of the following are true:

• the program counter reaches the specifies address

• the specified condition is true

Testing Applications Using Palm OS Emulator
Debugging with External Debug Tools

Using Palm OS Emulator 83

To set one of these breakpoints, select the breakpoint number in the
list at the top of the dialog box, and click Edit. This displays the
Code Breakpoint dialog box, which is shown in Figure 5.7.

Figure 5.7 Setting a code breakpoint

To set the breakpoint, specify an address and the break condition.
You can specify the address in hexadecimal (0x) or decimal.

The condition that you specify must have the following format:
<register> <condition> <constant>

register One of the registers: A0, A1, A2, A3, A4, A5, A6,
A7, D0, D1, D2, D3, D4, D5, D6, or D7.

condition One of the following operators: ==, !=, <, >, <=,
or >=.

constant A decimal or hexadecimal constant value.

IMPORTANT: All comparisons are unsigned.

Debugging with External Debug Tools
Palm OS Emulator provides an interface that external debugger
applications can use to debug an application. For example,
Metrowerks has developed a plug-in module that you can use to
debug an application that Palm OS Emulator is running, in exactly
the same manner as you would debug an application running on
the handheld. This plug-in module is shipped with the latest
version of CodeWarrior for Palm OS.

Testing Applications Using Palm OS Emulator
Debugging with External Debug Tools

84 Using Palm OS Emulator

Connecting Emulator with Palm Debugger
You can use Palm Debugger with Palm OS Emulator to perform
extensive debugging of your applications. To use Palm Debugger
with the Emulator, follow these steps:

1. Start Palm Debugger and Palm OS Emulator programs.

2. In the Palm Debugger Communications menu, select
Emulator. This establishes the emulator program as the
“device” with which Palm Debugger is communicating.

3. In the debugging window, type the att command.

You can now send commands from Palm Debugger to Palm OS
Emulator.

Connecting Emulator with the GDB Debugger
You can use the gdb debugger with Palm OS Emulator to debug
your applications. To use the gdb debugger with an emulator
session, follow these steps:

1. When you build your application, both compile and link
with the -g option (that is, using “gcc -g ...”). When you
compile using the -g option, the compiler generates the
necessary symbol information. When you link using the -g
option, the linker forces the inclusion of a debug runtime
routine that installs a breakpoint in PilotMain.

2. Start Palm OS Emulator, and install your application in the
emulator session.

3. Start the gdb debugger, loading your application’s symbol
table (for example, using “gdb myApp“). Note that the file to
be loaded is the myApp file created by the gcc linker, not the
myApp.prc created by buildprc.

4. In the gdb debugger, enter “target pilot
localhost:2000”. The gdb debugger will respond with a
message indicating that remote debugging is starting.

5. Start your application on Palm OS Emulator.

6. Wait for the gdb debugger to see the initial breakpoint and
prompt you, then start debugging.

Testing Applications Using Palm OS Emulator
Debugging with External Debug Tools

Using Palm OS Emulator 85

Connecting the Emulator with External
Debuggers
Palm OS Emulator can communicate with external debuggers using
the methods shown in Table 5.3.

NOTE: Currently, Palm Debugger uses TCP only when running
on Windows. The CodeWarrior plug-in uses TCP if you select Use
sockets in the debugger preference panel.

However, although you can configure the TCP port that Palm OS
Emulator uses, you cannot configure which TCP port that either
Palm Debugger or the CodeWarrior plug-in uses.

If you are communicating with a debugger using TCP, you can
configure which socket port the debugger connects to by editing the
value of the DebuggerSocketPort preference setting in your
preferences file. You can disable the TCP connection by setting the
value of the DebuggerSocketPort preference to 0.

NOTE: In some versions of Palm OS Emulator, you may notice
that an unwanted PPP dial-up starts whenever you begin a new
emulation session. You can disable this behavior by disabling the
use of TCP for communications, which you do by setting the
DebuggerSocketPort preference to 0.

Table 5.3 Palm OS Emulator Connections

Connection type Platforms

TCP All

PPC Toolbox Macintosh

Memory-mapped files Windows

Testing Applications Using Palm OS Emulator
Tracing Your Code

86 Using Palm OS Emulator

Tracing Your Code
At times, regular debug tools can be disruptive to program
execution or can require specific knowledge of where a bug is
located. Tracing can be a less disruptive method for showing how a
program is executing. Tracing functions write out information at the
time the tracing functions are executed.

To use tracing in your code, you need to do the following:

• Install Palm Reporter.

Palm Reporter is a trace utility that can be used with
Emulator. As an application runs on Palm OS Emulator, it
can send information in real time to Reporter. This
information can help pinpoint problems that might be hard
to identify when executing code step-by-step or when
specifying breakpoints.

• Add trace calls to your application. The tracing functions are
listed in Table 8.16 on page 185.

• Next, you need to specify where you want the tracing
information to appear. Emulator’s tracing options dialog box,
which is shown in Figure 5.8, lets you specify the target for
application trace information. Use Settings>Tracing... to
display this dialog box.

Figure 5.8 Tracing Options Dialog Box without PalmTrace

If you do not have Palm Reporter’s PalmTrace.dll file on your
system, then the default setting discards the tracing information.

When you have the PalmTrace.dll installed on Windows, then
you will see a tracing options dialog box that looks like Figure 5.9.

Testing Applications Using Palm OS Emulator
Profiling Your Code

Using Palm OS Emulator 87

Figure 5.9 Tracing Options Dialog Box with PalmTrace.dll on
Windows

With PalmTrace.dll installed on Windows, you can set your
tracing target to be either Palm Reporter or a text file.

When you have PalmTrace library installed on Macintosh, then
you have an additional tracing target: you can set the tracing target
to be either Palm Reporter, a text file, or the DCON console.

NOTE: Tracing is not available on Unix.

Using Reporter to View Realtime Traces
To view the realtime traces, simply run Reporter at the same time as
you run your application on Palm OS Emulator. For more
information about using Palm Reporter, see Palm OS Programming
Development Tools Guide.

Profiling Your Code
One of the features of Palm OS Emulator that is most useful for
developers is the ability to profile your application while it is
running, and to save the resulting data to a file that you can
examine.

When the Emulator profiles your application, it monitors and
generates statistics about where your code is spending its time,
which enables you to focus your optimization efforts in the most
productive manner.

Testing Applications Using Palm OS Emulator
Profiling Your Code

88 Using Palm OS Emulator

NOTE: In order to use the profiling features, you must be using
a version of Palm OS Emulator with profiling enabled.

On Windows and Macintosh, this means that you must be using
the executable with “profile” in its name. See Table 2.1 on
page 21 for more information.

On Unix, this means that you must build the executable with the
configure switch “--enable-palm-profile”. (See the
_Building.txt file mentioned in Table 2.1.)

You can start a profiling session by choosing Profiling Start. While
profiling is active, Palm OS Emulator monitors which application
and system functions are executed, and the amount of time
executing each. The Emulator collects the timing information until
you select Profiling Stop.

You can then save the profiling information to a file by selecting
Profiling Dump. The information is saved to file in two different
formats. Both of these files are stored in the directory in which the
Emulator executable is located:

Testing Applications Using Palm OS Emulator
Profiling Your Code

Using Palm OS Emulator 89

You do not have to prepare your code in any special way for Palm
OS Emulator to profile it, because the Emulator can determine when
functions are entered and exited on its own. And the Emulator
performs its profiling calculations between cycles, thus the timing
information is quite accurate.

NOTE: It is a good idea to set your compiler’s switch to embed
debug symbols in your code so that you can easily interpret the
profiling results. With CodeWarrior, you should set the option
Generate MacsBugs Debug Symbols. With GCC, you should use
the Palm OS specific GCC option -mdebug-labels. With
MacsBugs, you will get each function's name in the text section
immediately after the function's code.

File name Description

Profile Results_
<number>.txt

A text version of the profiling results.
<number> is a four-digit number
incremented each time the profiling
results are saved.

Profile Results_
<number>.mwp

A Metrowerks Profiler version of the
results. <number> is a four-digit
number incremented each time the
profiling results are saved.

The MWP file can be used with the
MW Profiler application bundled
with CodeWarrior Pro. The MW
Profiler is only available on
Macintosh computers.

The MWP file can also be used with
other analysis tools. These tools are
listed on the Emulator web page
(http://www.palmos.com/dev/
tools/emulator/).

http://www.palmos.com/dev/tools/emulator/
http://www.palmos.com/dev/tools/emulator/

Testing Applications Using Palm OS Emulator
Profiling Your Code

90 Using Palm OS Emulator

Using Palm OS Emulator 91

6
Palm OS Emulator
Error Handling
This chapter describes the error handling and reporting features of
the Palm OS Emulator program, including the following
information:

• which conditions are detected

• what the Emulator does upon detecting an error condition

• the message displayed for each error condition

• the options available to the user when an error condition
occurs

This chapter has the following sections:

• “About Errors and Warnings” on page 92

• “Detecting an Error Condition” on page 92

• “Error Condition Types” on page 95

• “Error Messages” on page 95

Palm OS Emulator Error Handling
About Errors and Warnings

92 Using Palm OS Emulator

About Errors and Warnings
Errors and warnings are very similar. Both are considered error
conditions, and both can trigger error messages. The only difference
between errors and warnings is that an error is generally fatal; in the
message dialog box for an error, the Continue button is disabled.
For example, addressing errors, divide-by-zero calculations, or calls
to SysFatalAlert are considered errors.

A warning is generally not fatal; in the message dialog box for a
warning, the Continue button is enabled. For example, low memory
accesses, direct screen accesses, and hardware register accesses are
generally considered warnings. Since a warning is not fatal,
Emulator provides a Debug Options dialog box where you can tell
Emulator which conditions you are interested in checking. See
“Debug Options” on page 65 for more information.

Detecting an Error Condition
By default, when Palm OS Emulator detects an error condition, it
generates error message text and displays the error dialog box. If
you click Debug in the error dialog box, Emulator attempts to
connect to an external debugger such as Palm Debugger or
CodeWarrior Debugger; if successful, Emulator then stops
emulating opcodes until the external debugger sends a command
specifying that it can resume emulation.

If Emulator cannot connect to a debugger, it presents the error text
to the user in a dialog box like the one shown in Figure 6.1.

Palm OS Emulator Error Handling
Detecting an Error Condition

Using Palm OS Emulator 93

Figure 6.1 Palm OS Emulator Error Message Dialog Box

TIP: You can copy the text of the error message to your desktop
computer’s clipboard:

On Windows, use CTRL-C.
On Macintosh, use CMD-C.
On Unix, use the mouse to select the text.

In the error message dialog box, you can click one of the three
buttons:

You can change this default behavior with the Error Handling
options dialog box. Select Settings>Error Handling... to open the
Error Handling options dialog box, which is shown in Figure 6.2 on
page 94.

Button Description

Continue Continues emulation, if possible.

Debug Enters the external debugger, if one is running.

Reset Performs a reset on the emulated handheld ROM.
You can select a soft reset, a hard reset or a debug
reset.

Palm OS Emulator Error Handling
Detecting an Error Condition

94 Using Palm OS Emulator

Figure 6.2 Error Handling Options Dialog Box

For When Gremlins Are Not Running

• For warnings, you can choose:

– To have warnings reported in message dialog boxes.

– To have warnings ignored and have execution continue.

• For errors, you can choose:

– To have errors reported in message dialog boxes.

– To have errors cause Emulator to automatically quit.

For When Gremlins Are Running

• For warnings, you can choose:

– To have warnings reported in message dialog boxes.

– To have warnings ignored and have execution continue
with the current Gremlin.

– To have execution automatically switch to the next
Gremlin.

• For errors, you can choose:

– To have errors reported in message dialog boxes.

– To have errors cause Emulator to automatically quit.

– To have execution automatically switch to the next
Gremlin.

Palm OS Emulator Error Handling
Error Condition Types

Using Palm OS Emulator 95

Error Condition Types
Palm OS Emulator detects condition types:

• A processor exception involves the CPU pushing the current
program counter and processor state onto the stack, and then
branching through a low-memory vector.

• A memory access exception involves access to a memory
location that the application is not supposed to access.

• An application error message is a message displayed when
software running on the handheld calls a system function
such as ErrDisplayFileLineMsg or SysFatalAlert.

Palm OS Emulator uses four levels of accessibility when checking
memory accesses:

• Applications have the least access to memory. An application
is generally software running in RAM on the handheld.

• The system has more access to memory than do applications.
The system is any software running in ROM on the
handheld.

• The memory manager has the most access to memory. The
memory manager is any function operating within the
context of a memory manager call, which means any function
that runs while a memory manager function is still active.

• Some sections of memory cannot be accessed by any
software.

Error Messages
Table 6.1 shows Palm OS Emulator error messages. Note that you
can prevent some of these messages by disabling the relevant
debugging option, as described in “Debug Options” on page 65.

Palm OS Emulator Error Handling
Error Messages

96 Using Palm OS Emulator

Table 6.1 Palm OS Emulator Error Messages

Error type Message example

Bus error <application> just <access-type> memory
location <location>, causing a bus error.
A "bus error" means that the application
accessed a memory location that is not in
RAM or ROM, nor corresponds to a memory-
mapped hardware register.

Address error <application> just <access-type> memory
location <location>, causing an address
error. An "address error" means that the
application accessed a 2 or 4-byte value
at an odd (i.e., not even) memory address.

Illegal instruction <application> just executed an illegal or
unknown machine language instruction. The
opcode executed was <instruction>.

Divide by zero <application> just divided an integer by
zero.

CHK instruction <application> just executed a CHK machine
language instruction that failed.
Invoking this instruction is not supported
in Palm OS applications.

TRAPV instruction <application> just executed a TRAPV
machine language instruction that failed.
Invoking this instruction is not supported
in Palm OS applications.

Privilege violation <application> just executed opcode
<instruction>, a privileged machine
language instruction.
A "privileged machine language
instruction" is one reserved for use by
the operating system. Invoking such
instructions is not supported in Palm OS
applications.

Palm OS Emulator Error Handling
Error Messages

Using Palm OS Emulator 97

Trace <application> just executed an
instruction with the CPU's "trace" mode
enabled. Normally, this mode is enabled by
a debugger for the purpose of single-
stepping through an application. However,
no debugger is currently connected to
handle trace mode.

Trap (A or F) <application> just executed an illegal or
unknown machine language instruction. The
opcode executed was <instruction>.

Trap number <application> just executed a "TRAP
#<number>" machine language instruction.
Invoking such instructions is not
supported in Palm OS applications.

Trap #0 <application> just executed a "TRAP #0"
machine language instruction. This
instruction is often used by debuggers to
set breakpoints. However, no debugger is
currently connected to handle the
breakpoint.

Trap #8 <application> just executed a "TRAP #8"
machine language instruction. This
instruction is generated when calling the
DbgBreak function as a method for breaking
into an external debugger. However, no
debugger is currently connected.

Storage heap access <application> just <access-type> memory
location <location>, which is in the
storage heap. In order to protect the
integrity of the user's data, such direct
access is not allowed. Instead,
applications should use special Palm OS
functions for this purpose.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

98 Using Palm OS Emulator

Draw window error <application> just <access-type> memory
location <location>. This access usually
indicates that the application is calling
a Window Manager function without first
establishing a valid DrawWindow.

Illegal global variable
access

<application> just <access-type> memory
location <location>. This access usually
means that the application accessed a
global variable after PilotMain was called
with a launch code that does not support
globals. The last launch code sent to the
application was "<launch-code>".

Mac OS floating point error <application> just performed a floating
point operation using a calling sequence
specific to the Mac OS. This indicates
that the application was compiled with the
incorrect Floating Point option in the
development environment that created it.

Stack overflow error <application> has overflowed the stack.
The functions currently using the stack
are: <stack-crawl>.

Unimplemented trap <application> called Palm OS routine
#<trap-number> (<trap-name>). This
routine does not exist in this version of
the Palm OS.

Shared library error <application> called a function in a
shared library using a reference number of
<number>. This reference number does not
correspond to any currently installed
library and is invalid.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

Using Palm OS Emulator 99

Corrupted dynamic heap During a regular checkup, Palm OS Emulator
determined that the dynamic heap chunk
with header address <location> got
corrupted. <corruption-type>.

Program counter error <application> just changed the emulated
program counter to <location>. This
address is invalid because <reason>. The
program counter was changed when <when>.

Low-memory access <application> just <access-type> memory
location <location>, which is in low
memory. "Low memory" is defined as the
first 256 bytes of memory. It should not
be directly accessed by applications under
any circumstances.

System variable access <application> just <access-type> memory
location <location>, which is in the Palm
OS global variables. "Palm OS global
variables" are memory locations reserved
for the private use of the Palm OS. They
should not be directly accessed by
applications under any circumstances.

LCD screen buffer access <application> just <access-type> memory
location <location>, which is in screen
memory. "Screen memory" is the area of RAM
containing the pixels appearing on the LCD
display. It should not be directly
accessed by applications under any
circumstances. Instead, they should use
the Window Manager functions for altering
the contents of the display.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

100 Using Palm OS Emulator

Memory-mapped
hardware register access

<application> just <access-type> memory
location <location>, which is in the
memory-mapped hardware registers.
"Memory-mapped hardware registers" are
memory locations that control the
operation of your handheld device's
hardware. They should not be directly
accessed by applications under any
circumstances.

ROM access <application> just <access-type> memory
location <location>, which is in the ROM.
Such an access has no effect, and usually
indicates an error in the application.

Memory Manager data
structure access

<application> just <access-type> memory
location <location>, which is in Memory
Manager data structures. These data
structures include things like the headers
preceding each block in a heap, as well as
the heap header itself. Such an access
usually means that an application
allocated a buffer (possibly with
MemPtrNew) that wasn't large enough for
its purpose. When the application then
tries to write data to the buffer, it
writes off the end of the buffer,
accessing the start of the buffer
following it in memory.

Memory Semaphore
timeout

The Memory Manager semaphore has been held
for longer than 1 minute. Palm recommends
that applications not acquire the Memory
Manager semaphore at all, but that if they
do, they should not hold the semaphore any
longer than that.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

Using Palm OS Emulator 101

Unallocated memory
access

<application> just <access-type> memory
location <location>, which is in an
unallocated chunk of memory. An
"unallocated chunk of memory" is a chunk
of memory that has not been reserved for
use by the application through calling
MemPtrNew or MemHandleNew. It should not
be accessed by applications under any
circumstances. Such an access usually
means that an application is accessing a
chunk that used to be allocated to the
application but has since been returned
with MemPtrFree or MemHandleFree.

Unlocked memory access <application> just <access-type> memory
location <location>, which is in an
unlocked chunk of memory. An "unlocked
chunk of memory" is one that has been
allocated with MemHandleNew but that has
not been locked with MemHandleLock. Such
an access usually means that an
application allocated a buffer with
MemHandleNew, locked it with
MemHandleLock, unlocked it with
MemHandleUnlock, and then used the pointer
that was returned by MemHandleLock.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

102 Using Palm OS Emulator

Unused stack access <application> just <access-type> memory
location <location>, which is in the
unused portion of the stack. The stack
range is <stack-low> - <stack-high>, and
the stack pointer is <stack-pointer>. The
"stack" is the area of RAM used to contain
function parameters and local variables.
The used portion of the stack is indicated
by the stack pointer. Applications may
access the area of the stack above the
stack pointer, but not below it.

Stack almost full <application> is close to overflowing the
stack. The functions currently using the
stack are: <stack-crawl>.

Sizeless object use Form object ID #<object-id> (left =
<left>, top = <top>, right = <right>,
bottom = <bottom>) from <application> has
a height or width of zero. Applications
should hide objects by calling
FrmHideObject instead of setting their
dimensions to zero. Another way to get
this error message is to call FrmCopyTitle
or FrmCopyLabel to change a title or label
to a string larger than what was specified
in the form resource. Doing this often
corrupts other objects on the form.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

Using Palm OS Emulator 103

Offscreen object use Form object ID #<object-id> (left =
<left>, top = <top>, right = <right>,
bottom = <bottom>) from <application> is
completely offscreen. Applications should
hide objects by calling FrmHideObject
instead of placing them completely
offscreen. Another way to get this error
message is to call FrmCopyTitle or
FrmCopyLabel to change a title or label to
a string larger than what was specified in
the form resource. Doing this often
corrupts other objects on the form.

Form access <application> just <access-type> memory
location <location>, which is in the
"<field>" field of the form starting at
<form>. The data at this memory location
is owned by the Form Manager. Applications
should not access the data directly.
Instead, they should make the appropriate
Form Manager calls.

Form object list access <application> just <access-type> memory
location <location>, which is in the
"<field>" field of the form object list
entry with index #<index>, which belongs
to the form starting at <form>. The data
at this memory location is owned by the
Form Manager. Applications should not
access the data directly. Instead, they
should make the appropriate Form Manager
calls.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

104 Using Palm OS Emulator

Form object access <application> just <access-type> memory
location <location>, which is in the
"<field>" field of the <type> starting at
<object>, which belongs to the form
starting at <form>. The data at this
memory location is owned by the Form
Manager. Applications should not access
the data directly. Instead, they should
make the appropriate Form Manager calls.

Window access <application> just <access-type> memory
location <location>, which is in the
"<field>" field of the window starting at
<window>. The data at this memory location
is owned by the Window Manager.
Applications should not access the data
directly. Instead, they should make the
appropriate Window Manager calls.

Bitmap access <application> just <access-type> memory
location <location>, which is in the
"<field>" field of the bitmap starting at
<bitmap>. The data at this memory location
is owned by the Palm OS. Applications
should not access the data directly.
Instead, they should make the appropriate
Palm OS calls.

Proscribed function call <application> just called Palm OS routine
"<function-name>". Applications should
not call this function because <reason>.

Memory location access <application> just <access-type> memory
location <location>, changing it from
<old-value> to <new-value>.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

Using Palm OS Emulator 105

Memory location
breakpoint

<application> just <access-type> memory
location <location>, which is in the range
from <watch-start> to <watch-end>
specified in the Breakpoint dialog box.

Memory leaks Found <number> memory leaks for
<application>. Information concerning the
leaks can be found in the log file.

SysFatalAlert call <application> called SysFatalAlert with
the message: "<message>".

DbgMessage call <application> called DbgMessage with the
message: "<message>".

Invalid ROM checksum The ROM you've chosen has an invalid
checksum.
The most common reason for an invalid
checksum has been from the use of utility
programs that modify the contents of the
ROM without also updating its internal
checksum.
Palm, Inc. does not support the use of
this ROM. Use it with caution.

ROM with incorrect device
emulation

Unable to determine an appropriate device
to emulate for this ROM file.
Palm, Inc. does not support the use of
this ROM. Use it with caution, as the
operation of a ROM with an incorrect
device emulation will certainly cause the
ROM to crash, and may crash the Palm OS
Emulator.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Palm OS Emulator Error Handling
Error Messages

106 Using Palm OS Emulator

Unsupported device ROM This ROM is for a device not supported by
this version of the emulator.
Palm, Inc. does not support the use of
this ROM.

Missing skin files Palm OS Emulator needs "skin" files in
order to correctly display the hardware
devices it emulates. The Emulator looks
for these skins in a directory called
"Skins". However, that directory was not
found. Previous versions of the Emulator
would look for any directory starting with
the word "Skins" and search that directory
for skin files. With the current Emulator,
the directory must be named exactly
"Skins". If you don't have any skin files
at all, you can download them from the
Emulator download Web page:
<http://www.palmos.com/dev/tech/tools/
emulator>
Follow the instructions included with that
archive for installing the files.

Table 6.1 Palm OS Emulator Error Messages (continued)

Error type Message example

Using Palm OS Emulator 107

7
Palm OS Emulator
Advanced Topics
This chapter contains descriptions of the following topics:

• “Using Emulator Skin Files” on page 107

• “Creating Demonstration Versions of Palm OS Emulator” on
page 115

• “Sending Commands to Palm OS Emulator” on page 116

Using Emulator Skin Files
Palm OS Emulator uses skin files to present the image of a
handheld. Note that the skin is simply a graphic; it does not change
the ROM or the handheld being emulated. The skin simply changes
the appearance of the Emulator window.

The skin choices available are dependent on the handheld selection.
When you select a handheld, Emulator reads through the available
SKIN files for the skin names that support the selected handheld.

Palm OS Emulator comes with a built-in Generic skin. This skin is
suitable for doing your own application testing and debugging.

However, there are times when you want Emulator to look more
like a specific handheld, such as when you are using Emulator to
demonstrate your application for others. This section describes how
to use additional skins that are available, and how to modify or
create your own skins.

How Skin Files Work
When Emulator starts an emulation session, it looks for a Skins
directory:

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

108 Using Palm OS Emulator

• On Windows and Macintosh systems, Emulator looks for the
Skins directory in the same directory as the Emulator
executable file.

• On Unix, Emulator looks in the $POSER_DIR, $HOME, /usr/
local/share/pose, and /usr/share/pose directories,
stopping at the first one that has a directory called Skins or
skins.

If Emulator cannot find a Skins directory, Emulator will display a
warning message at startup. However, this warning message is only
displayed once, so you will not have to be bothered by the message
if you are not interested in using skin files.

When Emulator has found the Skins directory, then Emulator
searches that directory and all subdirectories for SKIN files (files
with filetype skin, that is, *.skin).

Installing Additional Skin Files
This section describes how to use existing skin files.

1. Download additional skins from:

http://www.palmos.com/dev/tools/emulator/

Archived skin file packages are available for Windows,
Macintosh, and Unix.

2. Unarchive the skin file package you just downloaded.

3. Create a Skins directory, as described in the section “How
Skin Files Work” on page 107.

4. Place the skin files (the unarchived contents of the
downloaded package) into your Skins directory.

5. Start Palm OS Emulator. Emulator is now able to use the
skins you have installed.

You can select the additional skins from either the New Session
dialog box (Figure 7.1) or the Skins dialog box (Figure 7.2).

http://www.palmos.com/dev/tools/emulator/

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

Using Palm OS Emulator 109

Figure 7.1 Choosing a Skin in the New Session Dialog Box

Figure 7.2 Choosing a Skin in the Skins Dialog Box

Modifying or Creating Skin Files
PalmSource, Inc. provides skin files for most existing Palm
Powered™ handhelds. However, it is fairly easy to modify or create
your own skin file if you need to.

Skins are defined by a pair of files: an image file and a SKIN file that
describes the image file. The image file is a graphic; currently, only
JPEG format is supported.

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

110 Using Palm OS Emulator

The associated SKIN file is a text file that describes the image. The
text file is made up of a series of lines, each line defining an attribute
of the image. Each definition is of the form:

<attribute>=<value>

This is similar to the way INI files are stored on Windows, and how
the emulator saves its own preferences.

Conditions for Skin File Entries

The following conditions apply for the definitions in SKIN files:

• The attribute is case-sensitive. For example, "Name" and
"name" are not equivalent.

• There can be only one definition of each attribute. For
example, if the skin can be used with multiple handhelds,
specify both handhelds on the same "Devices" definition.
This definition is correct:
Devices = Pilot1000, Pilot5000

However, this definition is not correct:
Devices = Pilot1000
Devices = Pilot5000

• White space is optional, both around the equal sign and in
the specification of the value. For example, "color=1,2,3"
is the same as "color = 1, 2, 3".

• The file can include comments, which are ignored when the
file is parsed. Comments appear on their own lines, and start
with "#" or ';'.

• Invalid files are detected and silently ignored. There is
currently no error reporting when invalid values are
encountered. Your only indication that something is wrong is
that your skin won't show up in the Skins menu or dialog
box.

Specifying Attributes in Skin Files

This list defines the attributes that you can use in skin files, and a
describes how to specify the attribute’s values.

Name This is the name of the skin. The value is what
appears in the Skin menu in the New Session
dialog box and in the Skins dialog box.

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

Using Palm OS Emulator 111

Example:

Name = Keith's Cool Skin

File1x This is the name of the single-scale image file.

Example:

File1x = MySkin1.jpg

File2x This is the name of the double-scale image file.

Example:

File2x = MySkin2.jpg

Note: Two image files must be specified: one
for single-scale and one for double-scale.

Image files are expected to be in the same
directory as the SKIN file, though a relative
path may be specified. Both image files must
exist and be specified.

Macintosh relative-path format example:

File1x = :Small Images:MySkin.jpg

File2x = :Large Images:MySkin.jpg

Windows relative-path format example:

File1x = Small Images\MySkin.jpg

File2x = Large Images\MySkin.jpg

BackgroundColor This field defines the normal color used when
displaying the LCD area of Emulator's display.
The value is specified as an RGB set of values.
The three components are provided as
hexadecimal or decimal values in the range
from 0 to 255, separated by commas.

Example:

BackgroundColor = 0x7B, 0x8C, 0x5A

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

112 Using Palm OS Emulator

HighlightColor This field define the backlighting color used
when displaying the LCD area of Emulator's
display. (That is, the color used for when the
user turns on backlighting by holding down the
power button.)

The value is specified as an RGB set of values.
The three components are provided as
hexadecimal or decimal values in the range
from 0 to 255, separated by commas.

Example:

HighlightColor = 132, 240, 220

Devices Provides the list of handhelds with which this
skin can be used. One or more handhelds can
be provided, separated by commas. The current
list of valid handhelds is:

Pilot, Pilot1000, Pilot5000, PalmPilot,
PalmPilotPersonal,
PalmPilotProfessional, PalmIII,
PalmIIIc, PalmIIIe, PalmIIIx, PalmV,
PalmVx, PalmVII, PalmVIIEZ, PalmVIIx,
PalmM100, m100, PalmM105, m105,
PalmM125, m125, PalmM130, m130,
PalmM500, m500, PalmM505, m505,
PalmM515, m515, PalmI705, i705,
Symbol1500, Symbol1700, Symbol1740,
TRGpro, HandEra330, Visor,
VisorPlatinum, VisorPrism, VisorEdge

Examples:

Devices = Pilot1000, Pilot5000

Devices = PalmIIIc

Element# A class of attributes that describes the layout of
the image. There is one attribute for each item
in the image that can be clicked on. There are
also attributes for the LCD and touchscreen
areas.

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

Using Palm OS Emulator 113

The value for each attribute is a list of 5 items:
the name of the element and its coordinates on
the screen. The current set of valid element
names is:

PowerButton - The hardware on/off
button.

UpButton - The hardware scroll up
button.

DownButton - The hardware scroll
down button.

App1Button - The first application
button (usually the Date Book
application button).

App2Button - The second application
button (usually the Address Book
application button).

App3Button - The third application
button (usually the To Do List
application button).

App4Button - The fourth application
button (usually the Memo Pad
application button).

CradleButton - The HotSync®
operation button.

Antenna - The trigger for raising the
antenna.

ContrastButton - The hardware dial
for setting screen contrast.

Touchscreen - The full screen area,
including the Graffiti® text area.

LCD - The application screen area,
excluding the Graffiti text area.

Symbol-specific Values:

TriggerLeft

Palm OS Emulator Advanced Topics
Using Emulator Skin Files

114 Using Palm OS Emulator

TriggerCenter

TriggerRight

UpButtonLeft

UpButtonRight

DownButtonLeft

DownButtonRight

All elements except for Touchscreen and LCD
are optional.

The coordinates of each element are provided
by specifying the left coordinate, the top
coordinate, the element width, and the element
height. Only single-scale coordinates can be
provided; double-scale coordinates are derived
from these. Coordinate values can be specified
in hexadecimal or decimal.

Each attribute name must start with the text
"Element", and must be suffixed with
characters that make it unique from all the
other element-related attributes.

Listing 7.1 shows an example of a skin file.

Listing 7.1 Example of a Skin File

This is a skin file for the Palm OS Emulator. See the ReadMe.txt
file in this directory for a description of its contents.

Name = Standard-English
File1x = Palm_III_16.jpg
File2x = Palm_III_32.jpg
BackgroundColor = 0x7B, 0x8C, 0x5A
HighlightColor = 0x64, 0xF0, 0xDC
Devices = PalmIII

x y w h
---- ---- ---- ----
Element1 = PowerButton, 10, 295, 16, 24
Element2 = UpButton, 110, 292, 20, 21
Element3 = DownButton, 110, 313, 20, 21
Element4 = App1Button, 37, 295, 23, 25

Palm OS Emulator Advanced Topics
Creating Demonstration Versions of Palm OS Emulator

Using Palm OS Emulator 115

Element5 = App2Button, 76, 297, 23, 25
Element6 = App3Button, 141, 297, 23, 25
Element7 = App4Button, 180, 294, 23, 25
Element11 = Touchscreen, 39, 44, 160, 220
Element12 = LCD, 39, 44, 160, 160

Creating Demonstration Versions of Palm OS
Emulator

If you are running Palm OS Emulator on Windows NT or on
Windows 2000, you can create an executable that binds the
Emulator program with a ROM image and optionally a RAM image.
The bound program can then be used for demonstrations, training,
and kiosk systems.

To save a demonstration version of the Emulator session, you can
right-click on the Palm OS Emulator display (the Palm Powered
handheld image) and select Save Bound Emulator...

NOTE: You cannot create a bound emulation session on
Macintosh or on Windows 98. You must be running Windows NT
or Windows 2000 to create a bound emulation session.

Bound Emulation Session Limitations
Because bound emulation sessions are intended to be used as
demonstration versions, bound emulation sessions are different
from regular Emulator session:

• All options in the Logging options dialog box are turned off.

• All options in the Debug options dialog box are turned off.

• You cannot load a saved emulation session (PSF file) into a
bound emulation session.

• The menu items are limited to the ones displayed in Figure
7.3.

Palm OS Emulator Advanced Topics
Sending Commands to Palm OS Emulator

116 Using Palm OS Emulator

Figure 7.3 Bound Emulator Menu Items

IMPORTANT: Because the bound emulation session contains a
ROM image, you are restricted by your Palm OS Developer
Program agreement from redistributing it. The Web Clipping ROM
images are especially restricted because they contain strong
encryption features.

For more information, review the Palm OS Developer Program’s
Prototype License and Confidentiality Agreement.

Sending Commands to Palm OS Emulator
You can use RPC packets to send commands to Palm OS Emulator.
You can invoke any function in the Palm OS dispatch table,
including the Host Control functions, which are described in
Chapter 8, “Host Control API Reference.”

The RPC packets use the same format as do packets that are sent to
the debugger interface, which is described in Chapter 9, “Debugger
Protocol Reference.”

You use the socket defined by the RPCSocketPort preference to
make RPC calls to Palm OS Emulator. When you send a packet to
the emulator, you must set the dest field of the packet header to the
value defined here:

#define slkSocketRPC (slkSocketFirstDynamic+10)

Palm OS Emulator Advanced Topics
Sending Commands to Palm OS Emulator

Using Palm OS Emulator 117

NOTE: You can disable the RPC command facility by setting the
value of the RPCSocketPort preference to 0.

You can send four kinds of command packets to the emulator:

• ReadMem

• WriteMem

• RPC

• RPC2

The first three packet types are described in Chapter 9, “Debugger
Protocol Reference.” The fourth packet type, RPC2, is an extension
of the RPC packet format that allows support for a wider range of
operations.

RPC2 Packet Format
#define sysPktRPC2Cmd 0x20
#define sysPktRPC2Rsp 0xA0

struct SysPktRPCParamInfo
{
 UInt8 byRef;
 UInt8 size;
 UInt16 data[1];
};

struct SysPktRPC2Type
{
 _sysPktBodyCommon;
 UInt16 trapWord;
 UInt32 resultD0;
 UInt32 resultA0;
 UInt16 resultException;
 UInt8 DRegMask;
 UInt8 ARegMask;
 UInt32 Regs[1];
 UInt16 numParams;
 SysPktRPCParamType param[1];
};

Almost all of the RPC2 packet format is the same as the RPC format
that is described in Chapter 9, “Debugger Protocol Reference.” The
RPC2 packet includes the following additional fields:

Palm OS Emulator Advanced Topics
Sending Commands to Palm OS Emulator

118 Using Palm OS Emulator

resultException
Stores the exception ID if a function call failed
due to a hardware exception. Otherwise, the
value of this field is 0.

DRegMask A bitmask indicating which D registers need to
be set to make this call.

ARegMask A bitmask indicating which A registers need to
be set to make this call.

Regs[1] A variable-length array containing the values
to be stored in the registers that need to be set.

Only the registers that are being changed need
to be supplied. Most of the time, DRegMask
and ARegMask are set to zero and this field is
not included in the packet.

If more than one register needs to be set, then
the register values should appear in the
following order: D0, D1, ..., D6, D7, A0, A1, ...,
A6, A7. Again, only values for the registers
specified in DRegMask and ARegMask need to
be provided.

Using Palm OS Emulator 119

8
Host Control API
Reference
This chapter describes the host control API. The following topics are
covered in this chapter:

• “About the Host Control API” - Conceptual information
about the host control API.

• “Constants” on page 120 - A list of the constants that can be
used with the host control functions.

• “Data Types” on page 125 - A list of the data types that can
be used with the host control functions.

• “Functions” on page 131 - A list of all host control functions,
sorted alphabetically.

• “Reference Summary” on page 177 - A summary of all host
control functions, sorted by category.

About the Host Control API
You can use the host control API to call emulator-defined functions
while your application is running under the Palm OS® Emulator.
For example, you can make function calls to start and stop profiling
in the emulator.

Host control functions are defined in the HostControl.h header
file. These functions are invoked by executing a trap/selector
combination that is defined for use by the emulator and other
foreign host environments. Palm OS Emulator catches the calls
intended for it that are made to this selector.

Host Control API Reference
Constants

120 Using Palm OS Emulator

IMPORTANT: This chapter describes the version of the host
control API that shipped with Palm OS Emulator 3.5. If you are
using a different version, the features in your version might be
different than the features described here.

Constants
This section lists the constants that you use with the host control
API.

Host Error Constants
Several of the host control API functions return a HostErrType
value.

enum
{
hostErrNone = 0,
hostErrBase = hostErrorClass,
hostErrUnknownGestaltSelector,
hostErrDiskError,
hostErrOutOfMemory,
hostErrMemReadOutOfRange,
hostErrMemWriteOutOfRange,
hostErrMemInvalidPtr,
hostErrInvalidParameter,
hostErrTimeout,
hostErrInvalidDeviceType,
hostErrInvalidRAMSize,
hostErrFileNotFound,
hostErrRPCCall,
hostErrSessionRunning,
hostErrSessionNotRunning,
hostErrNoSignalWaiters,
hostErrSessionNotPaused,
hostErrPermissions,
hostErrFileNameTooLong,
hostErrNotADirectory,

Host Control API Reference
Constants

Using Palm OS Emulator 121

hostErrTooManyFiles,
hostErrFileTooBig,
hostErrReadOnlyFS,
hostErrIsDirectory,
hostErrExists,
hostErrOpNotAvailable,
hostErrDirNotEmpty,
hostErrDiskFull,
hostErrUnknownError
};

hostErrNone No error.

hostErrBase An administrative value for the HostError
class. This value is not returned to applications.

hostErrUnknownGestaltSelector
The specified Gestalt selector value is not valid.

hostErrDiskError
A disk error occurred. The standard C library
error code EIO is mapped to this error constant.

hostErrOutOfMemory
There is not enough memory to complete the
request. The standard C library error code
ENOMEM is mapped to this error constant.

hostErrMemReadOutOfRange
An out of range error occurred during a
memory read.

hostErrMemWriteOutOfRange
An out of range error occurred during a
memory write.

hostErrMemInvalidPtr
The pointer is not valid.

hostErrInvalidParameter
A parameter to a function is not valid. The
standard C library error codes EBADF, EFAULT
and EINVAL are mapped to this error constant.

hostErrTimeout
A timeout occurred.

Host Control API Reference
Constants

122 Using Palm OS Emulator

hostErrInvalidDeviceType
The specified handheld type is not valid.

hostErrInvalidRAMSize
The specified RAM size value is not valid.

hostErrFileNotFound
The specified file could not be found. The
standard C library error code ENOENT is
mapped to this error constant.

hostErrRPCCall
A function that must be called remotely was
called by an application. These functions
include: HostSessionCreate,
HostSessionOpen, HostSessionClose,
HostSessionQuit, HostSignalWait, and
HostSignalResume.

hostErrSessionRunning
A session is already running and one of the
following functions was called:
HostSessionCreate, HostSessionOpen,
or HostSessionQuit.

hostErrSessionNotRunning
No session is running and the
HostSessionClose function was called.

hostErrNoSignalWaiters
The HostSendSignal function was called,
but there are no external scripts waiting for a
signal.

hostErrSessionNotPaused
The HostSignalResume function was called,
but the session has not been paused by a call to
HostSendSignal.

hostErrPermissions
The standard C library error code EACCES and
EPERM are mapped to this error constant.

Host Control API Reference
Constants

Using Palm OS Emulator 123

hostErrFileNameTooLong
The standard C library error code
ENAMETOOLONG is mapped to this error
constant.

hostErrNotADirectory
The standard C library error code ENOTDIR is
mapped to this error constant.

hostErrTooManyFiles
The standard C library error code EMFILE and
ENFILE are mapped to this error constant.

hostErrFileTooBig
The standard C library error code EFBIG is
mapped to this error constant.

hostErrReadOnlyFS
The standard C library error code EROFS is
mapped to this error constant.

hostErrIsDirectory
The standard C library error code EISDIR is
mapped to this error constant.

hostErrExists
The standard C library error code EEXIST is
mapped to this error constant.

hostErrOpNotAvailable
The standard C library error codes ENOSYS and
ENODEV are mapped to this error constant.

hostErrDirNotEmpty
The standard C library error code ENOTEMPTY
is mapped to this error constant.

hostErrDiskFull
The standard C library error code ENOSPC is
mapped to this error constant.

hostErrUnknownError
The standard C library error code values that
are not mapped to any of the above error
constants are mapped to this error constant.

Host Control API Reference
Constants

124 Using Palm OS Emulator

Host Function Selector Constants
You can use the host function selector constants with the
HostIsSelectorImplemented function to determine if a certain
function is implemented on your debugging host. Each constant is
the name of a function, with the Host portion replaced by
HostSelector.

For a complete list of the constants available, see the
HostControl.h header file.

Host ID Constants
The HostGetHostID function uses a Host ID value to specify the
debugging host type.

enum
{
hostIDPalmOS,
hostIDPalmOSEmulator,
hostIDPalmOSSimulator

};

hostIDPalmOS A Palm Powered™ hardware handheld.

hostIDPalmOSEmulator
The Palm OS Emulator application.

hostIDPalmOSSimulator
Returned for both Palm OS Simulator and the
Macintosh Palm Simulator application.

Host Platform Constants
The HostGetHostPlatform function uses a HostPlatform value to
specify operating system hosting the emulation.

enum
{
hostPlatformPalmOS,
hostPlatformWindows,
hostPlatformMacintosh,
hostPlatformUnix

Host Control API Reference
Data Types

Using Palm OS Emulator 125

};

hostPlatformPalmOS
The Palm OS platform.

hostPlatformWindows
The Windows operating system platform.

hostPlatformMacintosh
The Mac OS platform.

hostPlatformUnix
The Unix operating system platform.

Host Signal Constants
This section describes the host signal values, which you can use
with the HostSendSignal.

enum
{
hostSignalReserved,
hostSignalIdle,
hostSignalQuit

};

hostSignalReserved
System-defined signals start here.

hostSignalIdle
Palm OS Emulator is about to go into an idle
state.

hostSignalQuit
Palm OS Emulator is about to quit.

Data Types
This section describes the data types that you use with the host
control API.

Host Control API Reference
Data Types

126 Using Palm OS Emulator

HostBoolType
The host control API defines HostBoolType for use as a Boolean
value.

typedef long HostBoolType;

HostClockType
The host control API defines HostClockType as a platform-
independent representation of the standard C library clock_t
type.

typedef long HostClockType;

HostDirEntType
The host control API defines HostDirEntType as a return value
for the HostReadDir function. The contents are platform-specific,
usually a simple null-terminated file name.

struct HostDirEntType
{
char d_name[HOST_NAME_MAX + 1];

};

typedef struct HostDirEntType HostDirEntType;

HostDIRType
The host control API defines HostDIRType for use in directory-
related functions. It is returned by HostOpenDir and used by
HostReadDir and HostCloseDir. It represents an open directory
whose contents can be read.

struct HostDIRType
{
long _field;

};
typedef struct HostDIRType HostDIRType;

Host Control API Reference
Data Types

Using Palm OS Emulator 127

HostFILEType
The host control API defines HostFILEType for the standard C
library functions that take FILE* parameters. It is returned by
HostFOpen and used by other host control functions. It represents
an open file whose contents can be manipulated.

typedef struct HostFILEType
{
long _field;

} HostFILEType;

HostGremlinInfoType
The host control API defines the HostGremlinInfoType structure
type to store information about a horde of gremlins.

typedef struct HostGremlinInfoType
{
long fFirstGremlin;
long fLastGremlin;
long fSaveFrequency;
long fSwitchDepth;
long fMaxDepth;
char fAppNames[200];

};

typedef struct HostGremlinInfoType
HostGremlinInfoType;

HostGremlinInfo Fields

fFirstGremlin The number of the first gremlin to run.

fLastGremlin The number of the last gremlin to run.

fSaveFrequency The gremlin snapshot frequency.

fSwitchDepth The number of gremlin events to generate
before switching to another gremlin.

fMaxDepth The maximum number of gremlin events to
generate for each gremlin.

Host Control API Reference
Data Types

128 Using Palm OS Emulator

fAppNames A comma-separated string containing a list of
application names among which the gremlin
horde is allowed to switch.

If this string is empty, all applications are
available for use with the gremlins.

If this string begins with a dash ('-'), the
applications named in the string are excluded,
rather than included in the list of available
applications.

HostIDType
The host control API defines HostIDType for use as an identifier
value.

typedef long HostIDType;

HostPlatformType
The host control API defines HostPlatformType for use as a
platform identifier value.

typedef long HostPlatformType;

HostSignalType
The host control API defines HostSignalType for use in signal
functions.

typedef long HostSignalType;

HostSizeType
The host control API defines HostSizeType as a platform-
independent version of the standard C library size_t type.

typedef long HostSizeType;

HostStatType
The host control API defines HostStatType for status information
about files.

Host Control API Reference
Data Types

Using Palm OS Emulator 129

struct HostStatType
{
 unsigned long st_dev_;
 unsigned long st_ino_;
 unsigned long st_mode_;
 unsigned long st_nlink_;
 unsigned long st_uid_;
 unsigned long st_gid_;
 unsigned long st_rdev_;
 HostTimeType st_atime_;
 HostTimeType st_mtime_;
 HostTimeType st_ctime_;
 unsigned long st_size_;
 unsigned long st_blksize_;
 unsigned long st_blocks_;
 unsigned long st_flags_;
};
typedef struct HostStatType HostStatType;

HostStatType Fields

st_dev_ Drive number of the disk containing the file
(the same as st_rdev_).

st_ino_ Number of the information node for the file
(Unix-specific information).

st_mode_ Bit mask for file-mode information. The
_S_IFDIR bit indicates if this is a directory; the
_S_IFREG bit indicates an ordinary file or
handheld. User read/write bits are set
according to the file’s permission mode; user
execute bits are set according to the filename
extension.

st_nlink_ Always returns 1 on non-NTFS file systems.

st_uid_ Numeric identifier of the user who owns the
file (Unix-specific information).

st_gid_ Numeric identifier of the group who owns the
file (Unix-specific information).

Host Control API Reference
Data Types

130 Using Palm OS Emulator

st_rdev_ Drive number of the disk containing the file
(the same as st_dev_).

st_atime_ Time of the last access of the file.

st_mtime_ Time of the last modification of the file.

st_ctime_ Time of the creation of the file.

st_size_ Size of the file in bytes.

st_blksize_ Block size for the file.

st_blocks_ Number of blocks.

st_flags_ File flags.

HostTimeType
The host control API defines HostTimeType as a platform-
independent version of the standard C library time_t type.

typedef long HostTimeType;

HostTmType
The host control API defines HostTmType for use in time functions.

struct HostTmType
{
long tm_sec_;
long tm_min_;
long tm_hour_;
long tm_mday_;
long tm_mon_;
long tm_year_;
long tm_wday_;
long tm_yday_;
long tm_isdst_;

};
typedef struct HostTmType HostTmType;

HostTmType Fields

tm_sec_ Seconds after the minute: range from 0 to 59.

tm_min_ Minutes after the hour: range from 0 to 59.

Host Control API Reference
Functions

Using Palm OS Emulator 131

tm_hour_ Hours since midnight: range from 0 to 23.

tm_mday_ Day of the month: range from 1 to 31.

tm_mon_ Months since January: range from 0 to 11.

tm_year_ Years since 1900.

tm_wday_ Days since Sunday: range from 0 to 6.

tm_yday_ Days since January 1: range from 0 to 365.

tm_isdst_ Daylight savings time flag.

HostUTimeType
The host control API defines HostUTimeTypefor use in time
functions.

struct HostUTimeType
{
HostTimeType crtime_;
HostTimeType actime_;
HostTimeType modtime_;

};
typedef struct HostUTimeType HostUTimeType;

HostUTimeType Fields

crtime_ Creation time.

actime_ Access time.

modtime_ Modification time.

Functions
This section describes the host control API functions.

Host Control API Reference
Functions

132 Using Palm OS Emulator

NOTE: For host control API functions that return pointers to
character strings (that is, functions that return type char *), the
returned value is valid only until the next call to a function that
returns a pointer to a character string. If you need ongoing access
to a character string, you should make a copy of the string before
making the subsequent host control function call.

HostAscTime

Purpose Returns a character string representation of the time encoded in
time.

Prototype char* HostAscTime(const HostTmType* time);

Parameters time The time structure.

Result The time as a character string.

HostClock

Purpose Returns an elapsed time.

Prototype HostClockType HostClock(void);

Parameters None.

Result The elapsed time in terms of the operating system’s clock function
(usually the number clock ticks that have elapsed since the start of
the process), or -1 if the function call was not successful.

Host Control API Reference
Functions

Using Palm OS Emulator 133

HostCloseDir

Purpose Closes a directory.

Prototype long HostCloseDir(HostDIRType* directory);

Parameters directory The directory to be closed.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostCTime

Purpose Converts the calendar time in *timeofday to a text representation.

Prototype char* HostCTime(const HostTimeType* timeofday)

Parameters timeofday The calendar time.

Result The calendar time as a time string.

New HostDbgClearDataBreak

Purpose Clears all data breakpoints that have been set by the
HostDbgSetDataBreak function.

Prototype HostErr HostDbgClearDataBreak (void)

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

134 Using Palm OS Emulator

New HostDbgSetDataBreak

Purpose Sets a breakpoint for Emulator to enter an external debugger or to
display a message if the bytes starting at the address (addr) and
continuing for the given number of bytes (size) are accessed in any
way (either written to or read from). This function provides the
same function as the data breakpoint section of the Breakpoints
dialog box (as described in “Setting Breakpoints” on page 81).

Prototype HostErr HostDbgSetDataBreak (UInt32 addr, UInt32
size)

Parameters addr The starting address for the range of bytes to be
monitored for access.

size The number of bytes, starting from the address
addr, that will be monitored for access.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostErrNo

Purpose Returns the value of errno, the standard C library variable that
reflects the result of many standard C library functions. You can call
this function after calling one of the Host Control functions that
wraps the standard C library.

IMPORTANT: The HostErrNo function is only applicable to
functions that wrap standard C library functions that affect errno.
It is not applicable to all Host Control functions.

Host Control API Reference
Functions

Using Palm OS Emulator 135

Prototype long HostErrNo(void);

Parameters None.

Result The error number.

HostExportFile

Purpose Copies a database from the handheld to the desktop computer.

Prototype HostErr HostExportFile(const char* fileName,
long cardNum, const char* dbName);

Parameters fileName The file name to use on the desktop computer.

cardNum The number of the card on the handheld on
which the database is contained.

dbName The name of the handheld database.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFClose

Purpose Closes a file on the desktop computer.

Prototype long HostFClose(HostFILE* f);

Parameters f The file to close.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

136 Using Palm OS Emulator

HostFEOF

Purpose Determines if the specified file is at its end.

Prototype long HostFEOF(HostFILE* f);

Parameters f The file to test.

Result Returns 0 if the specified file is at its end, and a non-zero value
otherwise.

HostFError

Purpose Retrieves the error code from the most recent operation on the
specified file.

Prototype long HostFError(HostFILE* f);

Parameters f The file.

Result The error code from the most recent operation on the specified file.
Returns 0 if no errors have occurred on the file.

HostFFlush

Purpose Flushes the buffer for the specified file.

Prototype long HostFFlush(HostFILE* f);

Parameters f The file to flush.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

Using Palm OS Emulator 137

HostFGetC

Purpose Retrieves the character at the current position in the specified file.

Prototype long HostFGetC(HostFILE* f);

Parameters f The file.

Result The character, or EOF to indicate an error.

HostFGetPos

Purpose Retrieves the current position in the specified file.

Prototype long HostFGetPos(HostFILE* f, long* posn);

Parameters f The file.

posn Upon successful return, the current position in
the file.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFGetS

Purpose Retrieves a character string from the selected file and returns a
pointer to that string.

Prototype char* HostFGetS(char* s, long n, HostFILE* f);

Parameters s A pointer to the string buffer to be filled with
characters from the file.

n The number of characters to retrieve.

f The file.

Result The character string, or NULL to indicate an error.

Host Control API Reference
Functions

138 Using Palm OS Emulator

HostFOpen

Purpose Opens a file on the desktop computer.

Prototype HostFILE* HostFOpen(const char* name,
const char* mode);

Parameters name The name of the file to open.

mode The mode to use when opening the file.

Result The file stream pointer, or NULL to indicate an error.

HostFPrintF

Purpose Writes a formatted string to a file.

Prototype long HostFPrintF(HostFILE* f, const char* format,
…);

Parameters f The file to which the string is written.

format The format specification.

... String arguments.

Result The number of characters actually written.

HostFPutC

Purpose Writes a character to the specified file.

Prototype long HostFPutC(long c, HostFILE* f);

Parameters c The character to write.

f The file to which the character is written.

Result The number of characters written, or EOF to indicate an error.

Host Control API Reference
Functions

Using Palm OS Emulator 139

HostFPutS

Purpose Writes a string to the specified file.

Prototype long HostFPutS(const char* s, HostFILE* f);

Parameters s The string to write.

f The file to which the character is written.

Result A non-negative value if the operation was successful, or a negative
value to indicate failure.

HostFRead

Purpose Reads a number of items from the file into a buffer.

Prototype long HostFRead(void* buffer, long size,
long count, HostFILE* f);

Parameters buffer The buffer into which data is read.

size The size of each item.

count The number of items to read.

f The file from which to read.

Result The number of items that were actually read.

HostFree

Purpose Frees memory on the desktop computer.

Prototype void HostFree(void* p);

Parameters p A pointer to the memory block to be freed.

Result None.

Host Control API Reference
Functions

140 Using Palm OS Emulator

HostFReopen

Purpose Changes the file with which the stream f is associated.
HostFReopen first closes the file that was associated with the
stream, then opens the new file and associates it with the same
stream.

Prototype HostFILE* HostFReopen(const char* name,
const char* mode, HostFILE *f);

Parameters name The name of the file to open.

mode The mode to use when opening the file.

f The file from which to read.

Result The file stream pointer, or NULL to indicate an error.

HostFScanF

Purpose Reads formatted text from a file.

Prototype long HostFReopen(HostFILE* f, const char *fmt, …);

Parameters f The file from which to read input.

fmt A format string, as used in standard C-library
calls such as scanf.

... The list of variables into which scanned input
are written.

Result The number of items that were read, or a negative value to indicate
an error.

Returns EOF if end of file was reached while scanning.

Host Control API Reference
Functions

Using Palm OS Emulator 141

HostFSeek

Purpose Moves the file pointer to the specified position.

Prototype long HostFSeek(HostFILE* f, long offset,
long origin);

Parameters f The file.

offset The number of bytes to move from the initial
position, which is specified in the origin
parameter.

origin The initial position.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFSetPos

Purpose Sets the position indicator of the file.

Prototype long HostFSetPos(HostFILE* f, long posn);

Parameters f The file.

posn The position value.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

142 Using Palm OS Emulator

HostFTell

Purpose Retrieves the current position of the specified file.

Prototype long HostFTell(HostFILE* f);

Parameters f The file.

Result Returns -1 to indicate an error.

HostFWrite

Purpose Writes data to a file.

Prototype long HostFWrite(const void* buffer, long size,
long count, HostFILE* f);

Parameters buffer The buffer that contains the data to be written.

size The size of each item.

count The number of items to write.

f The file to which the data is written.

Result The number of items actually written.

HostGestalt

Purpose Currently does nothing except return an “invalid selector” error. In
the future, this function will be used for queries about the runtime
environment.

Prototype HostErr HostGestalt(long gestSel, long* response);

Parameters gestSel

response

Host Control API Reference
Functions

Using Palm OS Emulator 143

HostGetDirectory

Purpose Gets a directory, in support of the operating system file chooser
dialog box.

Prototype const char* HostGetDirectory(const char* prompt,
const char* defaultDir);

Parameters prompt

defaultDir The default directory to get.

Result Returns the directory as a character string.

HostGetEnv

Purpose Retrieves the value of an environment variable.

Prototype char* HostGetEnv(char* varName);

Parameters varName The name of the environment variable that you
want to retrieve.

Result The string value of the named variable, or NULL if the variable
cannot be retrieved.

HostGetFile

Purpose Gets a file, in support of the operating system file chooser dialog
box.

Prototype const char* HostGetFile(const char* prompt,
const char* defaultFile)

Parameters prompt

defaultFile The default fileto get.

Result Returns the file as a character string.

Host Control API Reference
Functions

144 Using Palm OS Emulator

HostGetFileAttr

Purpose Get the attribute settings of a file or directory. This function can tell
you whether the file is read-only, hidden, or a system file.

Prototype long HostGetFileAttr(const char* fileOrPathName,
long* attrFlag)

Parameters fileOrPathName The file name or directory path for which you
want to get the file attribute setting.

attrFlag One of the following attribute flags:

- hostFileAttrReadOnly

- hostFileAttrHidden

- hostFileAttrSystem

The file attribute flags match the EmFileAttr flags:
enum
{

hostFileAttrReadOnly = 1,
hostFileAttrHidden = 2,
hostFileAttrSystem = 4

}

Result The file attribute.

HostGetHostID

Purpose Retrieves the ID of the debugging host. This is one of the constants
described in Host ID Constants. Palm OS Emulator always returns
the value hostIDPalmOSEmulator.

Prototype HostID HostGetHostID(void);

Parameters None.

Result The host ID.

Host Control API Reference
Functions

Using Palm OS Emulator 145

HostGetHostPlatform

Purpose Retrieves the host platform ID, which is one of the values described
in Host Platform Constants.

Prototype HostPlatform HostGetHostPlatform(void);

Parameters None.

Result The platform ID.

HostGetHostVersion

Purpose Retrieves the version number of the debugging host.

Prototype long HostGetHostVersion(void);

Parameters None.

Result The version number.

Comments This function returns the version number in the same format that is
used by the Palm OS, which means that you can access the version
number components using the following macros from the
SystemMgr.h file:

sysGetROMVerMajor(dwROMVer)
sysGetROMVerMinor(dwROMVer)
sysGetROMVerFix(dwROMVer)
sysGetROMVerStage(dwROMVer)
sysGetROMVerBuild(dwROMVer)

Host Control API Reference
Functions

146 Using Palm OS Emulator

HostGetPreference

Purpose Retrieves the specified preference value.

Prototype HostBool HostGetPreference(const char* prefName,
char* prefValue);

Parameters prefName The name of the preference whose value you
want to retrieve.

prefValue Upon successful return, the string value of the
specified preference.

Result A Boolean value that indicates whether the preference was
successfully retrieved.

Comments Each preference is identified by name. You can view the preference
names in the Palm OS Emulator preferences file for your platform,
as shown in Table 8.1.

See Also The HostSetPreference function.

Table 8.1 Palm OS Emulator preferences file names and
locations

Platform File name File location

Macintosh Palm OS Emulator Prefs In the Preferences
folder

Windows Palm OS Emulator.ini In the Windows System
directory

Unix .poserrc In your home directory

Host Control API Reference
Functions

Using Palm OS Emulator 147

HostGMTime

Purpose Returns time structure representation of the time, expressed as
Universal Time Coordinated, or UTC (UTC was formerly
Greenwich Mean Time, or GMT).

Prototype HostTmType* HostGMTime(const HostTimeType* time);

Parameters time

Result The time structure.

HostGremlinCounter

Purpose Returns the current event count of the currently running gremlin.

Prototype long HostGremlinCounter(void);

Parameters None.

Result The event count.

Comments This return value of this function is only valid if a gremlin is
currently running.

HostGremlinIsRunning

Purpose Determines if a gremlin is currently running.

Prototype HostBool HostGremlinIsRunning(void);

Parameters None.

Result A Boolean value indicating whether a gremlin is currently running.

Host Control API Reference
Functions

148 Using Palm OS Emulator

HostGremlinLimit

Purpose Retrieves the limit value of the currently running gremlin.

Prototype long HostGremlinLimit(void);

Parameters None.

Result The limit value of the currently running gremlin.

Comments This return value of this function is only valid if a gremlin is
currently running.

HostGremlinNew

Purpose Creates a new gremlin.

Prototype HostErr HostGremlinNew(
const HostGremlinInfo* info);

Parameters info A HostGremlinInfo structure with
information about the new horde of gremlins

HostGremlinNumber

Purpose Retrieves the number of the currently running gremlin.

Prototype long HostGremlinNumber(void);

Parameters None.

Result The gremlin number of the currently running gremlin.

Comments This return value of this function is only valid if a gremlin is
currently running.

Host Control API Reference
Functions

Using Palm OS Emulator 149

HostImportFile

Purpose Copies a database from the desktop computer to the handheld, and
stores it on the specified card number. The database name on the
handheld is the name stored in the file.

Prototype HostErr HostImportFile(const char* fileName,
long cardNum);

Parameters fileName The file on the desktop computer that contains
the database.

cardNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

New HostImportFileWithID

Purpose Copies a database from the desktop computer to the handheld,
stores it on the specified card number, and returns the local ID of the
installed database. The database name on the handheld is the name
stored in the file.

Prototype HostErr HostImportFileWithID(const char* fileName,
long cardNum, LocalID* newIDP);

Parameters fileName The file on the desktop computer that contains
the database.

cardNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

Host Control API Reference
Functions

150 Using Palm OS Emulator

newIDP The local ID of the installed database.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostIsCallingTrap

Purpose Determines if Palm OS Emulator is currently calling a trap.

Prototype HostBool HostIsCallingTrap(void);

Parameters None.

Result TRUE if Palm OS Emulator is currently calling a trap, and FALSE if
not.

HostIsSelectorImplemented

Purpose Determines if the specified function selector is implemented on the
debugging host.

Prototype HostBool HostIsSelectorImplemented(long selector);

Parameters selector The function selector. This must be one of the
constants described in Host Function Selector
Constants.

Result TRUE if the specified function selector is implemented on the host,
and FALSE if not

Host Control API Reference
Functions

Using Palm OS Emulator 151

HostLocalTime

Purpose Returns time structure representation of the time, expressed as local
time.

Prototype HostTmType* HostLocalTime(const HostTimeType*
time);

Parameters time The time structure.

Result The time structure.

HostLogFile

Purpose Returns a reference to the file that the Emulator is using to log
information. You can use this to add your own information to the
same file.

Prototype HostFILE* HostLogFile(void);

Parameters None.

Result A pointer to the log file, or NULL if not successful.

HostMalloc

Purpose Allocates a memory block on the debugging host.

Prototype void* HostMalloc(long size);

Parameters size The number of bytes to allocate.

Result A pointer to the allocated memory block, or NULL if there is not
enough memory available.

Host Control API Reference
Functions

152 Using Palm OS Emulator

HostMkDir

Purpose Creates a directory.

Prototype long HostMkDir(const char* directory);

Parameters directory The directory to create.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostMkTime

Purpose Alters the parameter values to represent an equivalent encoded
local time, but with the values of all members within their normal
ranges.

Prototype HostTimeType HostMkTime(HostTmType* time)

Parameters time The time structure.

Result Returns the calendar time equivalent to the encoded time, or returns
a value of -1 if the calendar time cannot be represented

HostOpenDir

Purpose Opens a directory.

Prototype HostDIRType* HostOpenDir(const char* directory);

Parameters directory The directory to open.

Result Returns a directory structure.

Host Control API Reference
Functions

Using Palm OS Emulator 153

HostProfileCleanup

Purpose Releases the memory used for profiling and disables profiling.

Prototype HostErr HostProfileCleanup(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not. Returns hostErrProfilingNotReady if called out of
sequence. For information on profiling sequence, see
“HostProfileInit” on page 155.

Comments This function is available only in the profiling version of the
emulator.

See Also The HostProfileStart, HostProfileStop, and HostProfileDump
functions.

HostProfileDetailFn

Purpose Profiles the function that contains the specified address.

Prototype HostErr HostProfileDetailFn(void* addr,
HostBool logDetails);

Parameters addr The address in which you are interested.

logDetails A Boolean value. If this is TRUE, profiling is
performed at a machine-language instruction
level, which means that each opcode is treated
as its own function.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

154 Using Palm OS Emulator

Comments This function is available only in the profiling version of the
emulator.

See Also The HostProfileInit, HostProfileStart, HostProfileStop,
HostProfileDump, and HostProfileCleanup functions.

HostProfileDump

Purpose Writes the current profiling information to the named file.

Prototype HostErr HostProfileDump(const char* filename);

Parameters filename The name of the file to which the profile
information gets written.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is available only in the profiling version of the
emulator. Returns hostErrProfilingNotReady if called out of
sequence. For information on profiling sequence, see
“HostProfileInit” on page 155.

See Also The HostProfileInit, HostProfileStart, HostProfileStop, and
HostProfileCleanup functions.

HostProfileGetCycles

Purpose Returns the current running CPU cycle count.

Prototype long HostProfileGetCycles(void)

Parameters None.

Result Returns the current running CPU cycle count.

Host Control API Reference
Functions

Using Palm OS Emulator 155

Comments This function is available only in the profiling version of the
emulator.

See Also The HostProfileInit, HostProfileStart, HostProfileStop,
HostProfileDump, and HostProfileCleanup functions.

HostProfileInit

Purpose Initializes and enables profiling in the debugging host.

Prototype HostErr HostProfileInit(long maxCalls,
long maxDepth);

Parameters maxCalls The maximum number of calls to profile. This
parameter determines the size of the array used
to keep track of function calls. A typical value
for maxCalls is 65536.

maxDepth The maximum profiling depth. This parameter
determines the size of the array used to keep
track of function call depth. A typical value for
maxDepth is 200.

Result Returns 0 if the operation was successful, and a non-zero value if
not. Returns hostErrProfilingNotReady if called out of
sequence.

Comments This function is available only in the profiling version of the
emulator.

The host control profiling functions are intended to be called in
sequence:

1. HostProfileInit - All profiling starts with the HostProfileInit
function, which initializes and enables profiling.

2. HostProfileStart - This function turns profiling on.

3. HostProfileStop - This function turns profiling off. After
calling HostProfileStop, you can either call HostProfileStart
to restart profiling or call HostProfileDump, which disables
profiling and writes data to a file.

Host Control API Reference
Functions

156 Using Palm OS Emulator

4. HostProfileDump - This function disables profiling and
writes data to a file. If you need to do more profiling after
calling HostProfileDump, you need to call HostProfileInit to
re-enable profiling.

5. HostProfileCleanup - This function releases the memory
used for profiling and disables profiling.

See Also The HostProfileStart, HostProfileStop, HostProfileDump, and
HostProfileCleanup functions.

HostProfileStart

Purpose Turns profiling on.

Prototype HostErr HostProfileStart(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not. Returns hostErrProfilingNotReady if called out of
sequence. For information on profiling sequence, see
“HostProfileInit” on page 155.

Comments This function is available only in the profiling version of the
emulator.

See Also The HostProfileInit, HostProfileStop, HostProfileDump, and
HostProfileCleanup functions.

Host Control API Reference
Functions

Using Palm OS Emulator 157

HostProfileStop

Purpose Turns profiling off.

Prototype HostErr HostProfileStop(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not. Returns hostErrProfilingNotReady if called out of
sequence. For information on profiling sequence, see
“HostProfileInit” on page 155.

Comments This function is available only in the profiling version of the
emulator.

See Also The HostProfileInit, HostProfileStop, HostProfileDump, and
HostProfileCleanup functions.

HostPutFile

Purpose Writes a file, in support of the operating system “Save As” dialog
box.

Prototype const char* HostPutFile(const char* prompt, const
char* defaultDir, const char* defaultName);

Parameters prompt

defaultDir The default directory to use.

defaultName The default file name to use.

Result Returns the file name as a character string.

Host Control API Reference
Functions

158 Using Palm OS Emulator

HostReadDir

Purpose Reads a directory.

Prototype HostDirEntType* HostReadDir(HostDIRType*
directory);

Parameters directory The directory to read.

Result Returns a character array for the directory.

HostRealloc

Purpose Reallocates space for the specified memory block.

Prototype void* HostRealloc(void* ptr, long size);

Parameters ptr A pointer to a memory block that is being
resized.

size The new size for the memory block.

Result A pointer to the allocated memory block, or NULL if there is not
enough memory available.

HostRemove

Purpose Deletes a file.

Prototype long HostRemove(const char* name);

Parameters name The name of the file to be deleted.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

Using Palm OS Emulator 159

HostRename

Purpose Renames a file.

Prototype long HostRemove(const char* oldName,
const char* newName);

Parameters oldName The name of the file to be renamed.

newName The new name of the file.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostRmDir

Purpose Removes a directory.

Prototype long HostRmDir(const char* directory);

Parameters directory The directory to remove.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostSaveScreen

Purpose Saves the LCD frame buffer to the given file name.

Prototype HostErrType HostSaveScreen(const char* fileName)

Parameters fileName The name of the file to which the current LCD
frame buffer is to be saved.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

160 Using Palm OS Emulator

HostSessionClose

Purpose Closes the current emulation session.

Prototype HostErr HostSessionClose(const char* psfFileName);

Parameters psfFileName The name of the file to which the current
session is to be saved.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated
handheld is undefined.

HostSessionCreate

Purpose Creates a new emulation session.

Prototype HostErr HostSessionCreate(const char* device,
long ramSize, const char* romPath);

Parameters device The name of the handheld to emulate in the
session.

ramSize The amount of emulated RAM in the new
session.

romPath The path to the ROM file for the new session.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated
handheld is undefined.

Host Control API Reference
Functions

Using Palm OS Emulator 161

IMPORTANT: This function is not implemented in the current
version of Palm OS Emulator; however, it will be implemented in
the near future.

HostSessionOpen

Purpose Opens a previously saved emulation session.

Prototype HostErr HostSessionOpen(const char* psfFileName);

Parameters psfFileName The name of the file containing the saved
session that you want to open.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated
handheld is undefined.

IMPORTANT: This function is not implemented in the current
version of Palm OS Emulator; however, it will be implemented in
the near future.

HostSessionQuit

Purpose Asks Palm OS Emulator to quit. Returns an error if a session is
already running.

Prototype HostErr HostSessionQuit(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

162 Using Palm OS Emulator

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated
handheld is undefined.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

New HostSessionSave

Purpose Saves a session to a file with the specified name.

Prototype HostBoolType HostSessionSave(const char*
saveFileName);

Parameters saveFileName A file name for the session that you are saving.

Result Returns false when saving a session to a file, whether or not the save
attempt is successful. When the session file is reloaded, execution
starts at the point where HostSessionSave is returning, and it
then returns true.

Comments This function can be useful when you want to save a session file for
later analysis. When you reload the session file later, you can break
into a debugger.

Example void MyFunc (void)
{

// Check to see if our application's data is internally
// consistant. If not, save the state for later analysis.

if (ASSERT_VALID () == false)
if (HostSessionSave ("c:\\temp\foo.psf"))

DbgBreak ();
}

Host Control API Reference
Functions

Using Palm OS Emulator 163

HostSetFileAttr

Purpose Set the attribute settings of a file or directory. This function can set
the read-only, hidden, or system-file attribute for the file or
directory.

Prototype long HostSetFileAttr(const char* fileOrPathName,
long* attrFlag)

Parameters fileOrPathName The file name or directory path for which you
want to set the file attribute setting.

attrFlag One of the following attribute flags:

- hostFileAttrReadOnly

- hostFileAttrHidden

- hostFileAttrSystem

The file attribute flags match the EmFileAttr flags:
enum
{

hostFileAttrReadOnly = 1,
hostFileAttrHidden = 2,
hostFileAttrSystem = 4

}

Result The file attribute.

HostSetLogFileSize

Purpose Determines the size of the logging file that Palm OS Emulator is
using.

Prototype void HostSetLogFileSize(long size);

Parameters size The new size for the logging file, in bytes.

Result None.

Host Control API Reference
Functions

164 Using Palm OS Emulator

Comments By default, Palm OS Emulator saves the last 1 megabyte of log data
to prevent logging files from becoming enormous. You can call this
function to change the log file size.

HostSetPreference

Purpose Sets the specified preference value.

Prototype void HostSetPreference(const char* prefName,
const char* prefValue);

Parameters prefName The name of the preference whose value you
are setting.

prefValue The new value of the preference.

Result None.

Comments Each preference is identified by name. You can view the preference
names in the Palm OS Emulator preferences file for your platform,
as shown in Table 8.1.

See Also The HostGetPreference function.

HostSignalResume

Purpose Restarts Palm OS Emulator after it has issued a signal.

Prototype HostErr HostSignalResume(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

Using Palm OS Emulator 165

Comments Palm OS Emulator waits to be restarted after issuing a signal to
allow external scripts to perform operations.

See Also The HostSignalSend and HostSignalWait functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

HostSignalSend

Purpose Sends a signal to any scripts that have HostSignalWait calls
pending.

Prototype HostErr HostSignalSend(HostSignal signalNumber);

Parameters signalNumber The signal for which you want to wait. This can
be a predefined signal or one that you have
defined.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments Palm OS Emulator halts and waits to be restarted after sending the
signal. This allows external scripts to perform operations. The
external script must call the HostSignalResume function to restart
Palm OS Emulator.

If there are not any scripts waiting for a signal, Palm OS Emulator
does not halt.

The predefined signals are:

• hostSignalIdle, which Palm OS Emulator issues when it
detects that it is going into an idle state.

• hostSignalQuit, which Palm OS Emulator issues when it
is about to quit.

See Also The HostSignalResume and HostSignalWait functions.

Host Control API Reference
Functions

166 Using Palm OS Emulator

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

HostSignalWait

Purpose Waits for a signal from Palm OS Emulator, and returns the signalled
value.

Prototype HostErr HostSignalWait(long timeout,
HostSignal* signalNumber);

Parameters timeout The number of milliseconds to wait for the
signal before timing out.

signalNumber The number of the signal that occurred.

Result Returns 0 if the operation was successful, and a non-zero value if
not. Returns the number of the signal that occurred in
signalNumber.

Comments Palm OS Emulator waits to be restarted after issuing a signal to
allow external scripts to perform operations.

The predefined signals are:

• hostSignalIdle, which Palm OS Emulator issues when it
detects that it is going into an idle state.

• hostSignalQuit, which Palm OS Emulator issues when it
is about to quit.

See Also The HostSignalResume and HostSignalSend functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

Host Control API Reference
Functions

Using Palm OS Emulator 167

HostSlotHasCard

Purpose Ask whether Emulator is emulating a Virtual File System card for a
specific slot number.

Prototype HostBoolType HostSlotHasCard(long slotNo)

Parameters slotNo The slot number. This number can be in the
range from 1 up to and including the number
returned by function HostSlotMax.

Result A Boolean value that indicates whether Emulator is emulating a
Virtual File System card in the slot specified by slotNo. This
function is provided in support of Expansion Manager emulation.

Comments This function may return FALSE if the user has not selected to
emulate a Virtual File System card in the given slot, or if Emulator is
emulating a different kind of card in that slot.

HostSlotMax

Purpose Returns the number of Virtual File System cards that Emulator is
emulating.

Prototype long HostSlotMax(void)

Parameters None.

Result A long value indicating the number of Virtual File System cards
Emulator is emulating. This function is provided in support of
Expansion Manager emulation.

Comments The functions that accept card numbers, HostSlotHasCard and
HostSlotRoot, accept numbers from 1 up to and including the
number returned by HostSlotMax.

Host Control API Reference
Functions

168 Using Palm OS Emulator

HostSlotRoot

Purpose Returns a string representing the root directory of the emulated slot.

Prototype const char* HostSlotRoot(long slotNo)

Parameters slotNo The slot number. This number can be in the
range from 1 up to and including the number
returned by function HostSlotMax.

Result The character string representing the directory to be used as the root
for the given Virtual File System card. This function is provided in
support of Expansion Manager emulation.

Comments The string returned is in host path format. This function may return
NULL if there is no Virtual File System card mounted in the slot
specified by slotNo or if the user has not selected a root directory
for that slot.

HostStat

Purpose Returns status information about a file.

Prototype long HostStat(const char* filename, HostStatType*
buffer);

Parameters filename The name of the file or directory for which you
want status information

buffer The structure that stores the status information

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Host Control API Reference
Functions

Using Palm OS Emulator 169

HostStrFTime

Purpose Generates formatted text, under the control of the format parameter
and the values stored in the time structure parameter.

Prototype HostSizeType HostStrFTime(char* string,
HostSizeType size, const char* format, const
HostTmType* time)

Parameters string The formatted text

size The size of an array element in the formatted
text

format The format definition

time A time structure

Result Returns the number of characters generated, if the number is less
than the size parameter; otherwise, returns zero, and the values
stored in the array are indeterminate.

Host Control API Reference
Functions

170 Using Palm OS Emulator

HostTime

Purpose Returns the current calendar time.

Prototype HostTimeType HostTime(HostTimeType* time);

Parameters time The time structure.

Result Returns the current calendar time if the operation is successful, and
returns -1 if not.

HostTmpFile

Purpose Returns the temporary file used by the debugging host.

Prototype HostFILE* HostTmpFile(void);

Parameters None.

Result A pointer to the temporary file, or NULL if an error occurred.

HostTmpNam

Purpose Creates a unique temporary file name.

Prototype char* HostTmpNam(char* s);

Parameters s Either be a NULL pointer or a pointer to a
character array. The character array must be at
least L_tmpnam characters long.

If s is not NULL, the newly created temporary
file name is stored into s.

Result A pointer to an internal static object that the calling program can
modify.

Host Control API Reference
Functions

Using Palm OS Emulator 171

HostTraceClose

Purpose Closes the connection to the external trace reporting tool.

Prototype void HostTraceClose(void);

Parameters None.

Result None.

HostTraceInit

Purpose Initiates a connection to the external trace reporting tool.

Prototype void HostTraceInit(void);

Parameters None.

NOTE: The tracing functions are used in conjunction with an
external trace reporting tool. You can call these functions to send
information to the external tool in real time.

Result None.

Host Control API Reference
Functions

172 Using Palm OS Emulator

HostTraceOutputB

Purpose Outputs a buffer of data, in hex dump format, to the external trace
reporting tool.

Prototype void HostTraceOutputB(unsigned short moduleId,
const void* buffer,
unsigned long len/*size_t*/);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

buffer A pointer to a buffer of raw data.

len The number of bytes of data in the buffer.

Result None.

HostTraceOutputT

Purpose Outputs a text string to the external trace reporting tool.

Prototype void HostTraceOutputT(unsigned short moduleId,
const char* fmt, …);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

Host Control API Reference
Functions

Using Palm OS Emulator 173

fmt A format string, as used in standard C-library
calls such as printf. The format string has the
following form:

% flags width type

... The list of variables to be formatted for output.

Table 8.2 shows the flag types that you can use in the format
specification for the tracing output functions.

Table 8.3 shows the output types that you can use in the format
specification for the tracing output functions.

Table 8.2 Trace function format specification flags

Flag Description

- Left-justified output.

+ Always display the sign symbol.

space Display a space when the value is positive, rather than
a '+' symbol.

Alternate form specifier.

Table 8.3 Trace function format specification types

Flag Description

% Displays the '%' character.

s Displays a null-terminated string value.

c Displays a character value.

ld Displays an Int32 value.

lu Displays a UInt32 value.

lx or lX Displays a UInt32 value in hexadecimal.

hd Displays an Int16 value.

hu Displays a UInt16 value.

hx or hX Displays an Int16 or UInt16 value i hexadecimal.

Host Control API Reference
Functions

174 Using Palm OS Emulator

Result None.

HostTraceOutputTL

Purpose Outputs a text string, followed by a newline, to the external trace
reporting tool. This function performs the same operation as the
HostTraceOutputT function, and adds the newline character.

Prototype voidHostTraceOutputTL(unsigned short moduleId,
const char* fmt, …);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf. For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

... The list of variables to be formatted for output.

Result None.

Host Control API Reference
Functions

Using Palm OS Emulator 175

HostTraceOutputVT

Purpose Outputs a text string to the external trace reporting tool.

Prototype void HostTraceOutputVT(unsigned short moduleId,
const char* fmt, va_list vargs);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf. For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

vargs A structure containing the variable argument
list. This is the same kind of variable argument
list used for standard C-library functions such
as vprintf.

Result None.

Host Control API Reference
Functions

176 Using Palm OS Emulator

HostTraceOutputVTL

Purpose Outputs a text string, followed by a newline, to the external trace
reporting tool. This function performs the same operation as the
HostTraceOutputVT function, and adds the newline character.

Prototype void HostTraceOutputVTL(unsigned short moduleId,
const char* fmt, va_list vargs);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf. For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

vargs A structure containing the variable argument
list. This is the same kind of variable argument
list used for standard C-library functions such
as vprintf.

Result None.

HostTruncate

Purpose Extends or truncates the file associated with the file handle to the
length specified by the size.

Prototype long HostTruncate(const char* filename, long
filesize);

Parameters filename The name of the file.

Host Control API Reference
Reference Summary

Using Palm OS Emulator 177

filesize The size of the file.

Result Returns the value 0 if the file is successfully changed, or returns -1 if
there was an error.

HostUTime

Purpose Sets the modification time for a file.

Prototype long HostUTime (const char* filename,
HostUTimeType* buffer);

Parameters filename The filename of the file.

buffer The stored time values.

Result Returns 0 if the file-modification time was successfully changed, or
returns -1 if there was an error.

Reference Summary
The tables in this section summarize the host control API functions.

Host Control Database Functions
Table 8.4 Host Control Database Functions

Function Description

HostExportFile Copies a database from the handheld to the
desktop computer.

HostImportFile Copies a database from the desktop computer
to the handheld, and stores it on the specified
card number. The database name on the
handheld is the name stored in the file.

Host Control API Reference
Reference Summary

178 Using Palm OS Emulator

Host Control Directory Handler Functions

Host Control Environment Functions

HostImportFileWithID Copies a database from the desktop computer to
the handheld, stores it on the specified card
number, and returns the local ID of the installed
database.

HostSaveScreen Saves the LCD frame buffer to a file.

Table 8.4 Host Control Database Functions (continued)

Function Description

Table 8.5 Host Control Directory Handler Functions

Function Description

HostCloseDir Closes a directory.

HostMkDir Makes a directory.

HostOpenDir Opens a directory.

HostReadDir Reads a directory.

HostRmDir Removes a directory.

Table 8.6 Host Control Environment Functions

Function Description

HostGestalt Currently does nothing except to return an
“invalid selector” error.

HostGetHostID Retrieves the ID of the debugging host. Palm OS
Emulator always returns the value
hostIDPalmOSEmulator.

HostGetHostPlatform Retrieves the host platform ID.

HostGetHostVersion Returns the version number of the debugging
host.

Host Control API Reference
Reference Summary

Using Palm OS Emulator 179

Host Control File Chooser Support Functions

Host Control Gremlin Functions

HostIsCallingTrap Returns a Boolean indicating whether the
specified function selector is implemented on
the debugging host.

HostIsSelectorImplemented Returns a Boolean indicating whether the
specified function selector is implemented on
the debugging host.

Table 8.6 Host Control Environment Functions (continued)

Function Description

Table 8.7 Host Control File Chooser Support Functions

Function Description

HostGetDirectory Gets a directory, in support of the operating
system file chooser dialog box.

HostGetFile Gets a file, in support of the operating system
file chooser dialog box.

HostPutFile Writes a file, in support of the operating system
file chooser dialog box.

Table 8.8 Host Control Gremlin Functions

Function Description

HostGremlinCounter Returns the current count for the currently
running gremlin.

HostGremlinIsRunning Returns a Boolean value indicating whether a
gremlin is currently running.

HostGremlinLimit Returns the limit value of the currently running
gremlin.

Host Control API Reference
Reference Summary

180 Using Palm OS Emulator

Host Control Debugging Functions

Host Control Logging Functions

Host Control Preference Functions

HostGremlinNew Creates a new gremlin.

HostGremlinNumber Returns the gremlin number of the currently
running gremlin.

Table 8.8 Host Control Gremlin Functions (continued)

Function Description

Table 8.9 Host Control Debugging Functions

Function Description

HostDbgSetDataBreak Sets a breakpoint for Emulator to enter an
external debugger to display a message if
the specified address range is accessed.

HostDbgClearDataBreak Clears all data breakpoints that have been
set by the HostDbgSetDataBreak
function.

Table 8.10 Host Control Logging Functions

Function Description

HostLogFile Returns a reference to the file that Palm OS
Emulator is using to log information.

HostSetLogFileSize Modifies the size of the logging file.

Table 8.11 Host Control Preference Functions

Function Description

HostGetPreference Retrieves the value of a preference.

HostSetPreference Sets a new value for a preference.

Host Control API Reference
Reference Summary

Using Palm OS Emulator 181

Host Control Profiling Functions

Host Control RPC Functions

Table 8.12 Host Control Profiling Functions

Function Description

HostProfileCleanup Releases the memory used for profiling and
disables profiling.

HostProfileDetailFn Profiles the function that contains the specified
address.

HostProfileDump Writes the current profiling information to the
named file.

HostProfileGetCycles Returns the current running CPU cycle count.

HostProfileInit Initializes and enables profiling in the
debugging host.

HostProfileStart Turns profiling on.

HostProfileStop Turns profiling off.

Table 8.13 Host Control RPC Functions

Function Description

HostSessionClose Closes the current emulation session

HostSessionCreate Creates a new emulation session.

HostSessionOpen Opens a previously saved emulation session.

HostSessionQuit Asks Palm OS Emulator to quit.

HostSessionSave Saves a session to a file with a specified name.

HostSignalResume Resumes Palm OS Emulator after it has halted
to wait for external scripts to handle a signal.

HostSignalSend Sends a signal to external scripts.

HostSignalWait Waits for Palm OS Emulator to send a signal.

Host Control API Reference
Reference Summary

182 Using Palm OS Emulator

Host Control Standard C Library Functions
Table 8.14 Host Control Standard C Library Functions

Function Description

HostErrNo Returns the error number from the most recent
host control API operation.

HostFClose Closes a file on the desktop computer. Returns 0
if the operation was successful, and a non-zero
value if not.

HostFEOF Returns 0 if the specified file is at its end, and a
non-zero value otherwise.

HostFError Returns the error code from the most recent
operation on the specified file. Returns 0 if no
errors have occurred on the file.

HostFFlush Flushes the buffer for the specified file.

HostFGetC Returns the character at the current position in
the specified file. Returns EOF to indicate an
error.

HostFGetPos Retrieves the current position in the specified
file. Returns 0 if the operation was successful,
and a non-zero value if not.

HostFGetS Retrieves a character string from the selected
file and returns a pointer to that string. Returns
NULL to indicate an error.

HostFOpen Opens a file on the desktop computer and
returns a HostFILE pointer for that file.
Returns NULL to indicate an error.

HostFPrintF Writes a formatted string to a file, and returns
the number of characters written.

HostFPutC Writes a character to the specified file, and
returns the character written. Returns EOF to
indicate an error.

Host Control API Reference
Reference Summary

Using Palm OS Emulator 183

HostFPutS Writes a string to the specified file, and returns
a non-negative value to indicate success.

HostFRead Reads a number of items from the file into a
buffer. Returns the number of items that were
actually read.

HostFree Frees memory on the desktop computer.

HostFReopen Associates a file stream with a different file.

HostFScanF Scans a file for formatted input.

HostFSeek Moves the file pointer to the specified position,
and returns 0 to indicate success.

HostFSetPos Sets the position indicator of the file, and
returns 0 to indicate success.

HostFTell Retrieves the current position of the specified
file. Returns -1 to indicate an error.

HostFWrite Writes data to a file, and returns the actual
number of items written.

HostGetEnv Retrieves the value of an environment variable.

HostMalloc Allocates a memory block on the debugging
host, and returns a pointer to the allocated
memory. Returns NULL if there is not enough
memory available.

HostRealloc Reallocates space for the specified memory
block.

HostRemove Deletes a file.

HostRename Renames a file.

HostTmpFile Returns the temporary file used by the
debugging host.

HostTmpNam Creates a unique temporary file name.

Table 8.14 Host Control Standard C Library Functions

Function Description

Host Control API Reference
Reference Summary

184 Using Palm OS Emulator

Host Control Time Functions
Table 8.15 Host Control Time Functions

Function Description

HostAscTime Returns a character string representation of the
time.

HostClock Returns an elapsed time.

HostCTime Converts calendar time to a text representation.

HostGMTime Returns time structure representation of the time
expressed as Universal Time Coordinated
(UTC). UTC was formerly Greenwich Mean
Time (GMT).

HostLocalTime Returns time structure representation of the time
expressed as local time.

HostMkTime Alters the parameter values to represent an
equivalent encoded local time, but with the
values of all members within their normal
ranges.

HostStrFTime Generates formatted text, under the control of
the format parameter and the values stored in
the time structure parameter.

HostTime Returns the current calendar time.

HostUTime Sets the modification time for a file.

Host Control API Reference
Reference Summary

Using Palm OS Emulator 185

Host Control Tracing Functions
Table 8.16 Host Control Tracing Functions

Function Description

HostTraceClose Must be called when done logging trace
information.

HostTraceInit Must be called before logging any trace
information.

HostTraceOutputT Outputs text to the trace log using printf-style
formatting.

HostTraceOutputTL Outputs text to the trace log using printf-style
formatting, and appends a newline character to
the text.

HostTraceOutputVT Outputs text to the trace log using vprintf-style
formatting.

HostTraceOutputVTL Outputs text to the trace log using vprintf-style
formatting, and appends a newline character to
the text.

HostTraceOutputB Outputs a buffer of raw data to the trace log in
hex dump format.

Host Control API Reference
Reference Summary

186 Using Palm OS Emulator

Using Palm OS Emulator 187

9
Debugger Protocol
Reference
This chapter describes the debugger protocol, which provides an
interface between a debugging target and a debugging host. For
example, the Palm Debugger and the Palm OS® Emulator use this
protocol to exchange commands and information.

IMPORTANT: This chapter describes the version of the Palm
Debugger protocol that shipped on the Metrowerks CodeWarrior
for the Palm™ Operating System, Version 6 CD-ROM. If you are
using a different version, the features in your version might be
different from the features described here.

This chapter covers the following topics:

• “About the Palm Debugger Protocol” on page 187

• “Constants” on page 190

• “Data Structures” on page 192

• “Debugger Protocol Commands” on page 194

• “Summary of Debugger Protocol Packets” on page 214

About the Palm Debugger Protocol
The Palm debugger protocol allows a debugging target, which is
usually a handheld ROM or an emulator program such as the Palm
OS Emulator, to exchange information with a debugging host, such as
the Palm Debugger or the Metrowerks debugger.

The debugger protocol involves sending packets between the host
and the target. When the user of the host debugging program enters
a command, the host converts that command into one or more
command packets and sends each packet to the debugging target. In

Debugger Protocol Reference
About the Palm Debugger Protocol

188 Using Palm OS Emulator

most cases, the target subsequently responds by sending a packet
back to the host.

Packets
There are three packet types used in the debugger protocol:

• The debugging host sends command request packets to the
debugging target.

• The debugging target sends command response packets back to
the host.

• Either the host or the target can send a message packet to the
other.

Although the typical flow of packets involves the host sending a
request and the target sending back a response, although there are a
some exceptions, as follows:

• The host can send some requests to the target that do not
result in a response packet being returned. For example,
when the host sends the Continue command packet to tell
the target to continue execution, the target does not send
back a response packet.

• The target can send response packets to the host without
receiving a request packet. For example, whenever the
debugging target encounters an exception, it sends a State
response packet to the host.

Packet Structure
Each packet consists of a packet header, a variable-length packet
body, and a packet footer, as shown in Figure 9.1.

Debugger Protocol Reference
About the Palm Debugger Protocol

Using Palm OS Emulator 189

Figure 9.1 Packet Structure

The Packet Header

The packet header starts with the 24-bit key value $BEEFFD and
includes header information and a checksum of the header itself.

The Packet Body

The packet body contains the command byte, a filler byte, and
between 0 and 270 bytes of data. See “_SysPktBodyCommon” on
page 192 for a description of the structure used to represent the two
byte body header (the command and filler bytes), and see Table 9.1
for a list of the command constants.

The Packet Footer

The packet footer contains a 16-bit CRC of the header and body.
Note that the CRC computation does not include the footer.

$BE

$EF

$ED

destination ID

source ID

type

transaction ID

header checksum

body size

command ID

filler

command data
.
.
.
.

CRC

Header
(10 bytes)

Body
(2 to 272 bytes)

Footer
(2 bytes)

Debugger
Packet

Debugger Protocol Reference
Constants

190 Using Palm OS Emulator

Packet Communications
The communications protocol between the host and target is very
simple: the host sends a request packet to the target and waits for a
time-out or for a response from the target.

If a response is not detected within the time-out period, the host
does not retry the request. When a response does not come back
before timing out, it usually indicates that one of two things is
happening:

• the debugging target is busy executing code and has not
encountered an exception

• the state of the debugging target has degenerated so badly
that it cannot respond

The host has the option of displaying a message to the user to
inform him or her that the debugging target is not responding.

Constants
This section describes the constants and structure types that are
used with the packets for various commands.

Packet Constants
#define sysPktMaxMemChunk256
#define sysPktMaxBodySize(sysPktMaxMemChunk+16)
#define sysPktMaxNameLen32

sysPktMaxMemChunk
The maximum number of bytes that can be
read by the Read Memory command or written
by the Write Memory command.

sysPktMaxBodySize
The maximum number of bytes in a request or
response packet.

sysPktMaxNameLen
The maximum length of a function name.

Debugger Protocol Reference
Constants

Using Palm OS Emulator 191

State Constants
#define sysPktStateRspInstWords15

sysPktStateRespInstWords
The number of remote code words sent in the
response packet for the State command.

Breakpoint Constants
#define dbgNormalBreakpoints5
#define dbgTempBPIndexdbNormalBreakpoints
#define dbgTotalBreakpoints(dbgTempBPIndex+1)

dbgNormalBreakpoints
The number of normal breakpoints available in
the debugging target.

dbgTempBPIndex
The index in the breakpoints array of the
temporary breakpoint.

dbgTotalBreakpoints
The total number of breakpoints in the
breakpoints array, including the normal
breakpoints and the temporary breakpoint.

Command Constants
Each command is represented by a single byte constant. The upper
bit of each request command is clear, and the upper bit of each
response command is set. Table 9.1 shows the command constants.

Table 9.1 Debugger protocol command constants

Command Request constant Response constant

Continue sysPktContinueCmd N/A

Find sysPktFindCmd sysPktFindRsp

Get Breakpoints sysPktGetBreakpointsCmd sysPktGetBreakpointsRsp

Get Routine
Name

sysPktGetRtnNameCmd sysPktGetRtnNameRsp

Debugger Protocol Reference
Data Structures

192 Using Palm OS Emulator

Data Structures
This section describes the data structures used with the request and
response packets for the debugger protocol commands.

_SysPktBodyCommon
The _SysPktBodyCommon macro defines the fields common to
every request and response packet.

#define _sysPktBodyCommon \
Byte command; \

Get Trap Breaks sysPktGetTrapBreaksCmd sysPktGetTrapBreaksRsp

Get Trap
Conditionals

sysPktGetTrapConditionalsCmd sysPktGetTrapConditionalsRsp

Message sysPktRemoteMsgCmd N/A

Read Memory sysPktReadMemCmd sysPktReadMemRsp

Read Registers sysPktReadRegsCmd sysPktReadRegsRsp

RPC sysPktRPCCmd sysPktRPCRsp

Set Breakpoints sysPktSetBreakpointsCmd sysPktSetBreakpointsRsp

Set Trap Breaks sysPktSetTrapBreaksCmd sysPktSetTrapBreaksRsp

Set Trap
Conditionals

sysPktSetTrapConditionalsCmd sysPktSetTrapConditionalsRsp

State sysPktStateCmd sysPktStateRsp

Toggle
Debugger
Breaks

sysPktDbgBreakToggleCmd sysPktDbgBreakToggleRsp

Write Memory sysPktWriteMemCmd sysPktWriteMemRsp

Write Registers sysPktWriteRegsCmd sysPktWriteRegsRsp

Table 9.1 Debugger protocol command constants (continued)

Command Request constant Response constant

Debugger Protocol Reference
Data Structures

Using Palm OS Emulator 193

Byte _filler;

Fields

command The 1-byte command value for the packet.

_filler Included for alignment only. Not used.

SysPktBodyType
The SysPktBodyType represents a command packet that is sent to
or received from the debugging target.

typedef struct SysPktBodyType
{

_SysPktBodyCommon;
Byte data[sysPktMaxBodySize-2];

} SysPktBodyType;

Fields

_SysPktBodyCommon
The command header for the packet.

data The packet data.

SysPktRPCParamType
The SysPktRPCParamType is used to send a parameter in a remote
procedure call. See the RPC command for more information.

typedef struct SysPktRPCParamInfo
{

Byte byRef;
Byte size;
Word data[?];

} SysPktRPCParamType;

Fields

byRef Set to 1 if the parameter is passed by reference.

size The number of bytes in the data array. This
must be an even number.

data The parameter data.

Debugger Protocol Reference
Debugger Protocol Commands

194 Using Palm OS Emulator

BreakpointType
The BreakpointType structure is used to represent the status of a
single breakpoint on the debugging target.

typedef struct BreakpointType
{

Ptr addr;
Boolean enabled;
Boolean installed;

} BreakpointType;

Fields

addr The address of the breakpoint. If this is set to 0,
the breakpoint is not in use.

enabled A Boolean value. This is TRUE if the breakpoint
is currently enabled, and FALSE if not.

installed Included for correct alignment only. Not used.

Debugger Protocol Commands
This section describes each command that you can send to the
debugging target, including a description of the response packet
that the target sends back.

Continue

Purpose Tells the debugging target to continue execution.

Comments This command usually gets sent when the user specifies the Go
command. Once the debugging target continues execution, the
debugger is not reentered until a breakpoint or other exception is
encountered.

NOTE: The debugging target does not send a response to this
command.

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 195

Commands The Continue request command is defined as follows:
#define sysPktContinueCmd 0x07

Request Packet typedef struct SysPktContinueCmdType
{

_sysPktBodyCommon;
M68KresgType regs;
Boolean stepSpy;
DWord ssAddr;
DWord ssCount;
DWord ssCheckSum;

}SysPktContinueCmdType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> regs The new values for the debugging target
processor registers. The new register values are
stored in sequential order: D0 to D7, followed
by A0 to A6.

—> stepSpy A Boolean value. If this is TRUE, the debugging
target continues execution until the value that
starts at the specified step-spy address changes.
If this is FALSE, the debugging target continue
execution until a breakpoint or other exception
is encountered.

—> ssAddr The step-spy starting address. An exception is
generated when the value starting at this
address, for ssCount bytes, changes on the
debugging target.

—> ssCount The number of bytes in the “spy” value. This
value must be set to 4.

—> ssCheckSum This value is not used.

Debugger Protocol Reference
Debugger Protocol Commands

196 Using Palm OS Emulator

Find

Purpose Searches for data in memory on the debugging target.

Comments .

Commands The Find request and response commands are defined as follows:

#define sysPktFindCmd0x13
#define sysPktFindRsp0x93

Request Packet typedef struct SysPktFindCmdType
{

_sysPktBodyCommon;
DWord firstAddr;
DWord lastAddr;
Word numBytes
Boolean caseInsensitive;
Byte searchData[?];

}SysPktFindCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> firstAddr The starting address of the memory range on
the debugging target to search for the data.

—> lastAddr The ending address of the memory range on
the debugging target to search for the data.

—> numBytes The number of bytes of data in the search
string.

—> searchData The search string. The length of this array is
defined by the value of the numBytes field.

Response
Packet

typedef struct SysPktFindRspType
{

_sysPktBodyCommon;

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 197

DWord addr;
Boolean found;

}SysPktFindRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— addr The address of the data string in memory on
the debugging target.

<— found A Boolean value. If this is TRUE, the search
string was found on the debugging target, and
the value of addr is valid. If this is FALSE, the
search string was not found, and the value of
addr is not valid.

Get Breakpoints

Purpose Retrieves the current breakpoint settings from the debugging target.

Comments The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint.

If a breakpoint is currently disabled on the debugging target, the
enabled field for that breakpoint is set to 0.

If a breakpoint address is set to 0, the breakpoint is not currently in
use.

The dbgTotalBreakpoints constant is described in “Breakpoint
Constants” on page 191.

Commands The Get Breakpoints command request and response
commands are defined as follows:

#define sysPktGetBreakpointsCmd0x0B
#define sysPktGetBreakpointsRsp0x8B

Debugger Protocol Reference
Debugger Protocol Commands

198 Using Palm OS Emulator

Request Packet typedef struct SysPktGetBreakpointsCmdType
{
_sysPktBodyCommon;

}SysPktGetBreakpointsCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetBreakpointsRspType
{
_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktGetBreakpointsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Get Routine Name

Purpose Determines the name, starting address, and ending address of the
function that contains the specified address.

Comments The name of each function is embedded into the code when it gets
compiled. The debugging target can scan forward and backward in
the code to determine the start and end addresses for each function.

Commands The Get Routine Name command request and response
commands are defined as follows:

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 199

#define sysPktGetRtnNameCmd0x04
#define sysPktGetRtnNameRsp0x84

Request Packet typedef struct SysPktRtnNameCmdType
{

_sysPktBodyCommon;
void* address

}SysPktRtnNameCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> address The code address whose function name you
want to discover.

Response
Packet

typedef struct SysPktRtnNameRspType
{

_sysPktBodyCommon;
void* address;
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];

}SysPktRtnNameRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— address The code address whose function name was
determined. This is the same address that was
specified in the request packet.

<— startAddr The starting address in target memory of the
function that includes the address.

Debugger Protocol Reference
Debugger Protocol Commands

200 Using Palm OS Emulator

<— endAddr The ending address in target memory of the
function that includes the address. If a function
name could not be found, this is the last
address that was scanned.

<— name The name of the function that includes the
address. This is a null-terminated string. If a
function name could not be found, this is the
null string.

Get Trap Breaks

Purpose Retrieves the settings for the trap breaks on the debugging target.

Comments Trap breaks are used to force the debugging target to enter the
debugger when a particular system trap is called.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap break is a single word value that contains the system trap
number.

Commands The Get Trap Breaks request and response commands are
defined as follows:

#define sysPktGetTrapBreaksCmd0x10
#define sysPktGetTrapBreaksRsp0x90

Request Packet typedef struct SysPktGetTrapBreaksCmdType
{

_sysPktBodyCommon;
}SysPktGetTrapBreaksCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 201

Response
Packet

typedef struct SysPktGetTrapBreaksRspType
{

_sysPktBodyCommon;
Word trapBP[dbgTotalTrapBreaks];

}SysPktGetTrapBreaksRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— trapBP An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
break is not used.

Get Trap Conditionals

Purpose Retrieves the trap conditionals values from the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Get Trap Conditionals request and response commands
are defined as follows:

#define sysPktGetTrapConditionsCmd0x14
#define sysPktGetTrapConditionsRsp0x94

Request Packet typedef struct SysPktGetTrapConditionsCmdType
{

_sysPktBodyCommon;
}SysPktGetTrapConditionsCmdType

Debugger Protocol Reference
Debugger Protocol Commands

202 Using Palm OS Emulator

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetTrapConditionsRspType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktGetTrapConditionsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used.

Message

Purpose Sends a message to display on the debugging target.

Comments Application can compile debugger messages into their code by
calling the DbgMessage function.

The debugging target does not send back a response packet for this
command.

Commands The Message request command is defined as follows:

#define sysPktRemoteMsgCmd0x7F

Request Packet typedef struct SysPktRemoteMsgCmdType
{

_sysPktBodyCommon;
Byte text[1];

}SysPktRemoteMsgCmdType;

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 203

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> text The message text.

Read Memory

Purpose Reads memory values from the debugging target.

Comments This command can read up to sysPktMaxMemChunk bytes of
memory. The actual size of the response packet depends on the
number of bytes requested in the request packet.

Commands The Read Memory command request and response commands are
defined as follows:

#define sysPktReadMemCmd0x01
#define sysPktReadMemRsp0x81

Request Packet typedef struct SysPktReadMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;

}SysPktReadMemCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> address The address in target memory from which to
read values.

—> numBytes The number of bytes to read from target
memory.

Response
Packet

typedef struct SysPktReadMemRspType
{

Debugger Protocol Reference
Debugger Protocol Commands

204 Using Palm OS Emulator

_sysPktBodyCommon;
//Byte data[?];

}SysPktReadMemRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— data The returned data. The number of bytes in this
field matches the numBytes value in the
request packet.

Read Registers

Purpose Retrieves the value of each of the target processor registers.

Comments The eight data registers are stored in the response packet body
sequentially, from D0 to D7. The seven address registers are stored
in the response packet body sequentially, from A0 to A6.

Commands The Read Registers command request and response commands
are defined as follows:

#define sysPktReadRegsCmd0x05
#define sysPktReadRegsRsp0x85

Request Packet typedef struct SysPktReadRegsCmdType
{

_sysPktBodyCommon;
}SysPktReadRegsCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktReadRegsRspType

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 205

{
_sysPktBodyCommon;
M68KRegsType reg;

}SysPktReadRegsRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

RPC

Purpose Sends a remote procedure call to the debugging target.

Commands The RPC request and response commands are defined as follows:

#define sysPktRPCCmd0x0A
#define sysPktRPCRsp0x8A

Request Packet typedef struct SysPktRPCType
{

_sysPktBodyCommon;
Word trapWord;
DWord resultD0;
DWord resultD0;
Word numParams;
SysPktRPCParamTypeparam[?];

}

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> trapWord The system trap to call.

—> resultD0 The result from the D0 register.

—> resultA0 The result from the A0 register.

Debugger Protocol Reference
Debugger Protocol Commands

206 Using Palm OS Emulator

—> numParams The number of RPC parameter structures in the
param array that follows.

—> param An array of RPC parameter structures, as
described in SysPktRPCParamType. Note that
the parameters should appear in the reverse
order of how they appear in the function
declaration. For example, if you have the
following function declaration:

Err DmDeleteDatabase (UInt16
cardNo, LocalID dbID)

you should a SysPktRPCParamType record to
SysPktRPCType for dbID first and a
SysPktRPCParamType record for cardNo
second.

Set Breakpoints

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint. If a breakpoint is currently disabled on the debugging
target, the enabled field for that breakpoint is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

#define sysPktSetBreakpointsCmd0x0C
#define sysPktSetBreakpointsRsp0x8C

Request Packet typedef struct SysPktSetBreakpointsCmdType
{
_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktSetBreakpointsCmdType

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 207

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Response
Packet

typedef struct SysPktSetBreakpointsRspType
{
_sysPktBodyCommon;

}SysPktSetBreakpointsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Set Trap Breaks

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break. If a trap break is currently disabled on the debugging target,
the value of that break is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

#define sysPktSetTrapBreaksCmd0x0C
#define sysPktSetTrapBreaksRsp0x8C

Request Packet typedef struct SysPktSetTrapBreakssCmdType
{
_sysPktBodyCommon;

Debugger Protocol Reference
Debugger Protocol Commands

208 Using Palm OS Emulator

Word trapBP[dbgTotalBreakpoints];
}SysPktSetTrapBreaksCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> trapBP An array with an entry for each of the possible
trap breaks. If the value of an entry is 0, the
break is not currently in use.

Response
Packet

typedef struct SysPktSetTrapBreaksRspType
{
_sysPktBodyCommon;

}SysPktSetTrapBreaksRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Set Trap Conditionals

Purpose Sets the trap conditionals values for the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Set Trap Conditionals request and response commands
are defined as follows:

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 209

#define sysPktSetTrapConditionsCmd0x15
#define sysPktSetTrapConditionsRsp0x95

Request Packet typedef struct SysPktSetTrapConditionsCmdType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktSetTrapConditionsCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used.

Response
Packet

typedef struct SysPktSetTrapConditionsRspType
{

_sysPktBodyCommon;
}SysPktSetTrapConditionsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

State

Purpose Sent by the host program to query the current state of the debugging
target, and sent by the target whenever it encounters an exception
and enters the debugger.

Comments The debugging target sends the State response packet whenever it
enters the debugger for any reason, including a breakpoint, a bus
error, a single step, or any other reason.

Commands The State request and response commands are defined as follows:

Debugger Protocol Reference
Debugger Protocol Commands

210 Using Palm OS Emulator

#define sysPktStateCmd0x00
#define sysPktStateRsp0x80

Request Packet typedef struct SysPktStateCmdType
{

_sysPktBodyCommon;
} SysPktStateCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktStateRspType
{

_sysPktBodyCommon;
Boolean resetted;
Word exceptionId;
M68KregsType reg;
Word inst[sysPktStateRspInstWords];
BreakpointTypebp[dbgTotalBreakpoints];
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];
Byte trapTableRev;

} SysPktStateRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— resetted A Boolean value. This is TRUE if the debugging
target has just been reset.

<— exceptionId The ID of the exception that caused the
debugger to be entered.

<— reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 211

<— inst A buffer of the instructions starting at the
current program counter on the debugging
target.

<— bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

<— startAddr The starting address of the function that
generated the exception.

<— endAddr The ending address of the function that
generated the exception.

<— name The name of the function that generated the
exception. This is a null-terminated string. If no
name can be found, this is the null string.

<— trapTableRevThe revision number of the trap table on the
debugging target. You can use this to determine
when the trap table cache on the host computer
is invalid.

Toggle Debugger Breaks

Purpose Enables or disables breakpoints that have been compiled into the
code.

Comments A breakpoint that has been compiled into the code is a special TRAP
instruction that is generated when source code includes calls to the
DbgBreak and DbgSrcBreak functions.

Sending this command toggles the debugging target between
enabling and disabling these breakpoints.

Commands The Toggle Debugger Breaks request and response commands
are defined as follows:

#define sysPktDbgBreakToggleCmd0x0D
#define sysPktDbgBreakToggleRsp0x8D

Request Packet typedef struct SysPktDbgBreakToggleCmdType
{

Debugger Protocol Reference
Debugger Protocol Commands

212 Using Palm OS Emulator

_sysPktBodyCommon;
}SysPktDbgBreakToggleCmdType;

Fields

—>_sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktDbgBreakToggleRspType
{

_sysPktBodyCommon;
Boolean newState

}SysPktDbgBreakToggleRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— newState A Boolean value. If this is set to TRUE, the new
state has been set to enable breakpoints that
were compiled into the code. If this is set to
FALSE, the new state has been set to disable
breakpoints that were compiled into the code.

Write Memory

Purpose Writes memory values to the debugging target.

Comments This command can write up to sysPktMaxMemChunk bytes of
memory. The actual size of the request packet depends on the
number of bytes that you want to write.

Commands The Write Memory command request and response commands are
defined as follows:

#define sysPktWriteMemCmd0x02
#define sysPktWriteMemRsp0x82

Request Packet typedef struct SysPktWriteMemCmdType

Debugger Protocol Reference
Debugger Protocol Commands

Using Palm OS Emulator 213

{
_sysPktBodyCommon;
void* address;
Word numBytes;
//Byte data[?]

}SysPktWriteMemCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> address The address in target memory to which the
values are written.

--> numBytes The number of bytes to write.

--> data The bytes to write into target memory. The size
of this field is defined by the numBytes
parameter.

Response
Packet

typedef struct SysPktWriteMemRspType
{

_sysPktBodyCommon;
}SysPktWriteMemRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Write Registers

Purpose Sets the value of each of the target processor registers.

Comments The eight data registers are stored in the request packet body
sequentially, from D0 to D7. The seven address registers are stored
in the request packet body sequentially, from A0 to A6.

Debugger Protocol Reference
Summary of Debugger Protocol Packets

214 Using Palm OS Emulator

Commands The Write Registers command request and response
commands are defined as follows:

#define sysPktWriteRegsCmd0x06
#define sysPktWriteRegsRsp0x86

Request Packet typedef struct SysPktWriteRegsCmdType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktWriteRegsCmdType;

Fields

-->_sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> reg The new register values in sequential order: D0
to D7, followed by A0 to A6.

Response
Packet

typedef struct SysPktWriteRegsRspType
{

_sysPktBodyCommon;
}SysPktWriteRegsRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Summary of Debugger Protocol Packets
Table 9.2 summarizes the command packets that you can use with
the debugger protocol.

Debugger Protocol Reference
Summary of Debugger Protocol Packets

Using Palm OS Emulator 215

Table 9.2 Debugger protocol command packets

Command Description

Continue Tells the debugging target to continue execution.

Find Searches for data in memory on the debugging
target.

Get Breakpoints Retrieves the current breakpoint settings from the
debugging target.

Get Routine Name Determines the name, starting address, and ending
address of the function that contains the specified
address.

Get Trap Breaks Retrieves the settings for the trap breaks on the
debugging target.

Get Trap Conditionals Retrieves the trap conditionals values from the
debugging target.

Message Sends a message to display on the debugging target.

Read Memory Reads memory values from the debugging target.

Read Registers Retrieves the value of each of the target processor
registers.

RPC Sends a remote procedure call to the debugging
target.

Set Breakpoints Sets breakpoints on the debugging target.

Set Trap Breaks Sets breakpoints on the debugging target.

Set Trap Conditionals Sets the trap conditionals values for the debugging
target.

State Sent by the host program to query the current state of
the debugging target, and sent by the target
whenever it encounters an exception and enters the
debugger.

Toggle Debugger Breaks Enables or disables breakpoints that have been
compiled into the code.

Debugger Protocol Reference
Summary of Debugger Protocol Packets

216 Using Palm OS Emulator

Write Memory Writes memory values to the debugging target.

Write Registers Sets the value of each of the target processor
registers.

Table 9.2 Debugger protocol command packets (continued)

Command Description

Using Palm OS Emulator 217

A
Structure Access
Notifications
In general, your Palm OS application should not directly access the
fields of structures for windows, forms, and form objects. Palm OS
Emulator recognizes when structure access is valid, and will notify
you if your application attempts any prohibited structure access.

The PalmOSGlue library, which is described in Palm OS
Programmer’s API Reference, provides functions that you should use
in your application rather than using direct structure access.

Some versions of Palm OS have implemented an accessor trap
function which prevents any access of data structures. The
PalmOSGlue library checks for this accessor trap by checking for the
sysFtrNumAccessorTrapPresent feature:

FtrGet (sysFtrCreator, sysFtrNumAccessorTrapPresent, &value)

Palm OS Emulator allows structure access for the structures listed in
Table A.1, given that the accessor trap is not present. The Palm OS
structures listed in the table can be accessed for the conditions
described in the “Description” column.

Structure Access Notif ications

218 Using Palm OS Emulator

Table A.1 Palm OS Structure Access Notification Exceptions

Palm OS Structure Access
Allowed

Description

ControlType attr Read Always allowed, primarily for
PalmOSGlue functions
CtlGlueGetGraphics and
FrmGlueGetObjectUsable

ControlType attr Read/Write Always allowed, primarily for
PalmOSGlue functions
CtlGlueNewSliderConstrol and
CtlGlueSetLeftAnchor

ControlType bitmapID Read For graphic controls, always
allowed, primarily for PalmOSGlue
function CtlGlueGetGraphics

ControlType font Read/Write Always allowed, primarily for
PalmOSGlue functions
CtlGlueGetFont and
CtlGlueSetFont

ControlType
selectedbitmapID

Read For graphic controls, always
allowed, primarily for graphic
controls for PalmOSGlue function
CtlGlueGetGraphics

ControlType style Read Always allowed, primarily for
PalmOSGlue function
CtlGlueGetControlStyle

FieldType attr Read/Write Before Palm OS 3.3

FieldType lines Read Always allowed, primarily for
PalmOSGlue function
FldGlueGetLineInfo

FormBitmapType attr Read Always allowed, primarily for
PalmOSGlue function
FrmGlueGetObjectUsable

Structure Access Notif ications

Using Palm OS Emulator 219

FormBitmapType attr Read/Write Before Palm OS 3.2. The function
FrmHideObject changes the
usable attribute automatically after
Palm OS 3.2, but before Palm OS 3.2,
your application needed to change
the usable attribute directly.

FormGadgetType (all
fields)

All Access No restrictions. Generally, your
gadget code should use the correct
accessor functions like any other
form object. However, in a gadget
callback function, your code needs to
have direct access to the gadget’s
structure fields. Emulator makes no
distinction for whether the access in
the callback function, so the structure
access is not restricted. Your
application should still access
gadgets using the correct accessor
functions whenever possible.

FormLabelType attr Read Always allowed, primarily for
PalmOSGlue function
FrmGlueGetObjectUsable

FormLabelType font Read/Write Always allowed, primarily for
PalmOSGlue functions
FrmGlueGetLabelFont and
FrmGlueSetLabelFont

FormType
defaultButton

Read/Write Always allowed, primarily for
PalmOSGlue functions
FrmGlueGetDefaultButtonID
and
FrmGlueSetDefaultButtonID

Table A.1 Palm OS Structure Access Notification Exceptions

Palm OS Structure Access
Allowed

Description

Structure Access Notif ications

220 Using Palm OS Emulator

FormType handler Read Always allowed, primarily for
PalmOSGlue function
FrmGlueGetEventHandler

FormType helpRscID Read/Write Always allowed, primarily for
PalmOSGlue functions
FrmGlueGetHelpID and
FrmGlueSetHelpID

FormType menuRscID Read Always allowed, primarily for
PalmOSGlue function
FrmGlueGetMenuBarID

ListType attr Read/Write Always allowed, primarily for
PalmOSGlue functions
FrmGlueGetObjectUsable and
LstGlueSetIncrementalSearch

ListType font Read/Write Always allowed, primarily for
PalmOSGlue function
LstGlueGetFont and
LstGlueSetFont

ListType itemsText Read Always allowed, primarily for
PalmOSGlue function
LstGlueGetItemsText

ListType topItem Read Before Palm OS 4.0. For Palm OS 4.0
and later, use LstGetTopItem. For
compatibility, use PalmOSGlue
function LstGlueGetTopItem.

TableType attr Read/Write Before Palm OS 4.0. For Palm OS 4.0
and later, use TblSetSelection.
For compatibility, use PalmOSGlue
function TblGlueSetSelection.

Table A.1 Palm OS Structure Access Notification Exceptions

Palm OS Structure Access
Allowed

Description

Structure Access Notif ications

Using Palm OS Emulator 221

TableType
currentColumn

Read/Write Before Palm OS 4.0. For Palm OS 4.0
and later, use TblSetSelection.
For compatibility, use PalmOSGlue
function TblGlueSetSelection.

TableType currentRow Read/Write Before Palm OS 4.0. For Palm OS 4.0
and later, use TblSetSelection.
For compatibility, use PalmOSGlue
function TblGlueSetSelection.

TableType numColumns Read Before Palm OS 4.0. For Palm OS 4.0
and later, use
TblGetNumberofColumns or
TblSetSelection. For
compatibility, use PalmOSGlue
functions
TblGlueGetNumberofColumns or
TblGlueSetSelection.

TableType numRows Read Before Palm OS 4.0. For Palm OS 4.0
and later, use TblSetSelection.
For compatibility, use PalmOSGlue
function TblGlueSetSelection.

TableType topRow Read Before Palm OS 4.0. For Palm OS 4.0
and later, use TblGetTopRow. For
compatibility, use PalmOSGlue
function TblGlueGetTopRow.

ScrollBarType attr Read Always allowed, primarily for
PalmOSGlue function
FrmGlueGetObjectUsable

Table A.1 Palm OS Structure Access Notification Exceptions

Palm OS Structure Access
Allowed

Description

Structure Access Notif ications

222 Using Palm OS Emulator

ScrollBarType attr Read/Write Before Palm OS 3.5. The functions
FrmShowObject and
FrmHideObject did not show and
hide scrollbars before Palm OS 3.5,
so your application needed to
change the usable attribute
directly.

WindowType bitmapP Read Before Palm OS 3.5. Do not directly
access the memory used for the
display buffer. Use the functions
WinDrawBitmap or
WinPaintBitmap, or use an
offscreen window with
WinGetBitmap and BmpGetBits.

NOTE: This field did not exist
before Palm OS 3.5. It replaced
the field gDeviceP which was
defined before Palm OS 3.5.

WindowType
displayWidthV20

Read Before Palm OS 2.0. Use the function
WinGetDisplayExtent instead.

WindowType
displayHeightV20

Read Before Palm OS 2.0 Use the function
WinGetDisplayExtent instead.

Table A.1 Palm OS Structure Access Notification Exceptions

Palm OS Structure Access
Allowed

Description

Structure Access Notif ications

Using Palm OS Emulator 223

WindowType
displayAddrV20

Read Before Palm OS 3.5. Do not directly
access the memory used for the
display buffer. Use the functions
WinDrawBitmap or
WinPaintBitmap, or use an
offscreen window with
WinGetBitmap and BmpGetBits.

WindowType frameType Read/Write Always allowed, primarily for Palm
OSGlue functions
WinGlueGetFrameType and
WinGlueSetFrameType

Table A.1 Palm OS Structure Access Notification Exceptions

Palm OS Structure Access
Allowed

Description

Structure Access Notif ications

224 Using Palm OS Emulator

Using Palm OS Emulator 225

B
Unsupported Traps
Palm OS Emulator will warn you if your application uses any of the
unsupported traps listed in this appendix.

Unsupported Traps
System Use Only Traps

226 Using Palm OS Emulator

System Use Only Traps
Table B.1 System Use Only Traps

AlmAlarmCallback
AlmCancelAll
AlmDisplayAlarm
AlmEnableNotification
AlmInit
AlmTimeChange
DmInit
EvtDequeueKeyEvent
EvtGetSysEvent
EvtInitialize
EvtSetKeyQueuePtr
EvtSetPenQueuePtr
EvtSysInit
ExgInit
FrmAddSpaceForObject
FtrInit
GrfFreeGrfInit
InsPtCheckBlink
InsPtInitialize
MemCardFormat
MemHandleFlags
MemHandleOwner
MemHandleResetLock
MemHeapFreeByOwnerID
MemHeapInit
MemInit
MemInitHeapTable
MemKernelInit
MemPtrFlags
MemPtrOwner
MemPtrResetLock
MemStoreInit
MemStoreSetInfo

PenClose
PenGetRawPen
PenOpen
PenRawToScreen
PenScreenToRaw
ScrCompressScanLine
ScrCopyRectangle
ScrDeCompressScanLine
ScrDrawChars
ScrDrawNotify
ScrLineRoutine
ScrRectangleRoutine
ScrScreenInfo
ScrSendUpdateArea
SlkProcessRPC
SlkSysPktDefaultResponse
SndInit
SysBatteryDialog
SysColdBoot
SysDoze
SysInit
SysLaunchConsole
SysNewOwnerID
SysReserved10Trap1
SysReserved31Trap1
SysSemaphoreSet
SysUILaunch
SysWantEvent
TimInit
UIInitialize
UIReset
WinAddWindow
WinRemoveWindow

Unsupported Traps
Internal Use Only Traps

Using Palm OS Emulator 227

Internal Use Only Traps
Table B.2 Internal Use Only Traps

AttnAllowClose
AttnDoEmergencySpecialEffects
AttnEffectOfEvent
AttnEnableNotification
AttnHandleEvent
AttnIndicatorAllow
AttnIndicatorAllowed
AttnIndicatorCheckBlink
AttnIndicatorGetBlinkPattern
AttnIndicatorSetBlinkPattern

HwrDebuggerExit
HwrDebugSelect
HwrDisplayDoze
HwrDisplayDrawBootScreen
HwrDisplayInit
HwrDisplayPalette
HwrDisplaySleep
HwrDisplayWake
HwrDockSignals
HwrDockStatus

AttnIndicatorTicksTillNextBlink
AttnInitialize
BltCopyRectangle
BltDrawChars
BltFindIndexes
BltGetPixel
BltLineRoutine
BltPaintPixel
BltPaintPixels
BltRectangleRoutine

HwrDoze
HwrFlashWrite
HwrGetRAMMapping
HwrGetSilkscreenID
HwrIdentifyFeatures
HwrInterruptsInit
HwrIRQ1Handler
HwrIRQ2Handler
HwrIRQ3Handler
HwrIRQ4Handler

BltRoundedRectangle
BltRoundedRectangleFill
DayHandleEvent
DbgControl
DbgSerDrvClose
DbgSerDrvControl
DbgSerDrvOpen
DbgSerDrvReadChar
DbgSerDrvStatus
DbgSerDrvWriteChar

HwrIRQ5Handler
HwrIRQ6Handler
HwrLCDBaseAddrV33
HwrLCDContrastV33
HwrLCDGetDepthV33
HwrModelInitStage2
HwrModelInitStage3
HwrModelSpecificInit
HwrNVPrefGet
HwrNVPrefSet

FlashInit
FntPrvGetFontList
HwrBacklightV33
HwrBattery
HwrBatteryLevel
HwrCalcDynamicHeapSize
HwrCursorV33
HwrCustom
HwrDebuggerEnter

HwrPluggedIn
HwrPostDebugInit
HwrPreDebugInit
HwrResetNMI
HwrResetPWM
HwrSetCPUDutyCycle
HwrSetSystemClock
HwrSleep
HwrSoundOff

Unsupported Traps
Kernel Traps

228 Using Palm OS Emulator

Kernel Traps
These traps are not implemented because 68K applications do not
have access to the kernel API functions.

HwrSoundOn
HwrTimerInit
HwrWake
KeyBootKeys
KeyHandleInterrupt
KeyInit
MemHeapPtr
MemStoreSearch
OEMDispatch2
PalmPrivate3
ScrCompress
ScrDecompress
ScrGetColortable
ScrGetGrayPat
ScrPalette
ScrScreenInit
ScrScreenLock

ScrScreenUnlock
ScrUpdateScreenBitmap
SndInterruptSmfIrregardless
SndPlaySmfIrregardless
SndPlaySmfResourceIrregardless
SysFatalAlertInit
SysKernelClockTick
SysNotifyBroadcastFromInterrupt
SysNotifyInit
SysReserved30Trap1
SysReserved30Trap2
SysUnimplemented
TimGetAlarm
TimSetAlarmUIColorInit
WinGetFirstWindow
WinMoveWindowAddr
WinPrvInitCanvas
WinScreenInit

Table B.2 Internal Use Only Traps

Table B.3 Kernel Traps

SysEvGroupCreate
SysEvGroupRead
SysEvGroupSignal
SysEvGroupWait
SysKernelInfo
SysMailboxCreate
SysMailboxDelete
SysMailboxFlush
SysMailboxSend
SysMailboxWait
SysResSemaphoreCreate
SysResSemaphoreDelete

SysResSemaphoreRelease
SysResSemaphoreReserve
SysSemaphoreCreate
SysSemaphoreDelete
SysSemaphoreSignal
SysSemaphoreWait
SysTaskCreate
SysTaskDelete
SysTaskIDSysTaskResume
SysTaskSetTermProc
SysTaskSuspend

SysTaskSwitching
SysTaskTrigger
SysTaskUserInfoPtr
SysTaskWait
SysTaskWaitClr
SysTaskWake
SysTimerCreate
SysTimerDelete
SysTimerRead
SysTimerWrite
SysTranslateKernelErr

Unsupported Traps
Obsolete Traps

Using Palm OS Emulator 229

Obsolete Traps
These traps are not implemented because they are obsolete Palm OS
1.0 traps (or an esoteric obsolete trap such as WiCmdV32).

Unimplemented Traps
These traps were never implemented in Palm OS (although they
appear in CoreTraps.h), but they are listed for completeness.

Unimplemented NOP Traps
These traps should not be called by applications. Some third-party
applications call these traps and it is safer to treat them as NOPs for
backwards compatibility.

Table B.4 Obsolete Traps

FplAdd
FplAToF
FplBase10Info
FplDiv

FplFloatToLong
FplFloatToULong
FplFToA
FplLongToFloat

FplMul
FplSub
WiCmdV32

Table B.5 Unimplemented Traps

ClipboardCheckIfItemExist
CtlValidatePointer
FrmSetCategoryTrigger
FrmSetLabel
MenuEraseMenu
SysUICleanup

WinDrawArc
WinDrawPolygon
WinEraseArc
WinErasePolygon
WinFillArc

WinFillPolygon
WinInvertArc
WinInvertPolygon
WinPaintArc
WinPaintPolygon

Table B.6 Unimplemented NOP Traps

FplFree
FplInit
HwrTimerSleep
HwrTimerWake
PenSleep
PenWake

SerReceiveISP
SrmSleep
SrmWake
SysDisableInts
SysRestoreStatus
TimHandleInterrupt

TimSleep
TimWake
WinDisableWindow
WinEnableWindow
WinInitializeWindow

Unsupported Traps
Unimplemented Rare Traps

230 Using Palm OS Emulator

Unimplemented Rare Traps
These are traps that applications would not use.
Table B.7 Unimplemented Rare Traps

ConGetS
ConPutS
DayDrawDays
DayDrawDaySelector
DbgCommSettings
DbgGetMessage
DlkDispatchRequest
DlkStartServer
DmMoveOpenDBContext
DmOpenDBWithLocale
FlashCompress

FlashErase

FlashProgram
IntlGetRoutineAddress
MemGetRomNVParams
MemNVParams
OEMDispatch
ResLoadForm
SerPrimeWakeupHandler
SerReceiveWindowClose
SerReceiveWindowOpen
SerSetWakeupHandler
SlkSetSocketListener

SrmOpenBackground
SrmPrimeWakeupHandler
SrmReceiveWindowClose
SrmReceiveWindowOpen
SrmSetWakeupHandler
SysNotifyBroadcast
SysNotifyBroadcastDeferred
SysNotifyDatabaseAdded
SysNotifyDatabaseRemoved
SysSetTrapAddress

Using Palm OS Emulator 231

Index

A
application error

definition 95

B
bound emulator 115

legal restrictions 116
limitations 115

breakpoint constants 191
breakpoint dialog box 82
BreakpointType structure 194

C
C library functions 182
card options dialog box 53
command constants 191
command line options

for Palm OS Emulator 29
command packets

Continue 194
Find 196
Get Breakpoints 197
Get Routine Name 198
Get Trap Breaks 200
Get Trap Conditionals 201
Message 202
Read Memory 203
Read Registers 204
RPC 205
Set Breakpoints 206
Set Trap Breaks 207
Set Trap Conditionals 208
State 209
Toggle Debugger Breaks 211
Write Memory 212
Write Registers 213

command request packets 188
command response packets 188
commands

debugger protocol 194
constants

breakpoint 191
debugger protocol command 191
host control API 120
host control error 120
host control ID 124

host control platform 124
host function selector 124
host signal platform 125
packet 190
state 191

Continue 194
creating Palm demos 115

D
data types

host control API 125
database functions 177
debug options 65
debug options dialog box 66
debug reset 54
debugger

connecting with Palm OS Emulator 84
debugger protocol

breakpoint constants 191
command constants 191
command request packets 188
command response packets 188
commands 194
Continue command 194
Find command 196
Get Breakpoints command 197
Get Routine Name command 198
Get Trap Breaks command 200
Get Trap Conditionals command 201
host and target 187
Message command 202
message packets 188
packet communications 188, 190
packet constants 190
packet structure 188
packet summary 214
packet types 188
Read Memory command 203
Read Registers command 204
RPC command 205
Set Breakpoints command 206
Set Trap Breaks command 207
Set Trap Conditional command 208
State command 209
state constants 191
Toggle Debugger Breaks command 211
Write Memory command 212

Index

232 Using Palm OS Emulator

Write Registers command 213
debugger protocol API 187
debugging

with Palm OS Emulator 17
debugging host 187
debugging target 187
developer forum 18
developer zone 20
directory handler functions 178
double scale option 43
downloading emulator 20
downloading ROM images 22
downloading skins 42, 108

E
emulation sessions 38
emulator 15, 19, 29, 55, 65, 91, 107

about 15
and HotSync application 48
and RPC 116
and serial communications 47
bound program 115
breakpoints dialog box 82
card options dialog box 53
changing appearance 42
command line options 29
connecting with external debugger 85
connecting with gdb debugger 84
connecting with Palm Debugger 84
control keys 62
debug options 65
debug options dialog box 66
debugging features 18
debugging with 17
demo version 115
device options 39
display 56
downloading 20
downloading ROM images 22
entering data in 62
error conditions 95
error dialog box 93
error handling options dialog box 94
error messages 95
expansion card 52

extended features 17
gremlin horde dialog box 77
gremlin logging options 80
gremlin status dialog box 79
gremlins and logging 79
handheld options 39
hardware button use 61
hostfs options dialog box 53
installing applications 45
latest information 18
list of files included 21
loading a ROM file on Macintosh 24
loading a ROM file on Unix 25
loading a ROM file on Windows 23
logging options 69
logging options dialog box 70
memory card 52
memory checking 95
menus 56
Netlib calls 44
new configuration dialog box 24
new session dialog box 27, 38
preference dialog box 43
preference file 45
preference file location 146
profiling 87
profiling with 22
properties dialog box 43
RAM selection 40
reset dialog box 54
running 29
runtime requirements 19
saving and restoring sessions 41
saving session 45
saving the screen 41
serial port 44
session configuration 38
session configuration dialog box 37
session features 38
session file 36
setting breakpoints 81
skin selection 39
skins dialog box 42
snapshots 79
sounds 45
source level debugging 83
speeding up synchronization operations 51

Index

Using Palm OS Emulator 233

standard device features 17
starting execution 35
startup dialog box 23, 36
transferring ROM images 23
user name 45
using gremlins 74
using ROM images 19, 26
version 15
version numbers 21
web site 18

environment functions 178
error handling options dialog box 94
error messages 94

in Palm OS Emulator 95
expansion card emulation 52
Expansion Manager 52
external debugger

connecting with Palm OS Emulator 85

F
file chooser support functions 179
Find 196
forum, developers 18
functions

host control 131
HostAscTime 132
HostClock 132
HostCloseDir 133
HostCTime 133
HostDbgSetDataBreak 134
HostErrNo 134
HostExportFile 135
HostFClose 135
HostFEOF 136
HostFError 136
HostFFlush 136
HostFGetC 137
HostFGetPos 137
HostFGetS 137
HostFOpen 138
HostFPrintF 138
HostFPutC 138
HostFPutS 139
HostFRead 139
HostFree 139
HostFReopen 140

HostFScanf 140
HostFSeek 141
HostFSetPos 141
HostFTell 142
HostFWrite 142
HostGestalt 142
HostGetDirectory 143
HostGetEnv 143
HostGetFile 143
HostGetFileAttr 144
HostGetHostID 144
HostGetHostPlatform 145
HostGetHostVersion 145
HostGetPreference 146
HostGMTime 147
HostGremlinCounter 147
HostGremlinIsRunning 147
HostGremlinLimit 148
HostGremlinNew 148
HostGremlinNumber 148
HostImportFile 149
HostImportFileWithID 149
HostIsCallingTrap 150
HostIsSelectorImplemented 150
HostLocalTime 151
HostLogFile 151
HostMalloc 151
HostMkDir 152
HostMkTime 152
HostOpenDir 152
HostProfileCleanup 153
HostProfileDetailFn 153
HostProfileDump 154
HostProfileGetCycles 154
HostProfileInit 155
HostProfileStart 156
HostProfileStop 157
HostPutFile 157
HostReadDir 158
HostRealloc 158
HostRemove 158, 159
HostRmDir 159
HostSaveScreen 159
HostSessionClose 160
HostSessionCreate 160
HostSessionOpen 161
HostSessionQuit 161

Index

234 Using Palm OS Emulator

HostSessionSave 162
HostSetFileAttr 163
HostSetLogFileSize 163
HostSetPreference 164
HostSignalResume 164, 165
HostSignalWait 166
HostSlotHasCard 167
HostSlotMax 167
HostSlotRoot 168
HostStat 168
HostStrFTime 169
HostTime 170
HostTmpFile 170
HostTmpNam 170
HostTraceClose 171
HostTraceInit 171
HostTraceOutputB 172
HostTraceOutputT 172
HostTraceOutputTL 174
HostTraceOutputVT 175
HostTraceOutputVTL 176
HostTruncate 176
HostUtime 177

G
gdb debugger

connecting with Palm OS Emulator 84
generic skin 42, 107
Get Breakpoints 197
Get Routine Name 198
Get Trap Breaks 200
Get Trap Conditionals 201
gremlin functions 179
gremlin horde dialog box 77
gremlin status dialog box 79
gremlins 74

and logging 79
snapshots 79

H
hard reset 54
hardware buttons

in Palm OS Emulator 61
host control

constants 120

data types 125
database functions 177
directory handler functions 178
environment functions 178
file chooser support functions 179
function summary 177
functions 131
gremlin functions 179
host error constants 120
host function selector constants 124
host ID constants 124
host platform constants 124
host signal constants 125
HostAscTime function 132
HostBool data type 126
HostClock data type 126
HostClock function 132
HostCloseDir function 133
HostCTime function 133
HostDbgSetDataBreak function 134
HostDIR data type 126
HostDirEnt data type 126
HostErrNo function 134
HostExportFile function 135
HostFClose function 135
HostFEOF function 136
HostFError function 136
HostFFlush function 136
HostFGetC function 137
HostFGetPos function 137
HostFGetS function 137
HostFILE data type 127
HostFOpen function 138
HostFPrintf function 138
HostFPutS function 139
HostFRead function 139
HostFree function 139
HostFReopen function 140
HostFScanF function 140
HostFSeek function 141
HostFSetPos function 141
HostFTell function 142
HostFWrite function 142
HostGestalt function 142
HostGetDirectory function 143
HostGetEnv function 143
HostGetFile function 143

Index

Using Palm OS Emulator 235

HostGetFileAttr function 144
HostGetHostID function 144
HostGetHostPlatform function 145
HostGetHostVersion function 145
HostGetPreference function 146
HostGMTime function 147
HostGremlinCounter function 147
HostGremlinInfo data type 127
HostGremlinIsRunning function 147
HostGremlinLimit function 148
HostGremlinNew function 148
HostGremlinNumber function 148
HostID data type 128
HostImportFile function 149
HostImportFileWithID function 149
HostIsCallingTrap function 150
HostIsSelectorImplemented function 150
HostLocalTime function 151
HostLogFile function 151
HostMalloc function 151
HostMkDir function 152
HostMkTime function 152
HostOpenDir function 152
HostPlatform data type 128
HostProfileCleanup function 153
HostProfileDetailFn function 153
HostProfileDump function 154
HostProfileGetCycles function 154
HostProfileInit function 155
HostProfileStart function 156
HostProfileStop function 157
HostPutC function 138
HostPutFile function 157
HostReadDir function 158
HostRealloc function 158
HostRemove function 158, 159
HostRmDir function 159
HostSaveScreen function 159
HostSessionClose function 160
HostSessionCreate function 160
HostSessionOpen function 161
HostSessionQuit function 161
HostSessionSave function 162
HostSetFileAttr function 163
HostSetLogFileSize function 163
HostSetPreference function 164
HostSignal data type 128
HostSignalResume function 164, 165

HostSignalWait function 166
HostSize data type 128
HostSlotHasCard function 167
HostSlotMax function 167
HostSlotRoot function 168
HostStat data type 128
HostStat function 168
HostStrFTime function 169
HostTime data type 130
HostTime function 170
HostTm data type 130
HostTmpFile function 170
HostTmpNam function 170
HostTraceClose function 171
HostTraceInit function 171
HostTraceOutputB function 172
HostTraceOutputT function 172
HostTraceOutputTL function 174
HostTraceOutputVT function 175
HostTraceOutputVTL function 176
HostTruncate function 176
HostUTime data type 131
HostUTime function 177
logging functions 180
preference functions 180
profiling functions 181
reference summary 177
RPC functions 181
standard C library functions 182
time functions 184
tracing functions 185

host control API 119
host error constants 120
host function selector constants 124
host ID constants 124
host platform constants 124
host signal constants 125
HostAscTime 132
HostBool data type 126
HostClock 132
HostClock data type 126
HostCloseDir 133
HostCTime 133
HostDbgSetDataBreak 134
HostDIR data type 126
HostDirEnt data type 126

Index

236 Using Palm OS Emulator

HostErrNo 134
HostExportFile 135
HostFClose 135
HostFEOF 136
HostFError 136
HostFFlush 136
HostFGetC 137
HostFGetPos 137
HostFGetS 137
HostFILE data type 127
HostFOpen 138
HostFPrintF 138
HostFPutC 138
HostFPutS 139
HostFRead 139
HostFree 139
HostFReopen 140
HostFS 52
hostfs options dialog box 53
HostFScanF 140
HostFSeek 141
HostFSetPos 141
HostFTell 142
HostFWrite 142
HostGestalt 142
HostGetDirectory 143
HostGetEnv 143
HostGetFile 143
HostGetFileAttr 144
HostGetHostID 144
HostGetHostPlatform 145
HostGetHostVersion 145
HostGetPreference 146
HostGMTime 147
HostGremlinCounter 147
HostGremlinInfo data type 127
HostGremlinIsRunning 147
HostGremlinLimit 148
HostGremlinNew 148
HostGremlinNumber 148
HostID data type 128
HostImportFile 149
HostImportFileWithID 149

HostIsCallingTrap 150
HostIsSelectorImplemented 150
HostLocalTime 151
HostLogFile 151
HostMalloc 151
HostMkDir 152
HostMkTime 152
HostOpenDir 152
HostPlatform data type 128
HostProfileCleanup 153
HostProfileDetailFn 153
HostProfileDUmp 154
HostProfileGetCycles 154
HostProfileInit 155
HostProfileStart 156
HostProfileStop 157
HostPutFile 157
HostReadDir 158
HostRealloc 158
HostRemove 158, 159
HostRmDir 159
HostSaveScreen 159
HostSessionClose 160
HostSessionCreate 160
HostSessionOpen 161
HostSessionQuit 161
HostSessionSave 162
HostSetFileAttr 163
HostSetLogFileSize 163
HostSetPreference 164
HostSignal data type 128
HostSignalResume 164, 165
HostSignalWait 166
HostSize data type 128
HostSlotHasCard 167
HostSlotMax 167
HostSlotRoot 168
HostStat 168
HostStat data type 128
HostStrFTime 169
HostTime 170
HostTime data type 130
HostTm data type 130

Index

Using Palm OS Emulator 237

HostTmpFile 170
HostTmpNam 170
HostTraceClose 171
HostTraceInit 171
HostTraceOutputB 172
HostTraceOutputT 172
HostTraceOutputTL 174
HostTraceOutputVT 175
HostTraceOutputVTL 176
HostTruncate 176
HostUTime 177
HostUTime data type 131
HotSync application

and Palm OS Emulator 48
emulating on Windows 48
emulating with null modem cable 50

I
installing applications

in Palm OS Emulator 45

L
logging functions 180
logging options 69
logging options dialog box 70, 80
logging while running gremlins 79

M
memory access exception

definition 95
memory card emulation 52
Message 202
message packets 188

N
Network HotSync 49

P
packet communications 190
packet constants 190
packet types 188
Palm OS Emulator 15, 19, 29, 55, 65, 91, 107
POSE

see emulator 15
Pose

see emulator 15
Preference dialog box 43
preference file names 146
preference functions 180
processor exception

definition 95
profiling

with Palm OS Emulator 22
profiling code 87
profiling functions 181
Properties dialog box 43
PSF file

see emulator session file 36

R
Read Memory 203
Read Registers 204
reference summary

host control functions 177
reset dialog box 54
Resource Pavilion web site 22
ROM images 19

downloading 22
loading into the emulator 23
transferring 23
using 26

RPC 205
RPC calls 116
RPC functions 181
RPC packets 116
running emulator 29

S
saving and restoring sessions 41
saving the screen 41
screen shots 41
serial communications

and Palm OS Emulator 47
session features 38
Set Breakpoints 206
Set Trap Breaks 207
Set Trap Conditionals 208

Index

238 Using Palm OS Emulator

setting debug breakpoints 81
skins

double scale option 43
downloading 42, 108
emulator dialog box 42
generic 42, 107
white background option 43

skins dialog box
other options 42

snapshots 79
soft reset 54
source level debugging 83
standard C library functions 182
State 209
state constants 191
synchronizing

with Palm OS Emulator 51
SysPktBodyCommon structure 192
SysPktBodyType structure 193
SysPktRPCParamType structure 193

T
time data type 130
time functions 184

Toggle Debugger Breaks 211
tracing functions 185
transferring ROM images 23

U
using ROM images 26

V
versions

of Palm OS Emulator 21
Virtual File System Manager 52

W
warning messages 94
web page

Network HotSync 49
web site

developer forum 18
developer zone 20
emulator 18, 42, 108
Resource Pavilion 22

white background option 43
Write Memory 212
Write Registers 213

	Using Palm OS® Emulator
	Table of Contents
	About This Document
	Who Should Read This Book
	What This Book Contains
	Palm OS SDK Documentation
	Additional Resources
	What’s New for Palm OS Emulator 3.5
	What’s New for Palm OS Emulator 3.4

	Understanding Palm OS Emulator Concepts
	About Palm OS Emulator
	Feature Overview
	Standard Handheld Features
	Extended Emulation Features
	Debugging Features

	Getting Help with Palm OS Emulator

	Installing Palm OS Emulator
	Prerequisites
	Palm OS Emulator Runtime Requirements
	Using ROM Images

	Downloading Palm OS Emulator
	Versions of Palm OS Emulator
	Profile Versions

	Loading ROM Images
	Downloading a ROM Image Obtained from Palm
	Transferring a ROM Image from a Handheld
	Transferring a ROM File in Windows
	Transferring a ROM File on a Macintosh
	Transferring a ROM File on a Unix System
	Transferring a ROM Image over a USB Connection

	Using a ROM Image in Palm OS Emulator
	Dragging and Dropping a ROM Image

	Running Palm OS Emulator
	Starting Palm OS Emulator
	Command Line Options
	Palm OS Emulator Start Up

	Using Emulation Sessions
	Configuring a New Session
	The Difference between the New Menu Item and the Open Menu Item
	Dragging and Dropping Files
	Saving and Restoring Session State
	Saving the Screen

	Changing Emulator’s Appearance
	Other Options on the Skins Dialog Box

	Modifying the Runtime Environment
	Palm OS Emulator Properties
	Preferences Files

	Installing Applications
	Using the Install Menu
	Using the Autoload Facility

	Using Serial Communication
	Using the HotSync Application
	Performing a Network Hotsync Operation with Palm OS Emulator on Windows
	Performing a HotSync Operation with a Null Modem Cable

	Emulating Expansion Memory
	Emulating a Handheld Reset

	Palm OS Emulator User Interface Summary
	Palm OS Emulator Display
	Using the Menus
	Using the Hardware Buttons
	Entering Data
	Using Control Keys

	Testing Applications Using Palm OS Emulator
	Testing Software
	Debug Options
	Logging Options

	Using Gremlins to Automate Testing
	Gremlin Characteristics
	Gremlin Horde Settings
	Running a Gremlin Horde
	Stepping and Stopping Gremlins
	Gremlin Snapshots
	Logging while Gremlins Are Running
	Using Gremlin Events

	Setting Breakpoints
	Setting the Data Breakpoint
	Setting Conditional Breakpoints

	Debugging with External Debug Tools
	Connecting Emulator with Palm Debugger
	Connecting Emulator with the GDB Debugger
	Connecting the Emulator with External Debuggers

	Tracing Your Code
	Using Reporter to View Realtime Traces

	Profiling Your Code

	Palm OS Emulator Error Handling
	About Errors and Warnings
	Detecting an Error Condition
	Error Condition Types
	Error Messages

	Palm OS Emulator Advanced Topics
	Using Emulator Skin Files
	How Skin Files Work
	Installing Additional Skin Files
	Modifying or Creating Skin Files

	Creating Demonstration Versions of Palm OS Emulator
	Bound Emulation Session Limitations

	Sending Commands to Palm OS Emulator
	RPC2 Packet Format

	Host Control API Reference
	About the Host Control API
	Constants
	Host Error Constants
	Host Function Selector Constants
	Host ID Constants
	Host Platform Constants
	Host Signal Constants

	Data Types
	HostBoolType
	HostClockType
	HostDirEntType
	HostDIRType
	HostFILEType
	HostGremlinInfoType
	HostIDType
	HostPlatformType
	HostSignalType
	HostSizeType
	HostStatType
	HostTimeType
	HostTmType
	HostUTimeType

	Functions
	HostAscTime
	HostClock
	HostCloseDir
	HostCTime
	New HostDbgClearDataBreak
	New HostDbgSetDataBreak
	HostErrNo
	HostExportFile
	HostFClose
	HostFEOF
	HostFError
	HostFFlush
	HostFGetC
	HostFGetPos
	HostFGetS
	HostFOpen
	HostFPrintF
	HostFPutC
	HostFPutS
	HostFRead
	HostFree
	HostFReopen
	HostFScanF
	HostFSeek
	HostFSetPos
	HostFTell
	HostFWrite
	HostGestalt
	HostGetDirectory
	HostGetEnv
	HostGetFile
	HostGetFileAttr
	HostGetHostID
	HostGetHostPlatform
	HostGetHostVersion
	HostGetPreference
	HostGMTime
	HostGremlinCounter
	HostGremlinIsRunning
	HostGremlinLimit
	HostGremlinNew
	HostGremlinNumber
	HostImportFile
	New HostImportFileWithID
	HostIsCallingTrap
	HostIsSelectorImplemented
	HostLocalTime
	HostLogFile
	HostMalloc
	HostMkDir
	HostMkTime
	HostOpenDir
	HostProfileCleanup
	HostProfileDetailFn
	HostProfileDump
	HostProfileGetCycles
	HostProfileInit
	HostProfileStart
	HostProfileStop
	HostPutFile
	HostReadDir
	HostRealloc
	HostRemove
	HostRename
	HostRmDir
	HostSaveScreen
	HostSessionClose
	HostSessionCreate
	HostSessionOpen
	HostSessionQuit
	New HostSessionSave
	HostSetFileAttr
	HostSetLogFileSize
	HostSetPreference
	HostSignalResume
	HostSignalSend
	HostSignalWait
	HostSlotHasCard
	HostSlotMax
	HostSlotRoot
	HostStat
	HostStrFTime
	HostTime
	HostTmpFile
	HostTmpNam
	HostTraceClose
	HostTraceInit
	HostTraceOutputB
	HostTraceOutputT
	HostTraceOutputTL
	HostTraceOutputVT
	HostTraceOutputVTL
	HostTruncate
	HostUTime

	Reference Summary
	Host Control Database Functions
	Host Control Directory Handler Functions
	Host Control Environment Functions
	Host Control File Chooser Support Functions
	Host Control Gremlin Functions
	Host Control Debugging Functions
	Host Control Logging Functions
	Host Control Preference Functions
	Host Control Profiling Functions
	Host Control RPC Functions
	Host Control Standard C Library Functions
	Host Control Time Functions
	Host Control Tracing Functions

	Debugger Protocol Reference
	About the Palm Debugger Protocol
	Packets
	Packet Structure
	Packet Communications

	Constants
	Packet Constants
	State Constants
	Breakpoint Constants
	Command Constants

	Data Structures
	_SysPktBodyCommon
	SysPktBodyType
	SysPktRPCParamType
	BreakpointType

	Debugger Protocol Commands
	Continue
	Find
	Get Breakpoints
	Get Routine Name
	Get Trap Breaks
	Get Trap Conditionals
	Message
	Read Memory
	Read Registers
	RPC
	Set Breakpoints
	Set Trap Breaks
	Set Trap Conditionals
	State
	Toggle Debugger Breaks
	Write Memory
	Write Registers

	Summary of Debugger Protocol Packets

	Structure Access Notifications
	Unsupported Traps
	System Use Only Traps
	Internal Use Only Traps
	Kernel Traps
	Obsolete Traps
	Unimplemented Traps
	Unimplemented NOP Traps
	Unimplemented Rare Traps

	Index

