
Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

TT

Features

The Palm OS Emulator
Keith Rollin
Senior Software Engineer
3Com Palm Computing Division
krollin@palm.com

he Palm OS Emulator (formerly Copilot) is a Windows and
Macintosh application for emulating the execution of ROMs
from Palm Computing devices such as the Pilot 1000, Pilot

5000, PalmPilot, and Palm III. It has a number of features for accurate
emulation of the Palm Computing hardware platform, plus additional
features for debugging Palm OS applications.

The Palm OS Emulator is primarily a developer’s tool, although
anyone can run it. This means you can, for example, play your favorite
Palm OS game right on your Windows or Macintosh desktop.

In The Beginning
The Palm OS Emulator began life as the UN*X Amiga Emulator (UAE),
written by Bernd Schmidt in Germany (www.freiburg.linux.de/~uae/).
Both the Commodore Amiga and the Palm devices are based on 680X0
microprocessors, so the CPU emulation source code for UAE was used
as the basis for the Copilot CPU emulation code.

In mid-1996, Greg Hewgill (www.hewgill.com/) started working on
Copilot, using UAE as a starting point. To the core 68000 CPU emula-
tor, he added support for specific features of the 68328 Dragonball pro-
cessor used in Palm devices as well as support for the rest of the hard-
ware. In September 1996 he released the first beta of Copilot 1.0.

Over time, he added more features to Copilot and more support for
subsequent Palm devices, resulting in Copilot 1.0 b9, released in mid-
1997. [For more details on Greg’s work see “Copilot: Design and Develop-
ment” on Page 34. Ed]

Copilot Goes Travelling
Greg was interested in seeing his work benefit as many people as possi-
ble, so in October 1996 he posted the source code on his Web site. His
invitation to others to port Copilot to other platforms and extend his
work was accepted. So far, Copilot has been ported to Macintosh (two
versions), Linux, BeOS, OS/2, and even Windows CE.

Palm Lends A Hand
In December 1997, I left Apple’s Newton group to work for Palm Com-
puting in their Development Tools group. As the second employee in
this group, there was a lot for me to do. One of these tasks was making
some modifications to Copilot for our upcoming Palm III product. Spe-
cifically, Copilot needed modification to support ROMs larger than 1
MB, grayscale displays, a larger dynamic RAM heap, and the new ways
the Dragonball registers are accessed.

Working from Greg’s 1.0b9 sources and the sources for the
Macintosh version from Illume Software (members.aol.com/illumesoft/
illume.html), these features were quickly added and made available to
our developers (www.palmpilot.com/devzone/index.html).

Copilot Becomes the Palm OS Emulator
While working on those changes to Copilot, we realized that there was a
lot of untapped potential in the emulator. Up until now, Palm’s answer
to Palm OS emulation on the desktop was the Simulator, a set of
CodeWarrior libraries for the Macintosh built from the same sources
sed for creating the actual Palm OS. Developers write their Palm OS
applications, link with these libraries, create a stand-alone Macintosh
application, and run and debug it just like a typical Mac application.

There are a number of advantages to this mode of development,
including fast turnaround time, source-level debugging, fast execution,
and the creation of desktop demos. There are some drawbacks as well,

such as creating and debugging two versions of your application, having
the Mac version of your application run in an environment that is not
exactly the same as the environment in the Palm OS device, and being
locked into using a Macintosh for your development. We thought that
we should merge the advantages of the Palm Simulator with Copilot,
resulting in a truly killer development tool for Palm OS developers,
spanning multiple platforms.

We talked with Greg Hewgill (the original Windows Copilot au-
thor), Craig Schofield of Illume Software (author of the Macintosh ver-
sion of Copilot), and Bernd Schmidt (author of UAE and the core
68000 CPU emulator) and got their permission to take over develop-
ment of Copilot, using their work as a starting point. They were all in
support of our taking over Copilot development, especially when we
declared our intentions to keep the resulting product free and make the
source code available to developers.

Along the way a transformation took place. Palm Computing is
moving away from using the word “Pilot” in its product names. Thus,
the PalmPilot became the Palm III, the PilotDebugger is becoming the
PalmDebugger, and Copilot became the Palm OS Emulator.

Throughout the rest of this article, I use Copilot to refer to the emu-
lator as Greg originally wrote it and Palm OS Emulator to refer to the
product Palm Computing is working on.

New Features
With permission to take over its development and with an engineer
dedicated to the task of development, we (myself and other Palm Com-
puting engineers) started to map the changes we wanted to make to the
Palm OS Emulator. The next few sections briefly discuss these changes.

Common Source Code Base
Every programmer has his or her own programming style: Bernd has
his, Greg has his, and Craig has his. When Craig ported the Windows
version to the Mac, he did a lot of fine work improving Greg’s already
excellent Windows version. Craig reformatted the sources, made func-
tion and variable names more descriptive, and added comments. When
he was done, his Copilot version was functionally equivalent to the
Windows version, but with a slightly different implementation.

The first task was to unify the source code base of the two versions.
Because I was going to develop and support the Windows and
Macintosh versions of the Palm OS Emulator, I wanted to make the
changes once and have them appear in both versions simultaneously.

In the end, I ended up with a set of sources where 93 percent of the
code is common to both platforms (not counting the PowerPlant sourc-
es going into the Mac version).

Latest UAE Sources
Since the time Greg took the UAE sources and used them as the basis
for Copilot in mid-1996, Bernd updated his own version of UAE, cul-
minating with version 0.69 released in May 1997. Since I was already
playing havoc with the sources to unify the Windows and Mac versions,
I also decided to update to the latest UAE sources. By doing this, I took
advantage of the bug fixes and performance enhancements Bernd add-
ed to the 68000 CPU emulator.

Support for Large Applications
Since its inception, one of the long-standing problems with Copilot was
its inability to load applications or databases from files larger than 64
KB. The reason for this limit was the way Copilot tricked the emulated
Palm OS ROM into loading the application. Copilot would:

• Carve out a special section of memory (essentially adding 64 KB of
RAM to the emulated memory space in which the ROM was
running);

• Format it as a 64 KB memory chunk (like you get when you called
MemPtrNew);

• Load the contents of the PRC or PDB file into that chunk; and
• Fake a call to the ROM’s DmCreateDatabaseFromImage

function.

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

The problem with this approach is its reliance on a chunk of memo-
ry compatible with what is returned by MemPtrNew . In Palm OS 1.0
and 2.0, these memory chunks are limited to 64 KB. Further, this ap-
proach has compatibility problems with Palm OS 3.0, where the memo-
ry chunk header changed from six to eight bytes. Using the original
technique simply would not work when Copilot was executing a Palm
OS 3.0 ROM.

It now takes a new approach. Instead of directly calling DmCre -
ateDatabaseFromImage , the functionality of DmCreateData -
baseFromImage is implemented directly in the Palm OS Emulator.
The PRC or PDB file opens, a new database is created based on infor-
mation from the file’s header information, the file’s contents (a collec-
tion of Palm OS resources) are iterated, and each resource is added to
the new database one by one. By using this technique, the Palm OS Em-
ulator is not limited to 64 KB memory chunks, nor is it dependent on
the format or size of memory chunk headers.

External Debugger
One of the advantages of the Palm Simulator on the Macintosh is that
developers can use CodeWarrior’s source-level debugger when develop-
ing their applications. By comparison, the Windows version of Copilot
has a simple-machine-language, command-line-oriented debugger, but
the Macintosh version doesn’t have any sort of debugger at all.

In February 1998, we invited Eric Cloninger of Portable Computing
Products, Mark Corry of Metrowerks, and Kenneth Albanowski of the
Silver Hammer Group to visit us, enticing them with beta Palm III
ROMs. The intent was to discuss adding support to get the Palm OS
Emulator and external debuggers (such as Metrowerks debugger and
UNIX’s gdb) working together.

At the time of this writing (in March 1998), the basic support for
external debuggers is working fairly well. A prerelease version of
Metrowerks’ debugger is performing source-level debugging of Palm OS
applications running in the Palm OS Emulator. Palm Computing’s in-
ternally hacked version of the PalmDebugger is debugging applications
at the machine language level. Soon, we will give the Silver Hammer
Group our source code so they can make similar changes to the UNIX
versions of Copilot and their gcc/gdb tools. SoftMagic (the makers of
Satellite Forms) and other purveyors of Palm OS development tools will
also be given the source code.

Gremlins
Part of the Palm OS Emulator effort is bringing many of the tools that
Macintosh developers have had all along to Windows. One set of these
tools is Gremlins. A Gremlin is a series of pseudo-random events that
are fed to a Palm OS application, causing it to respond to stimuli that
might not be produced by human testing. If a bug in the application
being tested is found, the series of events that cause the problem can be
reliably reproduced, ensuring that the problem is fixed. Gremlins are
supported in the PalmDebugger and in the Simulator, making them
unavailable to developers using tools on other platforms.

The Palm OS Emulator is now enhanced with Gremlin support. By
selecting the New Gremlin menu item, you can choose several options,
including:

• The Gremlin to run (what seed to use for the random number
generator);

• The number of pseudo-random events to feed to the application;
• The application to test; and
• The kind of event logging to perform.

With Gremlin support in the Windows version of the Palm OS Emula-
tor, more developers can now participate in the Quality Partners certifi-
cation program (www.qpqa.com/qp3com.html).

Speed Improvements
When examining the features of the Simulator that gave it an advantage
over Copilot, the only one we can’t really add to the Palm OS Emulator
is performance. Programs created with the Simulator libraries are true,

fully functional, native Macintosh applications running at the top speed
of the Power PC microprocessor. Programs running in the Palm OS
Emulator are executed by a virtual microprocessor with each machine
language instruction emulated by a different subroutine that updates
registers and accesses simulated memory locations. Even on top-of-the-
line PCs and Macintoshes, emulation speeds are 2 million Dragonball
opcodes per second. While this speed is on par with the execution speed
of an actual Palm OS device, it is still orders of magnitude lower than a
native desktop application.

I took two approaches to increasing the performance of the Palm
OS Emulator over Copilot. The first approach is based on a major tenet
of performance enhancement: if an operation is taking too long, make
it faster. Using this approach, I found a number of places that could be
sped up by a few percent. One of the more interesting ways the emula-
tor could be sped up was by using a technique used in the Newton
group: take a function that can logically be divided into commonly-
executed and not-commonly-executed sections, and put the second
section into its own function, thus simplifying the first section. The re-
sult is a smaller function that the compiler can easily optimize. By com-
bining all of these small speed improvements, overall execution speed
increased by about 20 percent.

The other approach to speeding up emulation is based on the other
tenet of performance enhancement: if an operation is taking too long,
don’t call it. Application of this rule usually entails redesigning algo-
rithms, adding caches, and being smart about calculations and recalcu-
lations. But in the case of the Palm OS Emulator, we can target a specific
set of emulated operations, and, instead of emulating them, we program
the Palm OS Emulator to execute them with native code.

The Palm OS trap dispatcher is an example of this technique. When
a Palm OS application calls a system function such as MemPtrNew or
DmCreateDatabase, the compiler embeds into the application a
TRAP $F instruction followed by a dispatch number of the form
$Axxx . When the application executes the TRAP $F instruction, the
CPU generates a hardware exception, resulting in the CPU pushing the
program counter and status register onto the stack and jumping
through a vector in low-memory.

The Palm OS installs a pointer to a function called TrapDis -
patcher into this low-memory exception vector. Thus, when the
TRAP $F executes, TrapDispatcher is called. TrapDis-
patcher looks at the program counter that was pushed onto the
stack, uses it to fetch the dispatch number following the TRAP op-
code, and uses the dispatch number to jump to the requested ROM
function.

The process doesn’t take very long, but it does take a finite amount
of emulated time and it happens whenever a Palm OS application calls a
ROM function (as well as when a ROM function calls another ROM
function). That is to say, it happens a lot.

To speed things up, I gave the Palm OS Emulator special knowledge
of this ROM function-calling technique. The emulator essentially by-
passes the whole TrapDispatcher function and does the same
thing by hand. Now, when the Palm OS Emulator encounters a TRAP
$F instruction, instead of jumping to TrapDispatcher by load-
ing the appropriate exception vector into the PC, it does the same oper-
ations as TrapDispatcher with native x86, PPC, or 68K code. It:

• Looks up the emulated program counter that was pushed onto the
emulated stack;

• Uses the program counter to fetch the dispatch number following
the TRAP $F ;

• Finds the array of ROM function pointers residing in low-memory;
• Fetches the appropriate function pointer based on the dispatch

number; and
• Stores that function pointer into the emulated program counter.

Having the Palm OS Emulator do all these steps instead of emulat-
ing the TrapDispatcher is like having fast trap dispatcher func-
tionality built right into the microprocessor. With a native trap dis-
patcher, the overall execution speed increased by 12 percent.

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

Other ROM functionality was replicated in this fashion. For in-
stance, MemSet , MemMove, and RctPtInRectangle are all
frequently-called functions that can be implemented in the Palm OS
Emulator directly, without worrying about being closely tied to a partic-
ular Palm OS implementation.

Logging
Because we want this tool to be useful to developers, we want to provide
information that is helpful when developing applications. One of the
most-often asked questions when a program crashes is about what just
happened. Ninety percent of the time, the ultimate cause of a program
crash is nowhere in the immediate vicinity of the crash itself.

With logging capabilities added to the Palm OS Emulator, a devel-
oper has a record of what happened immediately prior to the applica-
tion’s crash. The developer can look at the events posted to the applica-
tion’s queue and the events the application pulled off the queue and
responded to. He or she can also get a list of the ROM functions called.
Eventually, the developer can log the machine language opcodes execut-
ed prior to the crash. If I get inspired, I’m planning on even adding an
Undo facility, whereby the entire machine state can be backed up and
replayed so that the developer can examine in slow-motion the events
and operations leading up to the crash.

Memory Stressing
The first step to getting an application working is to get it working in a
friendly environment. That is, make sure the application does what it is
supposed to do when fed expected input and when unexpected events
don’t get in the way.

The next step is to bullet proof the application by making sure it
also works in an inhospitable environment. Examples of a way develop-
ers can do this today is by running their applications under debug ver-
sions of the Palm OS ROM and by using the MemSetDebugMode
function to turn on selected memory-debugging options, such as heap
scrambling and new block zapping.

The Palm OS Emulator includes support for these facilities, and
adds a few of its own. For instance, the emulator examines the dynamic
heap when an application quits, looking for unreleased memory blocks
and memory leaks. If any are found, it reports them. Another feature
the Palm OS Emulator adds is stack clearing: when an application’s sub-
routine returns to its calling function, the stack below the current stack
pointer is cleared, hopefully flushing out any stale pointers to old stack
contents. Finally, the emulator also detects and reports stack overflows.

Conforming Applications
The Palm OS Emulator isn’t intended just for developers. Users of Palm
OS applications can use it to check for conforming applications. Palm
Computing has an interest in seeing that applications running on its OS
are as robust and bug-free as possible (hence tools like Gremlins and the
certification and logo programs). Support was added to the Palm OS
Emulator to ferret out applications that don’t run entirely bug-free today
and that may not run on future devices. The Palm OS Emulator checks
for accesses to low-memory, Dragonball register memory, and screen
memory. Programs accessing those locations are flagged as possible vio-
lators of the Palm OS programming guidelines. (Following Developer
Support guidelines is a good idea. The Palm OS Debugger checks for
violations of some of these guidelines and may check for more violations
in the future. See “Guidelines and Practices” on page 32.)

Because of these conformance checks, a customer can download
applications from specialized Web sites, run them through the Palm OS
Emulator, and see how well they stack up when running in Full Gaunt-
let mode. If an application passes, the customer knows that an invest-
ment in that application is money well spent.

Miscellaneous Other Changes
Other features are planned for the Palm OS Emulator. Support for drag
and drop will be added so users can drag ROM images or applications
into the emulator window to load and run them. An AutoLoad folder

containing items that are automatically loaded into the Palm OS’s emu-
lated memory at start time may be added. Synchronizing with the Palm
Desktop, profiling applications to determine where time is being spent,
and a save-game feature that saves the entire CPU state along with the
contents of RAM (so that the whole thing can be restored later) are all
possible additions.

Palm OS Emulator Internals
The complete source to the Windows and Macintosh versions of the
Palm OS Emulator will be released, following the lead of the UAE and
Copilot authors. For those ambitious folks who are interested in how it
all works, the following sections provide an overview of the emulator’s
internals.

CPU Emulator
I mentioned earlier that 93 percent of the code going into the Palm OS
Emulator was shared directly between the Windows and Macintosh
versions. By far, the largest part of that 93 percent is the CPU emulator.

A CPU emulator is simple: it reads an opcode from memory and
executes it. In fact, here’s an excerpt from the main CPU loop in the
Palm OS Emulator:

while (gCPUState == kCPUState_Running)
{

…
uae_u32 opcode = nextiword ();
…
(*cpufunctbl[opcode]) (opcode);
…

}

This snippet does just what I described: it uses nextiword to fetch
an opcode from the memory location indicated by the current PC, and
then uses that opcode as an index into a table of 65,536 opcode handlers
to fetch the address of and execute the correct opcode handler.

In another sense, a CPU emulator is very complex: there are lots of
opcodes and many tiny details to account for when emulating those
opcodes. Status register bits are updated, memory accesses are checked
and performed, exceptions are handled, interrupts are triggered, super-
visor mode rules are observed, conditions are determined, and branches
are made; it’s enough to drive anyone mad.

 I’m sure Bernd Schmidt thought the same thing. The first version
of UAE (version 0.1, available on the previously mentioned UAE Web
site) was a painstakingly hand-written CPU emulator. As UAE develop-
ment continued, Bernd hit upon the idea of a CPU emulator compiler.
This compiler accepts input as a small, yet very descriptive, text file con-
taining descriptions of all the 680X0 opcodes. It then uses those de-
scriptions as a guide when it generates all the opcode handler functions.
The result: 16 source code files containing thousands of opcode han-
dlers and another file containing the massive cpufunctbl array that
points to them all.

Here’s an example of what I’m talking about:

1101 rrr0 zzss sSSS:00:XNZVC:——: ADD.z s,Dr

This is the entry from the CPU description file for an ADD machine
language instruction. The left hand side of the line contains the mean-
ings for all the bits in the opcode: 0 and 1 are interpreted as-is, r
stands for register numbers, z stands for register size, and s stands
for source addressing mode. Following the opcode bit description is an
indication of the CPU on which that opcode can be executed (00 cor-
responds to the 68000, of which the Dragonball is a direct descendent).
Following the CPU level is a description of the status register flags that
are used and affected by the instruction. The opcode description is last,
along with an encoding of the addressing modes enabled by the opcode.

Here’s an example of a function created by the above opcode de-
scription:

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

void REGPARAM2 CPU_OP_NAME(_d000)(uae_u32 opcode)
/* ADD */

{
uae_u32 srcreg = (opcode & 7);
uae_u32 dstreg = (opcode >> 9) & 7;

{{ uae_s8 src = m68k_dreg(regs, srcreg);
{ uae_s8 dst = m68k_dreg(regs, dstreg);
{{uae_u32 newv = ((uae_s8)(dst)) + ((uae_s8)(src));
{ int flgs = ((uae_s8)(src)) < 0;

int flgo = ((uae_s8)(dst)) < 0;
int flgn = ((uae_s8)(newv)) < 0;
ZFLG = ((uae_s8)(newv)) == 0;
VFLG = (flgs == flgo) && (flgn != flgo);
CFLG = XFLG = ((uae_u8)(~dst)) < ((uae_u8)(src));
NFLG = flgn != 0;
m68k_dreg(regs, dstreg) =

(m68k_dreg(regs, dstreg) & ~0xff) | ((newv) & 0xff);
}}}}}}}

This function first gets the source and destination registers. The
srcreg is encoded in the lowest three bits of the opcode (correspond-
ing to the SSS in the opcode description line shown above), while the
dstreg is encoded in the three bits corresponding to the rrr on the
opcode description. The register numbers then fetch the actual values
out of the registers (an array of 16 integers maintained by the CPU em-
ulator). The two values are added together, all of the appropriate status
register bits are updated, and the new value is stored back into the desti-
nation register.

Memory Access
In addition to the performance optimization tenets mentioned earlier
in this article, there’s the size versus speed rule. It is often the case that
you can make your functions and algorithms smaller, but usually at the
expense of slowing them down. The converse is also true: you can often
speed up your application by letting it eat up gobs of memory (until
you reach the point where you’re using so much memory that virtual
memory thrashing slows your program to a crawl).

The cpufunctbl previously shown in the main CPU loop is an
example. By using a 256 KB table loaded with 64 KB function pointers,
we can dispatch opcodes to their corresponding handlers very quickly.

Emulated memory access is handled similarly. The entire address-
able 4 GB memory range is divided into 65,536 segments (called a bank
in the UAE sources) that are each 64 KB long. Each of these banks is
managed by a set of functions. When a memory access operation needs
to be done, the Palm OS Emulator uses the upper 16 bits of the address
(the bank number) as an index into a table with 64 KB entries. Each of
these entries is a four-byte pointer to the set of functions managing that
bank. The Palm OS Emulator then retrieves the function appropriate
for the operation it needs to carry out and calls it.

A simple example clarifies this description. Assume that we treat the
first two banks (the first 128 KB of the 4 GB address range) as plain
RAM. First, we create a set of functions to treat a chunk of memory as
readable and writable RAM:

uae_u32 RAMBank_GetLong (uaecptr iAddress)
{

return do_get_mem_long((
(char*) gRAM_Memory) + iAddress);

}

uae_u32 RAMBank_GetWord (uaecptr iAddress)
{

return do_get_mem_word(
((char*) gRAM_Memory) + iAddress);

}

uae_u32 RAMBank_GetByte (uaecptr iAddress)
{

return do_get_mem_byte(

((char*) gRAM_Memory) + iAddress);
}

void RAMBank_SetLong (uaecptr iAddress, uae_u32 iLongVal-
ue)
{

do_put_mem_long(
((char*) gRAM_Memory) + iAddress, iLongValue);

}

void RAMBank_SetWord (
uaecptr iAddress, uae_u32 iWordValue)

{
do_put_mem_word(

((char*) gRAM_Memory) + iAddress, iWordValue);
}

void RAMBank_SetByte (
uaecptr iAddress, uae_u32 iByteValue)

{
do_put_mem_byte(

((char*) gRAM_Memory) + iAddress, iByteValue);
}

int RAMBank_ValidAddress (
uaecptr iAddress, uae_u32 iSize)

{
int result = (

iAddress + iSize) <= (uae_u32) gRAMBank_Size;

assert(result);

return result;
}

uae_u8* RAMBank_GetRealAddress (uaecptr iAddress)
{

return (uae_u8*) &(((char*) gRAM_Memory)[iAddress]);
}

In the above functions:

• uae_u32 is an unsigned 32-bit value (similarly for uae_u16
and uae_u8);

• uaecptr is the UAE type for memory pointers (akin to void*);
• gRAM_Memory is a block of memory we allocate with malloc

when the application starts; and
• do_get_mem_long and it’s friends are bottleneck memory

accessors.

After a consistent set of functions is defined, they are grouped
together into a data structure called an AddressBank :

AddressBank gRAM_Bank =
{

RAMBank_GetLong,
RAMBank_GetWord,
RAMBank_GetByte,
RAMBank_SetLong,
RAMBank_SetWord,
RAMBank_SetByte,
RAMBank_GetRealAddress,
RAMBank_ValidAddress

};

A pointer to this address bank is then installed into an array of
65,536 AddressBank pointers:

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

gMemory_Banks[0] = &gRAM_Bank;
gMemory_Banks[1] = &gRAM_Bank;

After the entire array is initialized this way, memory accesses are per-
formed using a set of macros that do all the bank selecting, function
fetching, and function calling.

Dragonball Support
Many of the internals examined so far are based on the emulation work
done by Bernd Schmidt. This emulation supports a generic 680X0 pro-
cessor. Greg Hewgill added support for the 68328 Dragonball registers.

The Dragonball registers are memory-mapped CPU registers that
control hardware functions. Examples of their uses include LCD con-
trol, serial port I/O, real-time clock access, and alarms. The registers are
found in a 4 KB range of memory starting at 0xFFFFF000 . Access to
them in the Palm OS Emulator is managed by a special set of Add -
ressBank functions.

Even after working on the Palm OS Emulator for several months,
I’m amazed at the level of Dragonball support Greg added to Copilot.
By adding the right set of functionality behind the UART registers, he
added support for serial I/O, bridging the emulated ROM serial routines
to the Win32 serial access API. By twiddling the right bits and triggering
the right interrupts, he got Copilot to think that the mouse was a pen
drawing on the LCD screen. By strategically incrementing counters at
exactly the right rate, he got the emulated ROM to go to sleep right on
cue. And he did all of this emulation work without the benefit of access
to the Palm OS source code, something I find extremely handy when I
forget to twiddle a particular bit in just the right way and send the ROM
spinning off into the middle of nowhere.

Screen Updates
Naturally, all of this hard work is useless if we can’t see the results. The
emulated Palm OS writes data into the emulated LCD buffer, but none
of that means anything to the host running the emulator. We need a
way of transferring the contents of the LCD buffer to a host window.

The method used in the Palm OS Emulator is blunt, but it works.
Ten to 20 times a second, the Palm OS Emulator takes a break from em-
ulating instructions and devotes its attention to the LCD buffer. Using
an ingenious function called memcmpy, it not only compares the cur-
rent contents of the LCD buffer with a previously saved version of the
LCD buffer, but it also updates that saved copy with the new contents.
The result of memcmpy is a Boolean value indicating whether or not
the contents of the LCD buffer changed since the last time we per-
formed the comparison. If it did, we take the additional step of convert-
ing the contents of the LCD buffer into a host-specific bitmap and
copying the bitmap to the emulator window.

Upon casual examination, this approach seems a bit overkill. I
thought a better approach might be modifying the AddressBank
functions to detect accesses to the range of memory for the LCD buffer,
setting some sort of flag when a change was made to the buffer.

This approach is not as efficient as I first thought. Those Add -
ressBank functions are called a lot. The check to see if the memory
being written to is part of the LCD buffer is more expensive that I ini-
tially expected. The result is that the brute force method is rather effi-
cient by comparison.

Another approach I considered was to somehow hook into the
drawing functions and set my LCD-dirty bit when they are called. I stay
away from programming specific OS information into the emulator as
much as possible; hard coding a set of known drawing functions vio-
lates that guideline. If the set of functions ever changes, I must release a
new emulator.

One variation on this approach that should work is to take advan-
tage of an undocumented system function called ScrDrawNotify . If
a certain undocumented low-memory global is true, then all the draw-
ing functions call ScrDrawNotify as the last thing they do, passing
in the bounds of the affected drawing area. I figured that I could set this
low-memory global, intercept calls to ScrDrawNotify , and set my
LCD-dirty bit whenever it was called.

That was the theory. But, as the wise man said, “In theory, theory
and practice are the same. In practice, they’re not.” While the approach
based on ScrDrawNotify seems most efficient, I opted not to use it
for several reasons. It requires that I hard code special knowledge about

Guidelines and Practices

Maurice Sharp, Manager of Palm Computing Developer Support, suggests the following tips for Palm software developers.

Here are some guidelines and practices for making your programs more robust and compatible with next generation Palm Com-
puting products.

 One general-purpose way to make your code more robust is to write defensive code by adding lots of calls to ErrNonFatal -
DisplayIf , so that your debug builds can check assumptions. Many bugs are caught in this way, and these extra calls don’t weigh
down your shipping application. You can keep more important checks in the release builds by using ErrFatalDisplayIf . Here
are some additional, specific items to check:

• Reading and writing to NULL or low memory: Remember to check your calls to MemSet, MemMove, and so on, to make sure
the pointers are non-NULL. (If you can do better validation than that, so much the better.) Also validate that pointers your code
obtains from some structure or API call are not NULL . Consider, in a debug build, overriding MemMove (and similar func-
tions) with a #define to validate the parameters.

• Allocating zero-length objects: It’s not valid to allocate a zero-byte buffer, or resize a buffer to zero bytes. Palm OS 2.0 and earlier
releases allowed it, but future revisions of the OS might not permit zero-length objects.

• Making assumptions about the screen: The location of the screen buffer, its size, and the number of pixels per bit aren’t set in
stone; they might well change. Don’t hack around the windowing and drawing functions. If you are going to hack the hardware
that will circumvent the APIs, save the state and return the system to that saved state when you quit.

• Directly accessing globals or hardware: Global variables and their locations can change. Use the documented API functions or
disable your application if it’s run on anything but a tested version of the OS. Future devices might run on a different processor
than the current one.

• Don’t overfill the stack: Allocating large numbers of local variables, or extremely large ones, can result in hard-to-debug heap
corruption. The stack is only about 2 KB; be stingy with stack-based variables.

• Built-in apps can change: The format and size of the preferences (and data) of the built-in applications is subject to change. Write
your code defensively, and consider disabling your applications if they are run on an untested version of the OS. ✔

Handheld Systems 6.3 • May/June 1998

Reprinted from the May/June 1998 issue of Handheld Systems. ©1998 by Creative Digital Publishing Inc. All rights reserved.

a low-memory global that is set to true . Not only is this low-memory
global undocumented, but its location changed between Palm OS 2.0
and Palm OS 3.0. Marking the screen dirty only when using the sup-
ported graphics API modifies the screen and causes compatibility prob-
lems with applications that draw directly to the screen. While Palm
Computing frowns upon such practices, we don’t want to be blind to
the fact that such applications exist.

In the end, I chose to stay with the memcmpy-based approach be-
cause, frankly, it works and is good enough. Profiling shows that almost
immeasurable time is spent updating the screen, so it makes little sense
to make it faster.

Patching System Functions
In order to support keyboard input and sound output, Greg devised a
way of intercepting calls to system functions. By intercepting calls to
EvtGetEvent , Greg took the keys typed by the Copilot user, turned
them into an event record, like the one filled out by EvtGetEvent ,
and returned the result to the caller of EvtGetEvent . All the caller of
EvtGetEvent knows is that it got back a data structure containing a
key event. It doesn’t matter what is the source of the event.

Similarly, by patching SndDoCmd he intercepted calls by clients of
the Sound Manager and performed platform-specific operations based
on those calls. By looking at the parameters passed to SndDoCmd, he
told Windows to beep in a manner similar to a Palm OS device.

The method for intercepting ROM function calls is very simple and
based on the technique for speeding up trap dispatching. When an ap-
plication calls a ROM function, it executes a TRAP $F instruction.
Copilot intercepts that TRAP $F instruction, fetches the dispatch
number that follows it in memory, and then checks to see if the func-
tion corresponding to that dispatch number needs special handling.

The Palm OS Emulator takes this notion of system function patch-
ing several steps further. It replaces some ROM functions with identical
functions implemented directly in the emulator. This use of system
function patching completely replaces the intercepted function. The
ROM is not involved at all.

The emulator also patches system functions to feed Gremlin events
into the system. For instance, the System Manager calls SysEvGroup -
Wait when there are no events to report to the application. Normally,
SysEvGroupWait blocks the current application thread, letting other
threads execute, or putting the Palm OS device into doze mode until
there is an event to report. If a Gremlin is running, the Palm OS Emula-
tor intercepts SysEvGroupWait and posts a new event. It then lets
SysEvGroupWait execute as normal. Since we just posted an event
to the event queue, SysEvGroupWait returns immediately, letting
that event report to the application.

All uses of system function patching described so far are instances of
head patching – inserted processing that takes place before the actual
ROM function is called (if the ROM function is executed at all). But
there are cases where we need to do tail patching. In tail patching, we
interrupt the flow of control after the desired system function executes.

Tail patching is trickier because there is no signal that a system func-
tion is returning. When a system function is called, the event is heralded
with the execution of a TRAP $F instruction, which is easily identi-
fied and intercepted. When a system function returns to its caller, it
merely executes an RTS instruction, which is not special by any means.

To regain control after a system function executes an RTS requires a
little setup. The technique first intercepts the TRAP $F instruction
that results in that system function being called. Then, instead of emu-
lating the current PC being pushed onto the stack (which would result
in control being returned to the caller of the system function when the
RTS was executed), the Palm OS Emulator saves the PC in a table and

pushes a pointer to a TRAP $E instruction onto the stack. That sys-
tem function is now tail patched. When the system function executes
the RTS , the PC points to the TRAP $E instruction. We already
know that intercepting TRAP instructions is easy for the Palm OS Em-
ulator to do, so regaining control is simple and fast. When the TRAP
$E is executed, the Palm OS Emulator changes the PC back to the val-
ue that it saved earlier in a table and then performs any necessary tail
patching operation. In this manner, the Palm OS Emulator tail patches
EvtGetEvent to record retrieved events when event logging is
turned on.

Calling System Functions
Intercepting system functions is only half of a very interesting relation-
ship between the Palm OS Emulator and the Palm OS. Effectively, we
are transferring control from the emulated Palm OS ROM to native
code in the Palm OS Emulator. In order to complete this relationship,
we need a way for the Palm OS Emulator to call functions in the ROM.

The method used in the Palm OS Emulator is a variation on a tech-
nique Greg devised for Copilot. The idea is to stop emulation of the
ROM at some convenient and generally safe location (Greg stops execu-
tion at TRAP $F instructions), save the CPU register state, push some
parameters onto the emulated stack, and then emulate a different
TRAP $F instruction for the desired ROM function. Control is re-
gained when the system function returns in the same way as for tail
patches: we store a return address to a TRAP instruction (in this case,
a TRAP $D instruction) on the stack before calling the system func-
tion. When the system function returns, the TRAP $D function is
executed, the Palm OS Emulator picks up on that fact, and cleans up by
restoring the CPU register state to what it was before we made the call.
In this manner, we are able to invasively make system function calls
without disturbing the normal ROM flow.

The Palm OS Emulator uses this technique a lot. For example, as
previously discussed, applications are installed from PRC files by creat-
ing a database and adding the resources from the PRC file to that data-
base. These operations are performed by calling into the emulated ROM
and executing functions such as DmCreateDatabase and DmNe-
wResource .

The Road Goes Ever On
In this article, I discussed how the Palm OS Emulator got its start from
the pioneering work done by Greg Hewgill, Bernd Schmidt, and Craig
Schofield, and how the Palm OS Emulator is implemented. You also
received a glimpse of where the Palm OS Emulator is going.

Development of the Palm OS Emulator is currently in progress. I
expect that incremental releases will occur throughout the year as fea-
tures are added and as support for new Palm OS devices is provided. If
you would like to participate in the evolution of the Palm OS Emulator,
you can subscribe to the interest group mailing list at ls.palm.com and
follow the appropriate links. ✔

Resources

• Palm Computing developer Web site: www.palmpilot.com/
devzone.index.html

• Palm Computing mailing list Web site: ls.palm.com/
• Developer support or information: mailto: devsupp@palm.com
• Greg’s Copilot Web site: www.hewgill.com/
• Illume Software’s Copilot Web site: members.aol.com/illumesoft/

illume.html
• UAE Web site: www.freiburg.linux.de/~uae/

We thought that we should merge the advantages of the Palm
Simulator with Copilot, resulting in a truly killer development
tool for Palm OS developers, spanning multiple platforms.

