aboutsummaryrefslogtreecommitdiffhomepage
path: root/video/mp_image.c
blob: f6b6045c6d82ed5667a5e8dabd6dccaee415d4ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
/*
 * This file is part of mpv.
 *
 * mpv is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * mpv is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with mpv.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <limits.h>
#include <pthread.h>
#include <assert.h>

#include <libavutil/mem.h>
#include <libavutil/common.h>
#include <libavutil/bswap.h>
#include <libavutil/hwcontext.h>
#include <libavutil/rational.h>
#include <libavcodec/avcodec.h>

#if LIBAVUTIL_VERSION_MICRO >= 100
#include <libavutil/mastering_display_metadata.h>
#endif

#include "mpv_talloc.h"

#include "config.h"
#include "common/av_common.h"
#include "common/common.h"
#include "hwdec.h"
#include "mp_image.h"
#include "sws_utils.h"
#include "fmt-conversion.h"

const struct m_opt_choice_alternatives mp_spherical_names[] = {
    {"auto",        MP_SPHERICAL_AUTO},
    {"none",        MP_SPHERICAL_NONE},
    {"unknown",     MP_SPHERICAL_UNKNOWN},
    {"equirect",    MP_SPHERICAL_EQUIRECTANGULAR},
    {0}
};

// Determine strides, plane sizes, and total required size for an image
// allocation. Returns total size on success, <0 on error. Unused planes
// have out_stride/out_plane_size to 0, and out_plane_offset set to -1 up
// until MP_MAX_PLANES-1.
static int mp_image_layout(int imgfmt, int w, int h, int stride_align,
                           int out_stride[MP_MAX_PLANES],
                           int out_plane_offset[MP_MAX_PLANES],
                           int out_plane_size[MP_MAX_PLANES])
{
    struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(imgfmt);
    struct mp_image_params params = {.imgfmt = imgfmt, .w = w, .h = h};

    if (!mp_image_params_valid(&params) || desc.flags & MP_IMGFLAG_HWACCEL)
        return -1;

    // Note: for non-mod-2 4:2:0 YUV frames, we have to allocate an additional
    //       top/right border. This is needed for correct handling of such
    //       images in filter and VO code (e.g. vo_vdpau or vo_gpu).

    for (int n = 0; n < MP_MAX_PLANES; n++) {
        int alloc_w = mp_chroma_div_up(w, desc.xs[n]);
        int alloc_h = MP_ALIGN_UP(h, 32) >> desc.ys[n];
        int line_bytes = (alloc_w * desc.bpp[n] + 7) / 8;
        out_stride[n] = MP_ALIGN_UP(line_bytes, stride_align);
        out_plane_size[n] = out_stride[n] * alloc_h;
    }
    if (desc.flags & MP_IMGFLAG_PAL)
        out_plane_size[1] = AVPALETTE_SIZE;

    int sum = 0;
    for (int n = 0; n < MP_MAX_PLANES; n++) {
        out_plane_offset[n] = out_plane_size[n] ? sum : -1;
        sum += out_plane_size[n];
    }

    return sum;
}

// Return the total size needed for an image allocation of the given
// configuration (imgfmt, w, h must be set). Returns -1 on error.
// Assumes the allocation is already aligned on stride_align (otherwise you
// need to add padding yourself).
int mp_image_get_alloc_size(int imgfmt, int w, int h, int stride_align)
{
    int stride[MP_MAX_PLANES];
    int plane_offset[MP_MAX_PLANES];
    int plane_size[MP_MAX_PLANES];
    return mp_image_layout(imgfmt, w, h, stride_align, stride, plane_offset,
                           plane_size);
}

// Fill the mpi->planes and mpi->stride fields of the given mpi with data
// from buffer according to the mpi's w/h/imgfmt fields. See mp_image_from_buffer
// aboud remarks how to allocate/use buffer/buffer_size.
// This does not free the data. You are expected to setup refcounting by
// setting mp_image.bufs before or after this function is called.
// Returns true on success, false on failure.
static bool mp_image_fill_alloc(struct mp_image *mpi, int stride_align,
                                void *buffer, int buffer_size)
{
    int stride[MP_MAX_PLANES];
    int plane_offset[MP_MAX_PLANES];
    int plane_size[MP_MAX_PLANES];
    int size = mp_image_layout(mpi->imgfmt, mpi->w, mpi->h, stride_align,
                               stride, plane_offset, plane_size);
    if (size < 0 || size > buffer_size)
        return false;

    int align = MP_ALIGN_UP((uintptr_t)buffer, stride_align) - (uintptr_t)buffer;
    if (buffer_size - size < align)
        return false;
    uint8_t *s = buffer;
    s += align;

    for (int n = 0; n < MP_MAX_PLANES; n++) {
        mpi->planes[n] = plane_offset[n] >= 0 ? s + plane_offset[n] : NULL;
        mpi->stride[n] = stride[n];
    }

    return true;
}

// Create a mp_image from the provided buffer. The mp_image is filled according
// to the imgfmt/w/h parameters, and respecting the stride_align parameter to
// align the plane start pointers and strides. Once the last reference to the
// returned image is destroyed, free(free_opaque, buffer) is called. (Be aware
// that this can happen from any thread.)
// The allocated size of buffer must be given by buffer_size. buffer_size should
// be at least the value returned by mp_image_get_alloc_size(). If buffer is not
// already aligned to stride_align, the function will attempt to align the
// pointer itself by incrementing the buffer pointer until ther alignment is
// achieved (if buffer_size is not large enough to allow aligning the buffer
// safely, the function fails). To be safe, you may want to overallocate the
// buffer by stride_align bytes, and include the overallocation in buffer_size.
// Returns NULL on failure. On failure, the free() callback is not called.
struct mp_image *mp_image_from_buffer(int imgfmt, int w, int h, int stride_align,
                                      uint8_t *buffer, int buffer_size,
                                      void *free_opaque,
                                      void (*free)(void *opaque, uint8_t *data))
{
    struct mp_image *mpi = mp_image_new_dummy_ref(NULL);
    mp_image_setfmt(mpi, imgfmt);
    mp_image_set_size(mpi, w, h);

    if (!mp_image_fill_alloc(mpi, stride_align, buffer, buffer_size))
        goto fail;

    mpi->bufs[0] = av_buffer_create(buffer, buffer_size, free, free_opaque, 0);
    if (!mpi->bufs[0])
        goto fail;

    return mpi;

fail:
    talloc_free(mpi);
    return NULL;
}

static bool mp_image_alloc_planes(struct mp_image *mpi)
{
    assert(!mpi->planes[0]);
    assert(!mpi->bufs[0]);

    int align = SWS_MIN_BYTE_ALIGN;

    int size = mp_image_get_alloc_size(mpi->imgfmt, mpi->w, mpi->h, align);
    if (size < 0)
        return false;

    // Note: mp_image_pool assumes this creates only 1 AVBufferRef.
    mpi->bufs[0] = av_buffer_alloc(size + align);
    if (!mpi->bufs[0])
        return false;

    if (!mp_image_fill_alloc(mpi, align, mpi->bufs[0]->data, mpi->bufs[0]->size)) {
        av_buffer_unref(&mpi->bufs[0]);
        return false;
    }

    return true;
}

void mp_image_setfmt(struct mp_image *mpi, int out_fmt)
{
    struct mp_image_params params = mpi->params;
    struct mp_imgfmt_desc fmt = mp_imgfmt_get_desc(out_fmt);
    params.imgfmt = fmt.id;
    mpi->fmt = fmt;
    mpi->imgfmt = fmt.id;
    mpi->num_planes = fmt.num_planes;
    mpi->params = params;
}

static void mp_image_destructor(void *ptr)
{
    mp_image_t *mpi = ptr;
    for (int p = 0; p < MP_MAX_PLANES; p++)
        av_buffer_unref(&mpi->bufs[p]);
    av_buffer_unref(&mpi->hwctx);
    av_buffer_unref(&mpi->icc_profile);
    av_buffer_unref(&mpi->a53_cc);
}

int mp_chroma_div_up(int size, int shift)
{
    return (size + (1 << shift) - 1) >> shift;
}

// Return the storage width in pixels of the given plane.
int mp_image_plane_w(struct mp_image *mpi, int plane)
{
    return mp_chroma_div_up(mpi->w, mpi->fmt.xs[plane]);
}

// Return the storage height in pixels of the given plane.
int mp_image_plane_h(struct mp_image *mpi, int plane)
{
    return mp_chroma_div_up(mpi->h, mpi->fmt.ys[plane]);
}

// Caller has to make sure this doesn't exceed the allocated plane data/strides.
void mp_image_set_size(struct mp_image *mpi, int w, int h)
{
    assert(w >= 0 && h >= 0);
    mpi->w = mpi->params.w = w;
    mpi->h = mpi->params.h = h;
}

void mp_image_set_params(struct mp_image *image,
                         const struct mp_image_params *params)
{
    // possibly initialize other stuff
    mp_image_setfmt(image, params->imgfmt);
    mp_image_set_size(image, params->w, params->h);
    image->params = *params;
}

struct mp_image *mp_image_alloc(int imgfmt, int w, int h)
{
    struct mp_image *mpi = talloc_zero(NULL, struct mp_image);
    talloc_set_destructor(mpi, mp_image_destructor);

    mp_image_set_size(mpi, w, h);
    mp_image_setfmt(mpi, imgfmt);
    if (!mp_image_alloc_planes(mpi)) {
        talloc_free(mpi);
        return NULL;
    }
    return mpi;
}

struct mp_image *mp_image_new_copy(struct mp_image *img)
{
    struct mp_image *new = mp_image_alloc(img->imgfmt, img->w, img->h);
    if (!new)
        return NULL;
    mp_image_copy(new, img);
    mp_image_copy_attributes(new, img);
    return new;
}

// Make dst take over the image data of src, and free src.
// This is basically a safe version of *dst = *src; free(src);
// Only works with ref-counted images, and can't change image size/format.
void mp_image_steal_data(struct mp_image *dst, struct mp_image *src)
{
    assert(dst->imgfmt == src->imgfmt && dst->w == src->w && dst->h == src->h);
    assert(dst->bufs[0] && src->bufs[0]);

    mp_image_destructor(dst); // unref old
    talloc_free_children(dst);

    *dst = *src;

    *src = (struct mp_image){0};
    talloc_free(src);
}

// Unref most data buffer (and clear the data array), but leave other fields
// allocated. In particular, mp_image.hwctx is preserved.
void mp_image_unref_data(struct mp_image *img)
{
    for (int n = 0; n < MP_MAX_PLANES; n++) {
        img->planes[n] = NULL;
        img->stride[n] = 0;
        av_buffer_unref(&img->bufs[n]);
    }
}

static bool ref_buffer(AVBufferRef **dst)
{
    if (*dst) {
        *dst = av_buffer_ref(*dst);
        if (!*dst)
            return false;
    }
    return true;
}

// Return a new reference to img. The returned reference is owned by the caller,
// while img is left untouched.
struct mp_image *mp_image_new_ref(struct mp_image *img)
{
    if (!img)
        return NULL;

    if (!img->bufs[0])
        return mp_image_new_copy(img);

    struct mp_image *new = talloc_ptrtype(NULL, new);
    talloc_set_destructor(new, mp_image_destructor);
    *new = *img;

    bool fail = false;
    for (int p = 0; p < MP_MAX_PLANES; p++)
        fail |= !ref_buffer(&new->bufs[p]);

    fail |= !ref_buffer(&new->hwctx);
    fail |= !ref_buffer(&new->icc_profile);
    fail |= !ref_buffer(&new->a53_cc);


    if (!fail)
        return new;

    // Do this after _all_ bufs were changed; we don't want it to free bufs
    // from the original image if this fails.
    talloc_free(new);
    return NULL;
}

struct free_args {
    void *arg;
    void (*free)(void *arg);
};

static void call_free(void *opaque, uint8_t *data)
{
    struct free_args *args = opaque;
    args->free(args->arg);
    talloc_free(args);
}

// Create a new mp_image based on img, but don't set any buffers.
// Using this is only valid until the original img is unreferenced (including
// implicit unreferencing of the data by mp_image_make_writeable()), unless
// a new reference is set.
struct mp_image *mp_image_new_dummy_ref(struct mp_image *img)
{
    struct mp_image *new = talloc_ptrtype(NULL, new);
    talloc_set_destructor(new, mp_image_destructor);
    *new = img ? *img : (struct mp_image){0};
    for (int p = 0; p < MP_MAX_PLANES; p++)
        new->bufs[p] = NULL;
    new->hwctx = NULL;
    return new;
}

// Return a reference counted reference to img. If the reference count reaches
// 0, call free(free_arg). The data passed by img must not be free'd before
// that. The new reference will be writeable.
// On allocation failure, unref the frame and return NULL.
// This is only used for hw decoding; this is important, because libav* expects
// all plane data to be accounted for by AVBufferRefs.
struct mp_image *mp_image_new_custom_ref(struct mp_image *img, void *free_arg,
                                         void (*free)(void *arg))
{
    struct mp_image *new = mp_image_new_dummy_ref(img);

    struct free_args *args = talloc_ptrtype(NULL, args);
    *args = (struct free_args){free_arg, free};
    new->bufs[0] = av_buffer_create(NULL, 0, call_free, args,
                                    AV_BUFFER_FLAG_READONLY);
    if (new->bufs[0])
        return new;
    talloc_free(new);
    return NULL;
}

bool mp_image_is_writeable(struct mp_image *img)
{
    if (!img->bufs[0])
        return true; // not ref-counted => always considered writeable
    for (int p = 0; p < MP_MAX_PLANES; p++) {
        if (!img->bufs[p])
            break;
        if (!av_buffer_is_writable(img->bufs[p]))
            return false;
    }
    return true;
}

// Make the image data referenced by img writeable. This allocates new data
// if the data wasn't already writeable, and img->planes[] and img->stride[]
// will be set to the copy.
// Returns success; if false is returned, the image could not be made writeable.
bool mp_image_make_writeable(struct mp_image *img)
{
    if (mp_image_is_writeable(img))
        return true;

    struct mp_image *new = mp_image_new_copy(img);
    if (!new)
        return false;
    mp_image_steal_data(img, new);
    assert(mp_image_is_writeable(img));
    return true;
}

// Helper function: unrefs *p_img, and sets *p_img to a new ref of new_value.
// Only unrefs *p_img and sets it to NULL if out of memory.
void mp_image_setrefp(struct mp_image **p_img, struct mp_image *new_value)
{
    if (*p_img != new_value) {
        talloc_free(*p_img);
        *p_img = new_value ? mp_image_new_ref(new_value) : NULL;
    }
}

// Mere helper function (mp_image can be directly free'd with talloc_free)
void mp_image_unrefp(struct mp_image **p_img)
{
    talloc_free(*p_img);
    *p_img = NULL;
}

typedef void *(*memcpy_fn)(void *d, const void *s, size_t size);

static void memcpy_pic_cb(void *dst, const void *src, int bytesPerLine, int height,
                          int dstStride, int srcStride, memcpy_fn cpy)
{
    if (bytesPerLine == dstStride && dstStride == srcStride && height) {
        if (srcStride < 0) {
            src = (uint8_t*)src + (height - 1) * srcStride;
            dst = (uint8_t*)dst + (height - 1) * dstStride;
            srcStride = -srcStride;
        }

        cpy(dst, src, srcStride * (height - 1) + bytesPerLine);
    } else {
        for (int i = 0; i < height; i++) {
            cpy(dst, src, bytesPerLine);
            src = (uint8_t*)src + srcStride;
            dst = (uint8_t*)dst + dstStride;
        }
    }
}

static void mp_image_copy_cb(struct mp_image *dst, struct mp_image *src,
                             memcpy_fn cpy)
{
    assert(dst->imgfmt == src->imgfmt);
    assert(dst->w == src->w && dst->h == src->h);
    assert(mp_image_is_writeable(dst));
    for (int n = 0; n < dst->num_planes; n++) {
        int line_bytes = (mp_image_plane_w(dst, n) * dst->fmt.bpp[n] + 7) / 8;
        int plane_h = mp_image_plane_h(dst, n);
        memcpy_pic_cb(dst->planes[n], src->planes[n], line_bytes, plane_h,
                      dst->stride[n], src->stride[n], cpy);
    }
    // Watch out for AV_PIX_FMT_FLAG_PSEUDOPAL retardation
    if ((dst->fmt.flags & MP_IMGFLAG_PAL) && dst->planes[1] && src->planes[1])
        memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
}

void mp_image_copy(struct mp_image *dst, struct mp_image *src)
{
    mp_image_copy_cb(dst, src, memcpy);
}

static enum mp_csp mp_image_params_get_forced_csp(struct mp_image_params *params)
{
    int imgfmt = params->hw_subfmt ? params->hw_subfmt : params->imgfmt;
    return mp_imgfmt_get_forced_csp(imgfmt);
}

void mp_image_copy_attributes(struct mp_image *dst, struct mp_image *src)
{
    dst->pict_type = src->pict_type;
    dst->fields = src->fields;
    dst->pts = src->pts;
    dst->dts = src->dts;
    dst->pkt_duration = src->pkt_duration;
    dst->params.rotate = src->params.rotate;
    dst->params.stereo_in = src->params.stereo_in;
    dst->params.stereo_out = src->params.stereo_out;
    dst->params.p_w = src->params.p_w;
    dst->params.p_h = src->params.p_h;
    dst->params.color = src->params.color;
    dst->params.chroma_location = src->params.chroma_location;
    dst->params.spherical = src->params.spherical;
    // ensure colorspace consistency
    if (mp_image_params_get_forced_csp(&dst->params) !=
        mp_image_params_get_forced_csp(&src->params))
        dst->params.color = (struct mp_colorspace){0};
    if ((dst->fmt.flags & MP_IMGFLAG_PAL) && (src->fmt.flags & MP_IMGFLAG_PAL)) {
        if (dst->planes[1] && src->planes[1]) {
            if (mp_image_make_writeable(dst))
                memcpy(dst->planes[1], src->planes[1], AVPALETTE_SIZE);
        }
    }
    av_buffer_unref(&dst->icc_profile);
    dst->icc_profile = src->icc_profile;
    if (dst->icc_profile) {
        dst->icc_profile = av_buffer_ref(dst->icc_profile);
        if (!dst->icc_profile)
            abort();
    }
}

// Crop the given image to (x0, y0)-(x1, y1) (bottom/right border exclusive)
// x0/y0 must be naturally aligned.
void mp_image_crop(struct mp_image *img, int x0, int y0, int x1, int y1)
{
    assert(x0 >= 0 && y0 >= 0);
    assert(x0 <= x1 && y0 <= y1);
    assert(x1 <= img->w && y1 <= img->h);
    assert(!(x0 & (img->fmt.align_x - 1)));
    assert(!(y0 & (img->fmt.align_y - 1)));

    for (int p = 0; p < img->num_planes; ++p) {
        img->planes[p] += (y0 >> img->fmt.ys[p]) * img->stride[p] +
                          (x0 >> img->fmt.xs[p]) * img->fmt.bpp[p] / 8;
    }
    mp_image_set_size(img, x1 - x0, y1 - y0);
}

void mp_image_crop_rc(struct mp_image *img, struct mp_rect rc)
{
    mp_image_crop(img, rc.x0, rc.y0, rc.x1, rc.y1);
}

// Bottom/right border is allowed not to be aligned, but it might implicitly
// overwrite pixel data until the alignment (align_x/align_y) is reached.
void mp_image_clear(struct mp_image *img, int x0, int y0, int x1, int y1)
{
    assert(x0 >= 0 && y0 >= 0);
    assert(x0 <= x1 && y0 <= y1);
    assert(x1 <= img->w && y1 <= img->h);
    assert(!(x0 & (img->fmt.align_x - 1)));
    assert(!(y0 & (img->fmt.align_y - 1)));

    struct mp_image area = *img;
    mp_image_crop(&area, x0, y0, x1, y1);

    uint32_t plane_clear[MP_MAX_PLANES] = {0};

    if (area.imgfmt == IMGFMT_UYVY) {
        plane_clear[0] = av_le2ne16(0x0080);
    } else if (area.fmt.flags & MP_IMGFLAG_YUV_NV) {
        plane_clear[1] = 0x8080;
    } else if (area.fmt.flags & MP_IMGFLAG_YUV_P) {
        uint16_t chroma_clear = (1 << area.fmt.plane_bits) / 2;
        if (!(area.fmt.flags & MP_IMGFLAG_NE))
            chroma_clear = av_bswap16(chroma_clear);
        if (area.num_planes > 2)
            plane_clear[1] = plane_clear[2] = chroma_clear;
    }

    for (int p = 0; p < area.num_planes; p++) {
        int bpp = area.fmt.bpp[p];
        int bytes = (mp_image_plane_w(&area, p) * bpp + 7) / 8;
        if (bpp <= 8) {
            memset_pic(area.planes[p], plane_clear[p], bytes,
                       mp_image_plane_h(&area, p), area.stride[p]);
        } else {
            memset16_pic(area.planes[p], plane_clear[p], (bytes + 1) / 2,
                         mp_image_plane_h(&area, p), area.stride[p]);
        }
    }
}

void mp_image_vflip(struct mp_image *img)
{
    for (int p = 0; p < img->num_planes; p++) {
        int plane_h = mp_image_plane_h(img, p);
        img->planes[p] = img->planes[p] + img->stride[p] * (plane_h - 1);
        img->stride[p] = -img->stride[p];
    }
}

// Display size derived from image size and pixel aspect ratio.
void mp_image_params_get_dsize(const struct mp_image_params *p,
                               int *d_w, int *d_h)
{
    *d_w = p->w;
    *d_h = p->h;
    if (p->p_w > p->p_h && p->p_h >= 1)
        *d_w = MPCLAMP(*d_w * (int64_t)p->p_w / p->p_h, 1, INT_MAX);
    if (p->p_h > p->p_w && p->p_w >= 1)
        *d_h = MPCLAMP(*d_h * (int64_t)p->p_h / p->p_w, 1, INT_MAX);
}

void mp_image_params_set_dsize(struct mp_image_params *p, int d_w, int d_h)
{
    AVRational ds = av_div_q((AVRational){d_w, d_h}, (AVRational){p->w, p->h});
    p->p_w = ds.num;
    p->p_h = ds.den;
}

char *mp_image_params_to_str_buf(char *b, size_t bs,
                                 const struct mp_image_params *p)
{
    if (p && p->imgfmt) {
        snprintf(b, bs, "%dx%d", p->w, p->h);
        if (p->p_w != p->p_h || !p->p_w)
            mp_snprintf_cat(b, bs, " [%d:%d]", p->p_w, p->p_h);
        mp_snprintf_cat(b, bs, " %s", mp_imgfmt_to_name(p->imgfmt));
        if (p->hw_subfmt)
            mp_snprintf_cat(b, bs, "[%s]", mp_imgfmt_to_name(p->hw_subfmt));
        if (p->hw_flags)
            mp_snprintf_cat(b, bs, "[0x%x]", p->hw_flags);
        mp_snprintf_cat(b, bs, " %s/%s/%s/%s/%s",
                        m_opt_choice_str(mp_csp_names, p->color.space),
                        m_opt_choice_str(mp_csp_prim_names, p->color.primaries),
                        m_opt_choice_str(mp_csp_trc_names, p->color.gamma),
                        m_opt_choice_str(mp_csp_levels_names, p->color.levels),
                        m_opt_choice_str(mp_csp_light_names, p->color.light));
        if (p->color.sig_peak)
            mp_snprintf_cat(b, bs, " SP=%f", p->color.sig_peak);
        mp_snprintf_cat(b, bs, " CL=%s",
                        m_opt_choice_str(mp_chroma_names, p->chroma_location));
        if (p->rotate)
            mp_snprintf_cat(b, bs, " rot=%d", p->rotate);
        if (p->stereo_in > 0 || p->stereo_out > 0) {
            mp_snprintf_cat(b, bs, " stereo=%s/%s",
                            MP_STEREO3D_NAME_DEF(p->stereo_in, "?"),
                            MP_STEREO3D_NAME_DEF(p->stereo_out, "?"));
        }
        if (p->spherical.type != MP_SPHERICAL_NONE) {
            const float *a = p->spherical.ref_angles;
            mp_snprintf_cat(b, bs, " (%s %f/%f/%f)",
                            m_opt_choice_str(mp_spherical_names, p->spherical.type),
                            a[0], a[1], a[2]);
        }
    } else {
        snprintf(b, bs, "???");
    }
    return b;
}

// Return whether the image parameters are valid.
// Some non-essential fields are allowed to be unset (like colorspace flags).
bool mp_image_params_valid(const struct mp_image_params *p)
{
    // av_image_check_size has similar checks and triggers around 16000*16000
    // It's mostly needed to deal with the fact that offsets are sometimes
    // ints. We also should (for now) do the same as FFmpeg, to be sure large
    // images don't crash with libswscale or when wrapping with AVFrame and
    // passing the result to filters.
    if (p->w <= 0 || p->h <= 0 || (p->w + 128LL) * (p->h + 128LL) >= INT_MAX / 8)
        return false;

    if (p->p_w < 0 || p->p_h < 0)
        return false;

    if (p->rotate < 0 || p->rotate >= 360)
        return false;

    struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(p->imgfmt);
    if (!desc.id)
        return false;

    if (p->hw_subfmt && !(desc.flags & MP_IMGFLAG_HWACCEL))
        return false;

    return true;
}

static bool mp_spherical_equal(const struct mp_spherical_params *p1,
                               const struct mp_spherical_params *p2)
{
    for (int n = 0; n < 3; n++) {
        if (p1->ref_angles[n] != p2->ref_angles[n])
            return false;
    }
    return p1->type == p2->type;
}

bool mp_image_params_equal(const struct mp_image_params *p1,
                           const struct mp_image_params *p2)
{
    return p1->imgfmt == p2->imgfmt &&
           p1->hw_subfmt == p2->hw_subfmt &&
           p1->hw_flags == p2->hw_flags &&
           p1->w == p2->w && p1->h == p2->h &&
           p1->p_w == p2->p_w && p1->p_h == p2->p_h &&
           mp_colorspace_equal(p1->color, p2->color) &&
           p1->chroma_location == p2->chroma_location &&
           p1->rotate == p2->rotate &&
           p1->stereo_in == p2->stereo_in &&
           p1->stereo_out == p2->stereo_out &&
           mp_spherical_equal(&p1->spherical, &p2->spherical);
}

// Set most image parameters, but not image format or size.
// Display size is used to set the PAR.
void mp_image_set_attributes(struct mp_image *image,
                             const struct mp_image_params *params)
{
    struct mp_image_params nparams = *params;
    nparams.imgfmt = image->imgfmt;
    nparams.w = image->w;
    nparams.h = image->h;
    if (nparams.imgfmt != params->imgfmt)
        nparams.color = (struct mp_colorspace){0};
    mp_image_set_params(image, &nparams);
}

// If details like params->colorspace/colorlevels are missing, guess them from
// the other settings. Also, even if they are set, make them consistent with
// the colorspace as implied by the pixel format.
void mp_image_params_guess_csp(struct mp_image_params *params)
{
    enum mp_csp forced_csp = mp_image_params_get_forced_csp(params);
    if (forced_csp == MP_CSP_AUTO) { // YUV/other
        if (params->color.space != MP_CSP_BT_601 &&
            params->color.space != MP_CSP_BT_709 &&
            params->color.space != MP_CSP_BT_2020_NC &&
            params->color.space != MP_CSP_BT_2020_C &&
            params->color.space != MP_CSP_SMPTE_240M &&
            params->color.space != MP_CSP_YCGCO)
        {
            // Makes no sense, so guess instead
            // YCGCO should be separate, but libavcodec disagrees
            params->color.space = MP_CSP_AUTO;
        }
        if (params->color.space == MP_CSP_AUTO)
            params->color.space = mp_csp_guess_colorspace(params->w, params->h);
        if (params->color.levels == MP_CSP_LEVELS_AUTO) {
            if (params->color.gamma == MP_CSP_TRC_V_LOG) {
                params->color.levels = MP_CSP_LEVELS_PC;
            } else {
                params->color.levels = MP_CSP_LEVELS_TV;
            }
        }
        if (params->color.primaries == MP_CSP_PRIM_AUTO) {
            // Guess based on the colormatrix as a first priority
            if (params->color.space == MP_CSP_BT_2020_NC ||
                params->color.space == MP_CSP_BT_2020_C) {
                params->color.primaries = MP_CSP_PRIM_BT_2020;
            } else if (params->color.space == MP_CSP_BT_709) {
                params->color.primaries = MP_CSP_PRIM_BT_709;
            } else {
                // Ambiguous colormatrix for BT.601, guess based on res
                params->color.primaries = mp_csp_guess_primaries(params->w, params->h);
            }
        }
        if (params->color.gamma == MP_CSP_TRC_AUTO)
            params->color.gamma = MP_CSP_TRC_BT_1886;
    } else if (forced_csp == MP_CSP_RGB) {
        params->color.space = MP_CSP_RGB;
        params->color.levels = MP_CSP_LEVELS_PC;

        // The majority of RGB content is either sRGB or (rarely) some other
        // color space which we don't even handle, like AdobeRGB or
        // ProPhotoRGB. The only reasonable thing we can do is assume it's
        // sRGB and hope for the best, which should usually just work out fine.
        // Note: sRGB primaries = BT.709 primaries
        if (params->color.primaries == MP_CSP_PRIM_AUTO)
            params->color.primaries = MP_CSP_PRIM_BT_709;
        if (params->color.gamma == MP_CSP_TRC_AUTO)
            params->color.gamma = MP_CSP_TRC_SRGB;
    } else if (forced_csp == MP_CSP_XYZ) {
        params->color.space = MP_CSP_XYZ;
        params->color.levels = MP_CSP_LEVELS_PC;

        // The default XYZ matrix converts it to BT.709 color space
        // since that's the most likely scenario. Proper VOs should ignore
        // this field as well as the matrix and treat XYZ input as absolute,
        // but for VOs which use the matrix (and hence, consult this field)
        // this is the correct parameter. This doubles as a reasonable output
        // gamut for VOs which *do* use the specialized XYZ matrix but don't
        // know any better output gamut other than whatever the source is
        // tagged with.
        if (params->color.primaries == MP_CSP_PRIM_AUTO)
            params->color.primaries = MP_CSP_PRIM_BT_709;
        if (params->color.gamma == MP_CSP_TRC_AUTO)
            params->color.gamma = MP_CSP_TRC_LINEAR;
    } else {
        // We have no clue.
        params->color.space = MP_CSP_AUTO;
        params->color.levels = MP_CSP_LEVELS_AUTO;
        params->color.primaries = MP_CSP_PRIM_AUTO;
        params->color.gamma = MP_CSP_TRC_AUTO;
    }

    if (!params->color.sig_peak) {
        if (params->color.gamma == MP_CSP_TRC_HLG) {
            params->color.sig_peak = 1000 / MP_REF_WHITE; // reference display
        } else {
            // If the signal peak is unknown, we're forced to pick the TRC's
            // nominal range as the signal peak to prevent clipping
            params->color.sig_peak = mp_trc_nom_peak(params->color.gamma);
        }
    }

    if (params->chroma_location == MP_CHROMA_AUTO) {
        if (params->color.levels == MP_CSP_LEVELS_TV)
            params->chroma_location = MP_CHROMA_LEFT;
        if (params->color.levels == MP_CSP_LEVELS_PC)
            params->chroma_location = MP_CHROMA_CENTER;
    }

    if (params->color.light == MP_CSP_LIGHT_AUTO) {
        // HLG is always scene-referred (using its own OOTF), everything else
        // we assume is display-refered by default.
        if (params->color.gamma == MP_CSP_TRC_HLG) {
            params->color.light = MP_CSP_LIGHT_SCENE_HLG;
        } else {
            params->color.light = MP_CSP_LIGHT_DISPLAY;
        }
    }
}

// Create a new mp_image reference to av_frame.
struct mp_image *mp_image_from_av_frame(struct AVFrame *src)
{
    struct mp_image *dst = &(struct mp_image){0};
    AVFrameSideData *sd;

    for (int p = 0; p < MP_MAX_PLANES; p++)
        dst->bufs[p] = src->buf[p];

    dst->hwctx = src->hw_frames_ctx;

    mp_image_setfmt(dst, pixfmt2imgfmt(src->format));
    mp_image_set_size(dst, src->width, src->height);

    dst->params.p_w = src->sample_aspect_ratio.num;
    dst->params.p_h = src->sample_aspect_ratio.den;

    for (int i = 0; i < 4; i++) {
        dst->planes[i] = src->data[i];
        dst->stride[i] = src->linesize[i];
    }

    dst->pict_type = src->pict_type;

    dst->fields = 0;
    if (src->interlaced_frame)
        dst->fields |= MP_IMGFIELD_INTERLACED;
    if (src->top_field_first)
        dst->fields |= MP_IMGFIELD_TOP_FIRST;
    if (src->repeat_pict == 1)
        dst->fields |= MP_IMGFIELD_REPEAT_FIRST;

    dst->params.color = (struct mp_colorspace){
        .space = avcol_spc_to_mp_csp(src->colorspace),
        .levels = avcol_range_to_mp_csp_levels(src->color_range),
        .primaries = avcol_pri_to_mp_csp_prim(src->color_primaries),
        .gamma = avcol_trc_to_mp_csp_trc(src->color_trc),
    };

    dst->params.chroma_location = avchroma_location_to_mp(src->chroma_location);

    if (src->opaque_ref) {
        struct mp_image_params *p = (void *)src->opaque_ref->data;
        dst->params.rotate = p->rotate;
        dst->params.stereo_in = p->stereo_in;
        dst->params.stereo_out = p->stereo_out;
        dst->params.spherical = p->spherical;
        // Might be incorrect if colorspace changes.
        dst->params.color.light = p->color.light;
    }

#if LIBAVUTIL_VERSION_MICRO >= 100
    sd = av_frame_get_side_data(src, AV_FRAME_DATA_ICC_PROFILE);
    if (sd)
        dst->icc_profile = av_buffer_ref(sd->buf);

    // Get the content light metadata if available
    sd = av_frame_get_side_data(src, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL);
    if (sd) {
        AVContentLightMetadata *clm = (AVContentLightMetadata *)sd->data;
        dst->params.color.sig_peak = clm->MaxCLL / MP_REF_WHITE;
    }

    // Otherwise, try getting the mastering metadata if available
    sd = av_frame_get_side_data(src, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA);
    if (!dst->params.color.sig_peak && sd) {
        AVMasteringDisplayMetadata *mdm = (AVMasteringDisplayMetadata *)sd->data;
        if (mdm->has_luminance)
            dst->params.color.sig_peak = av_q2d(mdm->max_luminance) / MP_REF_WHITE;
    }

    sd = av_frame_get_side_data(src, AV_FRAME_DATA_A53_CC);
    if (sd)
        dst->a53_cc = av_buffer_ref(sd->buf);
#endif

    if (dst->hwctx) {
        AVHWFramesContext *fctx = (void *)dst->hwctx->data;
        dst->params.hw_subfmt = pixfmt2imgfmt(fctx->sw_format);
        const struct hwcontext_fns *fns =
            hwdec_get_hwcontext_fns(fctx->device_ctx->type);
        if (fns && fns->complete_image_params)
            fns->complete_image_params(dst);
    }

    return mp_image_new_ref(dst);
}


// Convert the mp_image reference to a AVFrame reference.
struct AVFrame *mp_image_to_av_frame(struct mp_image *src)
{
    struct mp_image *new_ref = mp_image_new_ref(src);
    AVFrame *dst = av_frame_alloc();
    if (!dst || !new_ref) {
        talloc_free(new_ref);
        av_frame_free(&dst);
        return NULL;
    }

    for (int p = 0; p < MP_MAX_PLANES; p++) {
        dst->buf[p] = new_ref->bufs[p];
        new_ref->bufs[p] = NULL;
    }

    dst->hw_frames_ctx = new_ref->hwctx;
    new_ref->hwctx = NULL;

    dst->format = imgfmt2pixfmt(src->imgfmt);
    dst->width = src->w;
    dst->height = src->h;

    dst->sample_aspect_ratio.num = src->params.p_w;
    dst->sample_aspect_ratio.den = src->params.p_h;

    for (int i = 0; i < 4; i++) {
        dst->data[i] = src->planes[i];
        dst->linesize[i] = src->stride[i];
    }
    dst->extended_data = dst->data;

    dst->pict_type = src->pict_type;
    if (src->fields & MP_IMGFIELD_INTERLACED)
        dst->interlaced_frame = 1;
    if (src->fields & MP_IMGFIELD_TOP_FIRST)
        dst->top_field_first = 1;
    if (src->fields & MP_IMGFIELD_REPEAT_FIRST)
        dst->repeat_pict = 1;

    dst->colorspace = mp_csp_to_avcol_spc(src->params.color.space);
    dst->color_range = mp_csp_levels_to_avcol_range(src->params.color.levels);
    dst->color_primaries =
        mp_csp_prim_to_avcol_pri(src->params.color.primaries);
    dst->color_trc = mp_csp_trc_to_avcol_trc(src->params.color.gamma);

    dst->chroma_location = mp_chroma_location_to_av(src->params.chroma_location);

    dst->opaque_ref = av_buffer_alloc(sizeof(struct mp_image_params));
    if (!dst->opaque_ref)
        abort();
    *(struct mp_image_params *)dst->opaque_ref->data = src->params;

#if LIBAVUTIL_VERSION_MICRO >= 100
    if (src->icc_profile) {
        AVFrameSideData *sd =
            ffmpeg_garbage(dst, AV_FRAME_DATA_ICC_PROFILE, new_ref->icc_profile);
        if (!sd)
            abort();
        new_ref->icc_profile = NULL;
    }

    if (src->params.color.sig_peak) {
        AVContentLightMetadata *clm =
            av_content_light_metadata_create_side_data(dst);
        if (!clm)
            abort();
        clm->MaxCLL = src->params.color.sig_peak * MP_REF_WHITE;
    }
#endif

    talloc_free(new_ref);

    if (dst->format == AV_PIX_FMT_NONE)
        av_frame_free(&dst);
    return dst;
}

// Same as mp_image_to_av_frame(), but unref img. (It does so even on failure.)
struct AVFrame *mp_image_to_av_frame_and_unref(struct mp_image *img)
{
    AVFrame *frame = mp_image_to_av_frame(img);
    talloc_free(img);
    return frame;
}

void memcpy_pic(void *dst, const void *src, int bytesPerLine, int height,
                int dstStride, int srcStride)
{
    memcpy_pic_cb(dst, src, bytesPerLine, height, dstStride, srcStride, memcpy);
}

void memset_pic(void *dst, int fill, int bytesPerLine, int height, int stride)
{
    if (bytesPerLine == stride && height) {
        memset(dst, fill, stride * (height - 1) + bytesPerLine);
    } else {
        for (int i = 0; i < height; i++) {
            memset(dst, fill, bytesPerLine);
            dst = (uint8_t *)dst + stride;
        }
    }
}

void memset16_pic(void *dst, int fill, int unitsPerLine, int height, int stride)
{
    if (fill == 0) {
        memset_pic(dst, 0, unitsPerLine * 2, height, stride);
    } else {
        for (int i = 0; i < height; i++) {
            uint16_t *line = dst;
            uint16_t *end = line + unitsPerLine;
            while (line < end)
                *line++ = fill;
            dst = (uint8_t *)dst + stride;
        }
    }
}