
Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

MM

Copilot: Design and Development
Greg Hewgill
greg@hewgill.com

y goal was to emulate, with no documentation except the
Motorola Dragonball reference manual, what was then
known as the Pilot. The Pilot was a handheld device with a

68000-based CPU, an LCD touch screen, 512 KB of ROM, a serial port,
and various hardware buttons. I was going to try to emulate it in soft-
ware. To tell this story properly, I must start at the beginning.

Discovering the Pilot
My first encounter with a Pilot was when I saw one on a coworker’s desk
sometime in June 1996. He described it to me as “just like a Newton,
only smaller.” He showed me the basics of the Graffiti writing style and
handed me the Pilot and the Graffiti reference card. I was hooked. A few
days later I purchased a Pilot 5000 from a local retailer and, being a soft-
ware developer, I started looking for information on how to write my
own programs for this little gem.

I was encouraged by the amount of developer information on the
Pilot web site, but I couldn’t find the Windows tools. All I found was the
Metrowerks CodeWarrior for Pilot package, which only ran on the
Macintosh. I didn’t have a Macintosh. So I bought the only thing that
worked with Windows: The Conduit Software Development Kit for
Windows. (I still haven’t tried to actually write a conduit.)

Fortunately, there was at least one other developer out there who
had a Pilot but no Macintosh. Darrin Massena (darrin@massena.com)
had a Web site (www.massena.com/darrin/pilot/) and wrote a piece of
software best described as a “discovery tool.” PilotHack is its name; it’s a
monitor for computers where operating systems are optional. PilotHack
shows you every single byte of the RAM and ROM in hex and ASCII. It
still resides on my Pilot today.

Darrin managed to put together some small Pilot applications using
Microsoft’s Visual C++ 4.0 Cross-Development Edition for Macintosh.
With a serious amount of tweaking, the compiler generated application
images that the Pilot loaded. He also put together PILA, the PILot As-
sembler. PILA ran on Windows and created Pilot application images
from 68000 assembly code.

Finally, Darrin wrote the article “Writing Pilot Applications Under
Windows,” which described what a state-of-the-art Windows SDK for
Pilot would look like. This SDK included an editor, a compiler, an as-
sembler, a resource editor, a linker, project management, a debugger, an
emulator, samples, OS header files, documentation, on-line help, and a
Windows-based IDE to integrate all the pieces together. Realizing that it
was not possible for a single developer to do all this, he put out a call to
other developers for support.

When I read Darrin’s list, I couldn’t help but be drawn toward the
emulator project. After all, I had some experience with emulators (I had
written an Apple][+ emulator in the past), I knew some 68000 assem-
bly language, and the potential hack value if the project was successful
was just too great to pass up.

The First Steps
The idea for Copilot was planted. Actually, it wasn’t called Copilot until
much later; its first name was Pilotsim. Before Pilotsim it didn’t have a
name, it was just a modified UAE.

The first order of business when writing an emulator is grab a copy
of the code you’re trying to execute. In the case of the Pilot, it was the
512 KB ROM that was the Pilot kernel, operating system, function li-
brary, and application suite. Darrin added a feature to PilotHack that let
me download an arbitrary 16 KB chunk of data via HotSync. By run-
ning this 32 times over the entire ROM space, I constructed an image of
the ROM on a PC. With the 512 KB PILOT.ROM file in hand, the next
step was to fetch the first machine instruction and start executing.

To execute code for a CPU other than the one you’re currently run-
ning on, you need a program called an emulator. In my case, the goal
was to execute Motorola 68000 CPU instructions on an Intel x86 based

computer. While it was possible to write my own 68000 emulator, surely
most of the work had already been done by somebody else.

It didn’t take much searching on the Internet to find UAE, the Un*x
Amiga Emulator. The Amiga uses the same 68000 family of CPUs in the
Pilot, so an emulator for the Amiga has a lot of code in common with
an emulator for the Pilot. I extracted the core CPU emulator from UAE,
removing all the support for the custom Amiga graphics chips and oth-
er hardware that wasn’t present on the Pilot. Bernd Schmidt, the author
of UAE, kindly let me use his 68000 core code in Copilot.

The MC68328 Dragonball CPU used in the Pilot has a very flexible
memory architecture. There are many configuration registers for fea-
tures such as 8-bit or 16-bit word size, memory bank addresses, and
write protect flags. Nearly all these features are set once during the pow-
er-on cycle and never change again. Instead of emulating the exact be-
havior of these features, Copilot knows about the proper memory con-
figuration of a Pilot and ignores the actual memory configuration pa-
rameters set by the ROM software.

Once past the initial startup code, the Pilot ROM starts to initialize
the various hardware elements. During one of these initialization rou-
tines, the ROM code waited for some kind of timeout to expire. At this
point, I didn’t know exactly what it was trying to initialize. Carefully
tracing the code showed that it was waiting in a loop for something ex-
ternal to happen. By looking up the register values in the Dragonball
reference manual, I found that it was waiting for one of the hardware
timers. Since my emulation simply ate the values programmed into the
timer registers without properly acting on them, the code was waiting
for something that would never happen.

Getting the timer to working was just one of many functions I stud-
ied in the Dragonball reference manual. This was a common pattern:

• Trace the code until it fails in some way (usually this involved
hanging while waiting for something to happen in the hardware).

• Find out which Dragonball registers are being accessed and which
part of the Dragonball they control.

• Study the Dragonball reference manual to find out what the ROM
code is trying to do and what the emulated hardware does to
properly respond to the ROM.

• Write code to emulate (as precisely as necessary) exactly what the
real hardware does when accessed in the same way.

Notice my comment “as precisely as necessary.” The Dragonball em-
ulation in Copilot is far from a complete Dragonball emulation. In gen-
eral, only those registers that are essential to the correct operation of the
Pilot ROM code are implemented. In some cases only one or two con-
trol bits out of a single register are implemented. For all unimplemented
Dragonball registers, there is a hard-coded breakpoint in the emulation
code. I used this during development to find out when the ROM code
accessed a register that I had not yet implemented. (Incidentally, this is
why Copilot stops with an Exception 03H when running a PalmOS 2.0
ROM on a pre-2.0 version of Copilot. PalmOS 2.0 accesses a couple of
new Dragonball registers to control the backlight, and these were not
implemented in earlier versions of Copilot. Exception 03H is a hard-
coded breakpoint exception on Intel CPUs.)

Up to this point, the only way to find out that the emulation code
was doing anything was to trace it, instruction by instruction, in a de-
bugger. There was no screen output at all. So the next task was grabbing
the Pilot screen memory out of the RAM area and copying it to a win-
dow on the Windows display. Copilot became a multithreaded program
at this point: the CPU emulation thread is compute-bound and does
not have time to check for an updated screen area. Another thread was
created to watch for updates to the screen area and copy them to the
display when it noticed the changed contents.

The Input Problem
Finally, after many hours of tracing, coding, debugging, reading Drag-
onball documentation, more tracing, and certainly some luck, the “Wel-
come to Pilot” screen appeared on my Windows desktop. The first visi-
ble evidence of success took shape. There was no turning back now.

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

Of course, my excitement quickly dampened when I realized that I
was still looking at the “Welcome to Pilot” screen. The next thing the
Pilot does is enter the stylus calibration routine. As it turned out, there
were a couple of problems. Due to a bug in the timer emulation, the
ROM code executed extremely slow and there was another execution
hang bug. With those problems out of the way, the stylus calibration
screen appeared.

But the stylus calibration presented a big problem. The emulator
had no idea how to accept input from the mouse. Sure, tapping on the
Pilot screen with the stylus inserts a PenDown event into the event
queue, but I wanted to know how it really happened. Since Copilot is a
hardware emulator, it just knows hardware registers and not event
queues. I wanted to know what really happens when you tap the stylus
on the touch sensitive screen.

There is no special register on the Dragonball for stylus-tap input. I
had no documentation on the Pilot hardware. The only reference I had
was the ROM code, but 512 KB is a lot of code when you’re looking at
individual instructions. Instead of reading the ROM code, I opted for a
more experimental approach.

Using PILA, I wrote a small assembly language program to run on
my real Pilot. This program hooked the CPU interrupt vectors and dis-
played information on the screen regarding which interrupt fired and
when. Since this code executed at interrupt time and minimized its in-
teraction with the rest of the system, it didn’t call the usual character
output routines. Besides, I wanted to display information on more in-
terrupt events than could fit on the screen in character mode. So these
interrupt hook routines displayed status on the screen using specific dot
patterns. To read them I literally counted pixels using a magnifying
glass. Using this technique I found out which interrupt the pen fired.

The interrupt was only half the problem. Finding out how to supply
the pen coordinates was an even tougher problem. After many more
hours of tracing and experimentation, I discovered the pen interface
uses the Serial Peripheral Interface Module (SPIM) of the Dragonball.
The X and Y coordinates were read one at a time: first a command byte
is output to the SPIM control register, then the pen coordinate is read
from the SPIM data register.

The elapsed time between seeing the stylus calibration screen for the
first time and being able to actually click on it was about a week and a
half. This was probably the largest single hurdle in the development of
Copilot. But what a reward. Once the mouse clicks were seen as pen
taps by the ROM software, the rest of the emulation worked. I was pag-
ing through the Preferences screens, switching applications, reading the
preloaded To Do items, and even writing Graffiti with the mouse. Since
Graffiti is simply pen movements in a certain area of the screen, there
was no additional effort needed in Copilot to support it.

This was a great moment in the history of Copilot. I knew it was all
downhill from that point. There was still a lot of work to do, including a
better debugger, serial port support, and hardware button support.

The Copilot Debugger
The debugger I used in Copilot up to that point was a very primitive
version of the debugger in UAE. It had problems disassembling certain
opcodes, no symbol support, no breakpoint support, and was unusable
for all but the simplest debugging tasks. Darrin Massena offered to write
a better debugger and he produced a very extensive debugger with
many Pilot-specific features.

In addition to standard debugger features such as breakpoints, sym-
bolic addressing (both input and output), and stack trace, the most im-
portant feature in Darrin’s debugger is the bp -na command. The
bp command sets a breakpoint at a specific address. This is great if you
know in advance where your code is loaded, but does not work for a
dynamically-loaded application. It’s not easy to discover exactly where
the application code resides. The -na options modify code in strate-
gic places inside the ROM to trigger some debugger code when a new
application starts. In this way, you simply execute your application and
the debugger breaks at your application’s first instruction.

Another feature of the new debugger is automatic symbol table
loading. Nearly every PalmOS application has debugging symbols em-
bedded in the application image. The symbols immediately follow the

last RTS instruction of each subroutine and consist of a length byte
(with the high bit set) followed by the name of the preceding subrou-
tine (I understand this is the same convention used in the Macintosh for
MacsBug). When a new application loads, the debugger automatically
locates the symbols embedded in the application image and enters them
into the debugger symbol table. This makes debugging applications
immeasurably easier.

Completing the Emulation
While Darrin was working on the debugger, I was working on emulat-
ing the serial port. If you wanted to run an application other than one
of the built-in applications, it was necessary to HotSync the application
from the Pilot Desktop to the emulated Pilot device. Fortunately, the
serial port support in the Dragonball CPU is a fairly straightforward
single-byte I/O. This was easy to translate into Win32 communications
function calls, and once this was working I successfully negotiated a
HotSync by connecting the two communications ports on my comput-
er together with a null modem cable. Copilot talked to one of the serial
ports, the HotSync application talked to the other, and together they
downloaded application code into Copilot.

Another hardware feature not yet emulated was the eight hardware
buttons (four application buttons, up and down, on/off, and the
HotSync button on the cradle). I discovered how these buttons work
much the same way as the pen taps: by writing small programs that
watched interrupt activity and displayed dots on the screen indicating
what happened. It turns out that the hardware buttons are more or less
directly mapped to the INTx pins of the CPU.

One of the features of the Dragonball CPU is hardware support for
a sleep mode. This is a very low power mode that the Pilot uses when
the power is turned off. Of course the power is never completely off,
otherwise the Pilot would not respond to the application buttons or
trigger alarms. Instead, the ROM software instructs the Dragonball to
go to sleep, but also sets some special trigger bits that tell the Dragonball
which interrupts it should interpret as a wake-up call. In the Pilot these
trigger bits are set for all but the up and down buttons. Pressing any of
these buttons while the CPU is in sleep mode immediately causes it to
wake up and respond to the request. (In order to handle alarms, the
Dragonball also periodically wakes up for a brief moment to check the
list of pending alarms.)

Somewhere around this stage in the development, I publicly released
Copilot on my web site as a Beta 1 version. I sent an announcement to a
couple of Pilot mailing lists and news groups, and almost immediately I
started receiving messages of thanks from fellow developers. Most were
as skeptical as I was when I started the project (about creating an emu-
lator for a largely undocumented piece of hardware), but soon Copilot
became a favorite among developers and end users.

Loading Applications
Copilot was still not complete because loading applications was too
cumbersome. HotSync was the only way to do it, and, while it worked, it
really slowed down the compile, run, and test cycle. There had to be a
better way.

I tried many approaches to solve this problem. My first idea was to
internally simulate the action of the HotSync program, supplying the
right data to the serial port to make the emulated Pilot think it was par-
ticipating in a HotSync operation. I tried to analyze the HotSync data
stream, but without the relevant documentation (I did not have the full
PalmOS SDK at the time), this idea wasn’t going to work.

While analyzing the HotSync data stream, I learned a little bit about
what HotSync was doing. A PalmOS application image is structured as a
set of resources. A resource can contain code, data, icons, and other
types of program elements. During a HotSync, the application transfers
to the Pilot device one resource at a time. When the HotSync operation
completes, the application database contains all the resources necessary
to run the application. So all I had to do was duplicate these operations
without using HotSync.

I read about DmCreateDatabase , learned how to insert records
in the new database using DmNewRecord , sorted out the differences
between handles, pointers, and local ids, and figured I was ready. Unfor-

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

tunately, I couldn’t directly call DmCreateDatabase from Win32
code and my Intel CPU doesn’t execute Motorola instruction codes.
Somehow, I needed to make the correct database functions execute
within the emulator.

The basic idea in my solution to the database problem is this: inter-
rupt whatever the emulated CPU is doing, modify the next instruction
to be the correct API call, modify the stack to make it appear as though
the correct arguments to the API call are pushed, place any required
data (such as a resource image) somewhere in memory accessible to
PalmOS, and resume execution of the CPU. On return from the API
call, capture the function result (either in the A0 or D0 register) and
restore the instruction stream, the state of the stack, and the original
contents of any used memory buffers. Finally, resume normal execution
of the original instruction stream.

There were some important details that needed addressing in the
above scheme. I was not sure that the PalmOS database routines were
re-entrant, so I could not interrupt the emulated CPU while it was pro-
cessing any other API call. To solve this problem, I added a feature to the
CPU emulator that triggers a special breakpoint when it encounters a
TRAP $F indicating an API call. When Copilot is asked to load a pro-
gram, it first enables this breakpoint and then waits for the breakpoint
to be hit. While the Pilot is turned on, PalmOS API calls happen very
rapidly so it does not take long before one is hit. At this point the appli-
cation load function stops the emulated CPU and performs all the sub-
sequent database operations before resuming normal CPU execution.

Once everything is set up in memory, the CPU resumes and the API
call executed. Copilot knows when the API call completes because of the
breakpoint instruction (opcode $4AFC). This opcode is placed in the
instruction stream immediately following the trap code in the TRAP
$F instruction. When the API call completes, the emulated CPU hits
the breakpoint instruction and notifies the application loader. At this
point the function result (D0 or A0) is captured and the original in-
struction stream restored.

Once the above machinations rolled up into a neat little C++ class
called FakeCall , making PalmOS API calls from Win32 code was as
easy as this:

FakeCall fc;
fc.PushLong(dbid); // dbID
fc.PushWord(0); // cardNo
fc.Call(sysTrapDmDeleteDatabase);
err = fc.GetResultD0();

(This code snippet deletes the application database if it already exists.) I
then wrote code to open the database, create new records, copy the data
into the new records, and close the database. This code was rather com-
plicated because it needed to read the PRC file from a disk file, split it
up into individual resources, and insert each resource separately. I didn’t
have very good documentation on the format of a PRC file at the time,
so this was very much a hit-and-miss bit of code. (Actually, it missed
most of the time.)

For some reason, the process of adding each resource individually
did not work very well. There could have been a bug in my code, misuse
of one of the database API calls, or any one of a number of other prob-
lems. It was at this point, while I was reviewing the documentation for
one of the database calls, where I came upon DmCreateDatabase -
FromImage (I have no idea why I never noticed this call before). This
function did exactly what I was trying to do manually in Win32 code.
Simply point the function at a PRC file image, let it go, and it automati-
cally creates the application database with all the proper resource
records. This was exactly what I needed.

So, out came all the ugly code to deal with individual resources and
in went DmCreateDatabaseFromImage . This worked really well,
but there was one remaining problem. When calling DmCreate -
DatabaseFromImage , one of the parameters is a pointer to the appli-
cation image. I was allocating this space using MemPtrNew , copying
the image into this allocated space, and then freeing it once the applica-
tion loaded. The problem was MemPtrNew allocates memory from

the dynamic heap. As every PalmOS developer knows, the dynamic
heap is very limited in size (at most 14 KB is available on my Pilot).
Therefore, the largest application that loaded was about 12 KB (some
extra space was needed to complete the operation). This was clearly not
enough.

DmCreateDatabaseFromImage requires a pointer to the appli-
cation image. I was allocating this pointer in the dynamic heap. I created
a separate area of memory used exclusively for loading applications. The
next iteration of the application loader did just that. I added support to
the CPU module for a 64 KB scratch RAM area located at absolute ad-
dress 0x10000 . I set up the six-byte heap block header to make it ap-
pear as legitimate allocated memory, loaded the application image into
this space, and called DmCreateDatabaseFromImage . This worked
wonderfully. Applications up to nearly 64 KB loaded with no problems.

The only limit left was the 64 KB limit, but this could not be in-
creased without significant changes in the application loader. Dm-
CreateDatabaseFromImage requires a valid heap pointer (it ex-
pects to see the heap block header preceding the pointer). In PalmOS
1.x and 2.x, the maximum size of a heap block is 64 KB, because there
are only 16 bits available to store the size of the block. Working around
this problem required a completely different approach.

Further Development
By late October 1996, Copilot was very stable, even though it was still
labeled a Beta version. I started work on other projects and develop-
ment on Copilot slowed down considerably. When the PalmPilot with
PalmOS 2.0 released in the spring of 1997, there were some compatibili-
ty problems with Copilot, the most obvious being the 1 MB ROM size
of the PalmPilot versus the 512 KB ROM size of the original Pilot. I in-
creased the ROM size easily, but encountered a strange performance
problem with the pen up action that I could not explain.

The problem was that pen up events were not delivered in a timely
manner. This caused the operation of Copilot to appear sluggish and
unresponsive. I talked with some of the developers at Palm Computing
and developers that ported Copilot to other platforms. Nobody could
come up with a reason why this problem occurred, and I never did find
a solution. I made some changes that decreased the impact of the prob-
lem, but it never really went away. If anybody can discover what causes
this problem, I would be happy to hear from you.

Due to the pen performance problem, I put off the next release of
Copilot, hoping that I would find a solution. In June 1997 I finally re-
leased an updated version that supported the PalmOS 2.0 ROM. This
version had the debugger disabled because the patches the Copilot de-
bugger did to enable the bp -na feature no longer applied to the new
ROM (users with non-English ROMs actually encountered this prob-
lem before).

Copilot was no longer near the top of my project list and had not
been for quite some time. Another Windows developer, Heath Hunni-
cutt, offered to take over the development of Copilot, but after releasing
a few versions (with several new features) Heath stopped working on
Copilot, too.

Enter Palm Computing
In early 1998, I found out that Palm Computing had a Copilot develop-
er on staff (Keith Rollin) and that they were planning a significant up-
date to Copilot. This is excellent news. I no longer had the time to con-
tinue development on Copilot, but it is too valuable a tool to neglect. Of
course, Palm Computing is in the perfect position to make Copilot a
truly industrial-strength product. Expect to see some very cool things
coming out of Palm in the Copilot area.

Conclusion
Copilot was a very exciting project for me. It seemed nearly impossible
at first, but by tackling the problems one step at a time it eventually fell
together. Seeing it actually run for the first time was a moment I won’t
soon forget. I am happy to see that Palm Computing recognized that
Copilot is a valuable addition to their tool set, and I hope that it benefits
future developers of PalmOS compatible software. ✔

