/* * This file is part of mpv. * * mpv is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * mpv is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with mpv. If not, see . * * You can alternatively redistribute this file and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include "gl_video.h" #include "misc/bstr.h" #include "gl_common.h" #include "gl_utils.h" #include "gl_hwdec.h" #include "gl_osd.h" #include "filter_kernels.h" #include "aspect.h" #include "video/memcpy_pic.h" #include "bitmap_packer.h" #include "dither.h" static const char vo_opengl_shaders[] = // Generated from gl_video_shaders.glsl #include "video/out/gl_video_shaders.h" ; // Pixel width of 1D lookup textures. #define LOOKUP_TEXTURE_SIZE 256 // Texture units 0-3 are used by the video, with unit 0 for free use. // Units 4-5 are used for scaler LUTs. #define TEXUNIT_SCALERS 4 #define TEXUNIT_3DLUT 6 #define TEXUNIT_DITHER 7 // scale/cscale arguments that map directly to shader filter routines. // Note that the convolution filters are not included in this list. static const char *const fixed_scale_filters[] = { "bilinear", "bicubic_fast", "sharpen3", "sharpen5", NULL }; // must be sorted, and terminated with 0 // 2 & 6 are special-cased, the rest can be generated with WEIGHTS_N(). int filter_sizes[] = {2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0}; struct vertex { float position[2]; float texcoord[2]; }; static const struct gl_vao_entry vertex_vao[] = { {"vertex_position", 2, GL_FLOAT, false, offsetof(struct vertex, position)}, {"vertex_texcoord", 2, GL_FLOAT, false, offsetof(struct vertex, texcoord)}, {0} }; struct texplane { int w, h; int tex_w, tex_h; GLint gl_internal_format; GLenum gl_format; GLenum gl_type; GLuint gl_texture; int gl_buffer; int buffer_size; void *buffer_ptr; }; struct video_image { struct texplane planes[4]; bool image_flipped; struct mp_image *mpi; // original input image }; struct scaler { int index; const char *name; float params[2]; float antiring; struct filter_kernel *kernel; GLuint gl_lut; const char *lut_name; bool insufficient; // kernel points here struct filter_kernel kernel_storage; }; struct fbosurface { struct fbotex fbotex; int64_t pts; bool valid; }; #define FBOSURFACES_MAX 2 struct gl_video { GL *gl; struct mp_log *log; struct gl_video_opts opts; bool gl_debug; int depth_g; int texture_16bit_depth; // actual bits available in 16 bit textures GLenum gl_target; // texture target (GL_TEXTURE_2D, ...) for video and FBOs struct gl_vao vao; GLuint osd_programs[SUBBITMAP_COUNT]; GLuint indirect_program, scale_sep_program, final_program, inter_program; struct osd_state *osd_state; struct mpgl_osd *osd; double osd_pts; GLuint lut_3d_texture; bool use_lut_3d; GLuint dither_texture; float dither_quantization; float dither_center; int dither_size; struct mp_image_params real_image_params; // configured format struct mp_image_params image_params; // texture format (mind hwdec case) struct mp_imgfmt_desc image_desc; int plane_count; int image_w, image_h; bool is_yuv, is_rgb, is_packed_yuv; bool has_alpha; char color_swizzle[5]; float chroma_fix[2]; float input_gamma, conv_gamma; float user_gamma; bool user_gamma_enabled; // shader handles user_gamma bool sigmoid_enabled; struct video_image image; struct fbotex indirect_fbo; // RGB target struct fbotex scale_sep_fbo; // first pass when doing 2 pass scaling struct fbosurface surfaces[FBOSURFACES_MAX]; size_t surface_idx; // state for luma (0) and chroma (1) scalers struct scaler scalers[2]; // true if scaler is currently upscaling bool upscaling; // reinit_rendering must be called bool need_reinit_rendering; bool is_interpolated; struct mp_csp_equalizer video_eq; // Source and destination color spaces for the CMS matrix struct mp_csp_primaries csp_src, csp_dest; struct mp_rect src_rect; // displayed part of the source video struct mp_rect dst_rect; // video rectangle on output window struct mp_osd_res osd_rect; // OSD size/margins int vp_x, vp_y, vp_w, vp_h; // GL viewport bool vp_vflipped; int frames_rendered; // Cached because computing it can take relatively long int last_dither_matrix_size; float *last_dither_matrix; struct gl_hwdec *hwdec; bool hwdec_active; void *scratch; }; struct fmt_entry { int mp_format; GLint internal_format; GLenum format; GLenum type; }; // Very special formats, for which OpenGL happens to have direct support static const struct fmt_entry mp_to_gl_formats[] = { {IMGFMT_BGR555, GL_RGBA, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV}, {IMGFMT_BGR565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV}, {IMGFMT_RGB555, GL_RGBA, GL_BGRA, GL_UNSIGNED_SHORT_1_5_5_5_REV}, {IMGFMT_RGB565, GL_RGB, GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, {0}, }; static const struct fmt_entry gl_byte_formats[] = { {0, GL_RED, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8 {0, GL_RG, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8 {0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8 {0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8 {0, GL_R16, GL_RED, GL_UNSIGNED_SHORT}, // 1 x 16 {0, GL_RG16, GL_RG, GL_UNSIGNED_SHORT}, // 2 x 16 {0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT}, // 3 x 16 {0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT}, // 4 x 16 }; static const struct fmt_entry gl_byte_formats_gles3[] = { {0, GL_R8, GL_RED, GL_UNSIGNED_BYTE}, // 1 x 8 {0, GL_RG8, GL_RG, GL_UNSIGNED_BYTE}, // 2 x 8 {0, GL_RGB8, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8 {0, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8 // There are no filterable texture formats that can be uploaded as // GL_UNSIGNED_SHORT, so apparently we're out of luck. {0, 0, 0, 0}, // 1 x 16 {0, 0, 0, 0}, // 2 x 16 {0, 0, 0, 0}, // 3 x 16 {0, 0, 0, 0}, // 4 x 16 }; static const struct fmt_entry gl_byte_formats_gles2[] = { {0, GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE}, // 1 x 8 {0, GL_LUMINANCE_ALPHA, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE}, // 2 x 8 {0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8 {0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8 {0, 0, 0, 0}, // 1 x 16 {0, 0, 0, 0}, // 2 x 16 {0, 0, 0, 0}, // 3 x 16 {0, 0, 0, 0}, // 4 x 16 }; static const struct fmt_entry gl_byte_formats_legacy[] = { {0, GL_LUMINANCE, GL_LUMINANCE, GL_UNSIGNED_BYTE}, // 1 x 8 {0, GL_LUMINANCE_ALPHA, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE}, // 2 x 8 {0, GL_RGB, GL_RGB, GL_UNSIGNED_BYTE}, // 3 x 8 {0, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE}, // 4 x 8 {0, GL_LUMINANCE16, GL_LUMINANCE, GL_UNSIGNED_SHORT},// 1 x 16 {0, GL_LUMINANCE16_ALPHA16, GL_LUMINANCE_ALPHA, GL_UNSIGNED_SHORT},// 2 x 16 {0, GL_RGB16, GL_RGB, GL_UNSIGNED_SHORT},// 3 x 16 {0, GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT},// 4 x 16 }; static const struct fmt_entry gl_float16_formats[] = { {0, GL_R16F, GL_RED, GL_FLOAT}, // 1 x f {0, GL_RG16F, GL_RG, GL_FLOAT}, // 2 x f {0, GL_RGB16F, GL_RGB, GL_FLOAT}, // 3 x f {0, GL_RGBA16F, GL_RGBA, GL_FLOAT}, // 4 x f }; static const struct fmt_entry gl_apple_formats[] = { {IMGFMT_UYVY, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_APPLE}, {IMGFMT_YUYV, GL_RGB, GL_RGB_422_APPLE, GL_UNSIGNED_SHORT_8_8_REV_APPLE}, {0} }; struct packed_fmt_entry { int fmt; int8_t component_size; int8_t components[4]; // source component - 0 means unmapped }; static const struct packed_fmt_entry mp_packed_formats[] = { // w R G B A {IMGFMT_Y8, 1, {1, 0, 0, 0}}, {IMGFMT_Y16, 2, {1, 0, 0, 0}}, {IMGFMT_YA8, 1, {1, 0, 0, 2}}, {IMGFMT_YA16, 2, {1, 0, 0, 2}}, {IMGFMT_ARGB, 1, {2, 3, 4, 1}}, {IMGFMT_0RGB, 1, {2, 3, 4, 0}}, {IMGFMT_BGRA, 1, {3, 2, 1, 4}}, {IMGFMT_BGR0, 1, {3, 2, 1, 0}}, {IMGFMT_ABGR, 1, {4, 3, 2, 1}}, {IMGFMT_0BGR, 1, {4, 3, 2, 0}}, {IMGFMT_RGBA, 1, {1, 2, 3, 4}}, {IMGFMT_RGB0, 1, {1, 2, 3, 0}}, {IMGFMT_BGR24, 1, {3, 2, 1, 0}}, {IMGFMT_RGB24, 1, {1, 2, 3, 0}}, {IMGFMT_RGB48, 2, {1, 2, 3, 0}}, {IMGFMT_RGBA64, 2, {1, 2, 3, 4}}, {IMGFMT_BGRA64, 2, {3, 2, 1, 4}}, {0}, }; static const char *const osd_shaders[SUBBITMAP_COUNT] = { [SUBBITMAP_LIBASS] = "frag_osd_libass", [SUBBITMAP_RGBA] = "frag_osd_rgba", }; const struct gl_video_opts gl_video_opts_def = { .npot = 1, .dither_depth = -1, .dither_size = 6, .fbo_format = GL_RGBA, .sigmoid_center = 0.75, .sigmoid_slope = 6.5, .scalers = { "bilinear", "bilinear" }, .scaler_params = {{NAN, NAN}, {NAN, NAN}}, .scaler_radius = {3, 3}, .alpha_mode = 2, .background = {0, 0, 0, 255}, .gamma = 1.0f, }; const struct gl_video_opts gl_video_opts_hq_def = { .npot = 1, .dither_depth = 0, .dither_size = 6, .fbo_format = GL_RGBA16, .fancy_downscaling = 1, .sigmoid_center = 0.75, .sigmoid_slope = 6.5, .sigmoid_upscaling = 1, .scalers = { "spline36", "bilinear" }, .dscaler = "mitchell", .scaler_params = {{NAN, NAN}, {NAN, NAN}}, .scaler_radius = {3, 3}, .alpha_mode = 2, .background = {0, 0, 0, 255}, .gamma = 1.0f, }; static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt, struct bstr name, struct bstr param); #define OPT_BASE_STRUCT struct gl_video_opts const struct m_sub_options gl_video_conf = { .opts = (const m_option_t[]) { OPT_FLOATRANGE("gamma", gamma, 0, 0.1, 2.0), OPT_FLAG("gamma-auto", gamma_auto, 0), OPT_FLAG("srgb", srgb, 0), OPT_FLAG("npot", npot, 0), OPT_FLAG("pbo", pbo, 0), OPT_STRING_VALIDATE("scale", scalers[0], 0, validate_scaler_opt), OPT_STRING_VALIDATE("cscale", scalers[1], 0, validate_scaler_opt), OPT_STRING_VALIDATE("scale-down", dscaler, 0, validate_scaler_opt), OPT_FLOAT("scale-param1", scaler_params[0][0], 0), OPT_FLOAT("scale-param2", scaler_params[0][1], 0), OPT_FLOAT("cscale-param1", scaler_params[1][0], 0), OPT_FLOAT("cscale-param2", scaler_params[1][1], 0), OPT_FLOATRANGE("scale-radius", scaler_radius[0], 0, 1.0, 16.0), OPT_FLOATRANGE("cscale-radius", scaler_radius[1], 0, 1.0, 16.0), OPT_FLOATRANGE("scale-antiring", scaler_antiring[0], 0, 0.0, 1.0), OPT_FLOATRANGE("cscale-antiring", scaler_antiring[1], 0, 0.0, 1.0), OPT_FLAG("scaler-resizes-only", scaler_resizes_only, 0), OPT_FLAG("linear-scaling", linear_scaling, 0), OPT_FLAG("fancy-downscaling", fancy_downscaling, 0), OPT_FLAG("sigmoid-upscaling", sigmoid_upscaling, 0), OPT_FLOATRANGE("sigmoid-center", sigmoid_center, 0, 0.0, 1.0), OPT_FLOATRANGE("sigmoid-slope", sigmoid_slope, 0, 1.0, 20.0), OPT_CHOICE("fbo-format", fbo_format, 0, ({"rgb", GL_RGB}, {"rgba", GL_RGBA}, {"rgb8", GL_RGB8}, {"rgb10", GL_RGB10}, {"rgb10_a2", GL_RGB10_A2}, {"rgb16", GL_RGB16}, {"rgb16f", GL_RGB16F}, {"rgb32f", GL_RGB32F}, {"rgba12", GL_RGBA12}, {"rgba16", GL_RGBA16}, {"rgba16f", GL_RGBA16F}, {"rgba32f", GL_RGBA32F})), OPT_CHOICE_OR_INT("dither-depth", dither_depth, 0, -1, 16, ({"no", -1}, {"auto", 0})), OPT_CHOICE("dither", dither_algo, 0, ({"fruit", 0}, {"ordered", 1}, {"no", -1})), OPT_INTRANGE("dither-size-fruit", dither_size, 0, 2, 8), OPT_FLAG("temporal-dither", temporal_dither, 0), OPT_CHOICE("chroma-location", chroma_location, 0, ({"auto", MP_CHROMA_AUTO}, {"center", MP_CHROMA_CENTER}, {"left", MP_CHROMA_LEFT})), OPT_CHOICE("alpha", alpha_mode, 0, ({"no", 0}, {"yes", 1}, {"blend", 2})), OPT_FLAG("rectangle-textures", use_rectangle, 0), OPT_COLOR("background", background, 0), OPT_FLAG("smoothmotion", smoothmotion, 0), OPT_FLOAT("smoothmotion-threshold", smoothmotion_threshold, CONF_RANGE, .min = 0, .max = 0.5), OPT_REMOVED("approx-gamma", "this is always enabled now"), OPT_REMOVED("cscale-down", "chroma is never downscaled"), OPT_REMOVED("scale-sep", "this is set automatically whenever sane"), OPT_REMOVED("indirect", "this is set automatically whenever sane"), OPT_REPLACED("lscale", "scale"), OPT_REPLACED("lscale-down", "scale-down"), OPT_REPLACED("lparam1", "scale-param1"), OPT_REPLACED("lparam2", "scale-param2"), OPT_REPLACED("lradius", "scale-radius"), OPT_REPLACED("lantiring", "scale-antiring"), OPT_REPLACED("cparam1", "cscale-param1"), OPT_REPLACED("cparam2", "cscale-param2"), OPT_REPLACED("cradius", "cscale-radius"), OPT_REPLACED("cantiring", "cscale-antiring"), {0} }, .size = sizeof(struct gl_video_opts), .defaults = &gl_video_opts_def, }; static void uninit_rendering(struct gl_video *p); static void delete_shaders(struct gl_video *p); static void check_gl_features(struct gl_video *p); static bool init_format(int fmt, struct gl_video *init); static double get_scale_factor(struct gl_video *p); static const struct fmt_entry *find_tex_format(GL *gl, int bytes_per_comp, int n_channels) { assert(bytes_per_comp == 1 || bytes_per_comp == 2); assert(n_channels >= 1 && n_channels <= 4); const struct fmt_entry *fmts = gl_byte_formats; if (gl->es >= 300) { fmts = gl_byte_formats_gles3; } else if (gl->es) { fmts = gl_byte_formats_gles2; } else if (!(gl->mpgl_caps & MPGL_CAP_TEX_RG)) { fmts = gl_byte_formats_legacy; } return &fmts[n_channels - 1 + (bytes_per_comp - 1) * 4]; } static void debug_check_gl(struct gl_video *p, const char *msg) { if (p->gl_debug) glCheckError(p->gl, p->log, msg); } void gl_video_set_debug(struct gl_video *p, bool enable) { GL *gl = p->gl; p->gl_debug = enable; if (p->gl->debug_context) gl_set_debug_logger(gl, enable ? p->log : NULL); } // Draw a textured quad. // x0, y0, x1, y1 = destination coordinates of the quad in pixels // tx0, ty0, tx1, ty1 = source texture coordinates in pixels // tex_w, tex_h = size of the texture in pixels // flags = bits 0-1: rotate, bits 2: flip vertically static void draw_quad(struct gl_video *p, float x0, float y0, float x1, float y1, float tx0, float ty0, float tx1, float ty1, float tex_w, float tex_h, int flags) { if (p->gl_target != GL_TEXTURE_2D) tex_w = tex_h = 1.0f; if (flags & 4) { float tmp = ty0; ty0 = ty1; ty1 = tmp; } struct vertex va[4] = { { {x0, y0}, {tx0 / tex_w, ty0 / tex_h} }, { {x0, y1}, {tx0 / tex_w, ty1 / tex_h} }, { {x1, y0}, {tx1 / tex_w, ty0 / tex_h} }, { {x1, y1}, {tx1 / tex_w, ty1 / tex_h} }, }; int rot = flags & 3; while (rot--) { static const int perm[4] = {1, 3, 0, 2}; struct vertex vb[4]; memcpy(vb, va, sizeof(vb)); for (int n = 0; n < 4; n++) memcpy(va[n].texcoord, vb[perm[n]].texcoord, sizeof(float[2])); } gl_vao_draw_data(&p->vao, GL_TRIANGLE_STRIP, va, 4); debug_check_gl(p, "after rendering"); } static void transpose3x3(float r[3][3]) { MPSWAP(float, r[0][1], r[1][0]); MPSWAP(float, r[0][2], r[2][0]); MPSWAP(float, r[1][2], r[2][1]); } static void update_uniforms(struct gl_video *p, GLuint program) { GL *gl = p->gl; GLint loc; if (program == 0) return; gl->UseProgram(program); struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS; cparams.gray = p->is_yuv && !p->is_packed_yuv && p->plane_count == 1; cparams.input_bits = p->image_desc.component_bits; cparams.texture_bits = (cparams.input_bits + 7) & ~7; mp_csp_set_image_params(&cparams, &p->image_params); mp_csp_copy_equalizer_values(&cparams, &p->video_eq); if (p->image_desc.flags & MP_IMGFLAG_XYZ) { cparams.colorspace = MP_CSP_XYZ; cparams.input_bits = 8; cparams.texture_bits = 8; } loc = gl->GetUniformLocation(program, "transform"); if (loc >= 0 && p->vp_w > 0 && p->vp_h > 0) { float matrix[3][3]; int vvp[2] = {p->vp_h, 0}; if (p->vp_vflipped) MPSWAP(int, vvp[0], vvp[1]); gl_matrix_ortho2d(matrix, 0, p->vp_w, vvp[0], vvp[1]); gl->UniformMatrix3fv(loc, 1, GL_FALSE, &matrix[0][0]); } loc = gl->GetUniformLocation(program, "colormatrix"); if (loc >= 0) { struct mp_cmat m = {{{0}}}; if (p->image_desc.flags & MP_IMGFLAG_XYZ) { // Hard-coded as relative colorimetric for now, since this transforms // from the source file's D55 material to whatever color space our // projector/display lives in, which should be D55 for a proper // home cinema setup either way. mp_get_xyz2rgb_coeffs(&cparams, p->csp_src, MP_INTENT_RELATIVE_COLORIMETRIC, &m); } else { mp_get_yuv2rgb_coeffs(&cparams, &m); } transpose3x3(m.m); // GLES2 can not transpose in glUniformMatrix3fv gl->UniformMatrix3fv(loc, 1, GL_FALSE, &m.m[0][0]); loc = gl->GetUniformLocation(program, "colormatrix_c"); gl->Uniform3f(loc, m.c[0], m.c[1], m.c[2]); } gl->Uniform1f(gl->GetUniformLocation(program, "input_gamma"), p->input_gamma); gl->Uniform1f(gl->GetUniformLocation(program, "conv_gamma"), p->conv_gamma); // Coefficients for the sigmoidal transform are taken from the // formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal float sig_center = p->opts.sigmoid_center; float sig_slope = p->opts.sigmoid_slope; // This function needs to go through (0,0) and (1,1) so we compute the // values at 1 and 0, and then scale/shift them, respectively. float sig_offset = 1.0/(1+expf(sig_slope * sig_center)); float sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset; gl->Uniform1f(gl->GetUniformLocation(program, "sig_center"), sig_center); gl->Uniform1f(gl->GetUniformLocation(program, "sig_slope"), sig_slope); gl->Uniform1f(gl->GetUniformLocation(program, "sig_scale"), sig_scale); gl->Uniform1f(gl->GetUniformLocation(program, "sig_offset"), sig_offset); gl->Uniform1f(gl->GetUniformLocation(program, "inv_gamma"), 1.0f / p->user_gamma); for (int n = 0; n < p->plane_count; n++) { char textures_n[32]; char textures_size_n[32]; snprintf(textures_n, sizeof(textures_n), "texture%d", n); snprintf(textures_size_n, sizeof(textures_size_n), "textures_size[%d]", n); gl->Uniform1i(gl->GetUniformLocation(program, textures_n), n); if (p->gl_target == GL_TEXTURE_2D) { gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), p->image.planes[n].tex_w, p->image.planes[n].tex_h); } else { // Makes the pixel size calculation code think they are 1x1 gl->Uniform2f(gl->GetUniformLocation(program, textures_size_n), 1, 1); } } loc = gl->GetUniformLocation(program, "chroma_div"); if (loc >= 0) { int xs = p->image_desc.chroma_xs; int ys = p->image_desc.chroma_ys; gl->Uniform2f(loc, 1.0 / (1 << xs), 1.0 / (1 << ys)); } gl->Uniform2f(gl->GetUniformLocation(program, "chroma_fix"), p->chroma_fix[0], p->chroma_fix[1]); loc = gl->GetUniformLocation(program, "chroma_center_offset"); if (loc >= 0) { int chr = p->opts.chroma_location; if (!chr) chr = p->image_params.chroma_location; int cx, cy; mp_get_chroma_location(chr, &cx, &cy); // By default texture coordinates are such that chroma is centered with // any chroma subsampling. If a specific direction is given, make it // so that the luma and chroma sample line up exactly. // For 4:4:4, setting chroma location should have no effect at all. // luma sample size (in chroma coord. space) float ls_w = 1.0 / (1 << p->image_desc.chroma_xs); float ls_h = 1.0 / (1 << p->image_desc.chroma_ys); // move chroma center to luma center (in chroma coord. space) float o_x = ls_w < 1 ? ls_w * -cx / 2 : 0; float o_y = ls_h < 1 ? ls_h * -cy / 2 : 0; int c = p->gl_target == GL_TEXTURE_2D ? 1 : 0; gl->Uniform2f(loc, o_x / FFMAX(p->image.planes[1].w * c, 1), o_y / FFMAX(p->image.planes[1].h * c, 1)); } gl->Uniform2f(gl->GetUniformLocation(program, "dither_size"), p->dither_size, p->dither_size); gl->Uniform1i(gl->GetUniformLocation(program, "lut_3d"), TEXUNIT_3DLUT); loc = gl->GetUniformLocation(program, "cms_matrix"); if (loc >= 0) { float cms_matrix[3][3] = {{0}}; // Hard-coded to relative colorimetric - for a BT.2020 3DLUT we expect // the input to be actual BT.2020 and not something red- or blueshifted, // and for sRGB monitors we most likely want relative scaling either way. mp_get_cms_matrix(p->csp_src, p->csp_dest, MP_INTENT_RELATIVE_COLORIMETRIC, cms_matrix); gl->UniformMatrix3fv(loc, 1, GL_TRUE, &cms_matrix[0][0]); } for (int n = 0; n < 2; n++) { const char *lut = p->scalers[n].lut_name; if (lut) gl->Uniform1i(gl->GetUniformLocation(program, lut), TEXUNIT_SCALERS + n); } gl->Uniform1i(gl->GetUniformLocation(program, "dither"), TEXUNIT_DITHER); gl->Uniform1f(gl->GetUniformLocation(program, "dither_quantization"), p->dither_quantization); gl->Uniform1f(gl->GetUniformLocation(program, "dither_center"), p->dither_center); float sparam1_l = p->opts.scaler_params[0][0]; float sparam1_c = p->opts.scaler_params[1][0]; gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_l"), isnan(sparam1_l) ? 0.5f : sparam1_l); gl->Uniform1f(gl->GetUniformLocation(program, "filter_param1_c"), isnan(sparam1_c) ? 0.5f : sparam1_c); gl->Uniform3f(gl->GetUniformLocation(program, "translation"), 0, 0, 0); gl->UseProgram(0); debug_check_gl(p, "update_uniforms()"); } static void update_all_uniforms(struct gl_video *p) { for (int n = 0; n < SUBBITMAP_COUNT; n++) update_uniforms(p, p->osd->programs[n]); update_uniforms(p, p->indirect_program); update_uniforms(p, p->scale_sep_program); update_uniforms(p, p->final_program); update_uniforms(p, p->inter_program); } #define SECTION_HEADER "#!section " static char *get_section(void *talloc_ctx, struct bstr source, const char *section) { char *res = talloc_strdup(talloc_ctx, ""); bool copy = false; while (source.len) { struct bstr line = bstr_strip_linebreaks(bstr_getline(source, &source)); if (bstr_eatstart(&line, bstr0(SECTION_HEADER))) { copy = bstrcmp0(line, section) == 0; } else if (copy) { res = talloc_asprintf_append_buffer(res, "%.*s\n", BSTR_P(line)); } } return res; } static char *t_concat(void *talloc_ctx, const char *s1, const char *s2) { return talloc_asprintf(talloc_ctx, "%s%s", s1, s2); } static GLuint create_shader(struct gl_video *p, GLenum type, const char *header, const char *source) { GL *gl = p->gl; void *tmp = talloc_new(NULL); const char *full_source = t_concat(tmp, header, source); GLuint shader = gl->CreateShader(type); gl->ShaderSource(shader, 1, &full_source, NULL); gl->CompileShader(shader); GLint status; gl->GetShaderiv(shader, GL_COMPILE_STATUS, &status); GLint log_length; gl->GetShaderiv(shader, GL_INFO_LOG_LENGTH, &log_length); int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR; const char *typestr = type == GL_VERTEX_SHADER ? "vertex" : "fragment"; if (mp_msg_test(p->log, pri)) { MP_MSG(p, pri, "%s shader source:\n", typestr); mp_log_source(p->log, pri, full_source); } if (log_length > 1) { GLchar *logstr = talloc_zero_size(tmp, log_length + 1); gl->GetShaderInfoLog(shader, log_length, NULL, logstr); MP_MSG(p, pri, "%s shader compile log (status=%d):\n%s\n", typestr, status, logstr); } talloc_free(tmp); return shader; } static void prog_create_shader(struct gl_video *p, GLuint program, GLenum type, const char *header, const char *source) { GL *gl = p->gl; GLuint shader = create_shader(p, type, header, source); gl->AttachShader(program, shader); gl->DeleteShader(shader); } static void link_shader(struct gl_video *p, GLuint program) { GL *gl = p->gl; gl->LinkProgram(program); GLint status; gl->GetProgramiv(program, GL_LINK_STATUS, &status); GLint log_length; gl->GetProgramiv(program, GL_INFO_LOG_LENGTH, &log_length); int pri = status ? (log_length > 1 ? MSGL_V : MSGL_DEBUG) : MSGL_ERR; if (mp_msg_test(p->log, pri)) { GLchar *logstr = talloc_zero_size(NULL, log_length + 1); gl->GetProgramInfoLog(program, log_length, NULL, logstr); MP_MSG(p, pri, "shader link log (status=%d): %s\n", status, logstr); talloc_free(logstr); } } #define PRELUDE_END "// -- prelude end\n" static GLuint create_program(struct gl_video *p, const char *name, const char *header, const char *vertex, const char *frag, struct gl_vao *vao) { GL *gl = p->gl; MP_VERBOSE(p, "compiling shader program '%s', header:\n", name); const char *real_header = strstr(header, PRELUDE_END); real_header = real_header ? real_header + strlen(PRELUDE_END) : header; mp_log_source(p->log, MSGL_V, real_header); GLuint prog = gl->CreateProgram(); prog_create_shader(p, prog, GL_VERTEX_SHADER, header, vertex); prog_create_shader(p, prog, GL_FRAGMENT_SHADER, header, frag); gl_vao_bind_attribs(vao, prog); link_shader(p, prog); return prog; } static void shader_def(char **shader, const char *name, const char *value) { *shader = talloc_asprintf_append(*shader, "#define %s %s\n", name, value); } static void shader_def_opt(char **shader, const char *name, bool b) { if (b) shader_def(shader, name, "1"); } #define APPENDF(s_ptr, ...) \ *(s_ptr) = talloc_asprintf_append(*(s_ptr), __VA_ARGS__) static void shader_setup_scaler(char **shader, struct scaler *scaler, int pass) { int unit = scaler->index; const char *target = unit == 0 ? "SAMPLE" : "SAMPLE_C"; if (!scaler->kernel) { APPENDF(shader, "#define %s(p0, p1, p2) " "sample_%s(p0, p1, p2, filter_param1_%c)\n", target, scaler->name, "lc"[unit]); } else { int size = scaler->kernel->size; const char *lut_tex = scaler->lut_name; char name[40]; snprintf(name, sizeof(name), "sample_scaler%d", unit); APPENDF(shader, "#define DEF_SCALER%d \\\n ", unit); char lut_fn[40]; if (scaler->kernel->polar) { double radius = scaler->kernel->radius; int bound = (int)ceil(radius); // SAMPLE_CONVOLUTION_POLAR_R(NAME, R, LUT, WEIGHTS_FN, ANTIRING) APPENDF(shader, "SAMPLE_CONVOLUTION_POLAR_R(%s, %f, %s, WEIGHTS%d, %f)\n", name, radius, lut_tex, unit, scaler->antiring); // Pre-compute unrolled weights matrix APPENDF(shader, "#define WEIGHTS%d(LUT) \\\n ", unit); for (int y = 1-bound; y <= bound; y++) { for (int x = 1-bound; x <= bound; x++) { // Since we can't know the subpixel position in advance, // assume a worst case scenario. int yy = y > 0 ? y-1 : y; int xx = x > 0 ? x-1 : x; double d = sqrt(xx*xx + yy*yy); if (d < radius - 1) { // Samples definitely inside the main ring APPENDF(shader, "SAMPLE_POLAR_%s(LUT, %f, %d, %d) \\\n ", // The center 4 coefficients are the primary // contributors, used to clamp the result for // anti-ringing (x >= 0 && y >= 0 && x <= 1 && y <= 1) ? "PRIMARY" : "HELPER", radius, x, y); } else if (d < radius) { // Samples on the edge, these are potential values APPENDF(shader, "SAMPLE_POLAR_POTENTIAL(LUT, %f, %d, %d) \\\n ", radius, x, y); } } } APPENDF(shader, "\n"); } else { if (size == 2 || size == 6) { snprintf(lut_fn, sizeof(lut_fn), "weights%d", size); } else { snprintf(lut_fn, sizeof(lut_fn), "weights_scaler%d", unit); APPENDF(shader, "WEIGHTS_N(%s, %d) \\\n ", lut_fn, size); } if (pass != -1) { // The direction/pass assignment is rather arbitrary, but fixed in // other parts of the code (like FBO setup). const char *direction = pass == 0 ? "0, 1" : "1, 0"; // SAMPLE_CONVOLUTION_SEP_N(NAME, DIR, N, LUT, WEIGHTS_FUNC, ANTIRING) APPENDF(shader, "SAMPLE_CONVOLUTION_SEP_N(%s, vec2(%s), %d, %s, %s, %f)\n", name, direction, size, lut_tex, lut_fn, scaler->antiring); } else { // SAMPLE_CONVOLUTION_N(NAME, N, LUT, WEIGHTS_FUNC) APPENDF(shader, "SAMPLE_CONVOLUTION_N(%s, %d, %s, %s)\n", name, size, lut_tex, lut_fn); } } APPENDF(shader, "#define %s %s\n", target, name); } } // return false if RGB or 4:4:4 YUV static bool input_is_subsampled(struct gl_video *p) { for (int i = 0; i < p->plane_count; i++) if (p->image_desc.xs[i] || p->image_desc.ys[i]) return true; return false; } static void compile_shaders(struct gl_video *p) { GL *gl = p->gl; debug_check_gl(p, "before shaders"); delete_shaders(p); void *tmp = talloc_new(NULL); struct bstr src = bstr0(vo_opengl_shaders); char *vertex_shader = get_section(tmp, src, "vertex_all"); char *shader_prelude = get_section(tmp, src, "prelude"); char *s_video = get_section(tmp, src, "frag_video"); bool rg = gl->mpgl_caps & MPGL_CAP_TEX_RG; bool tex1d = gl->mpgl_caps & MPGL_CAP_1D_TEX; bool tex3d = gl->mpgl_caps & MPGL_CAP_3D_TEX; bool arrays = gl->mpgl_caps & MPGL_CAP_1ST_CLASS_ARRAYS; char *header = talloc_asprintf(tmp, "#version %d%s\n" "#define HAVE_RG %d\n" "#define HAVE_1DTEX %d\n" "#define HAVE_3DTEX %d\n" "#define HAVE_ARRAYS %d\n" "%s%s", gl->glsl_version, gl->es >= 300 ? " es" : "", rg, tex1d, tex3d, arrays, shader_prelude, PRELUDE_END); bool use_cms = p->opts.srgb || p->use_lut_3d; // 3DLUT overrides sRGB bool use_srgb = p->opts.srgb && !p->use_lut_3d; float input_gamma = 1.0; float conv_gamma = 1.0; bool is_xyz = p->image_desc.flags & MP_IMGFLAG_XYZ; if (is_xyz) { input_gamma *= 2.6; // Note that this results in linear light, so we make sure to enable // use_linear_light for XYZ inputs as well. } p->input_gamma = input_gamma; p->conv_gamma = conv_gamma; bool use_input_gamma = p->input_gamma != 1.0; bool use_conv_gamma = p->conv_gamma != 1.0; bool use_const_luma = p->image_params.colorspace == MP_CSP_BT_2020_C; enum mp_csp_trc gamma_fun = p->image_params.gamma; // If either color correction option (3dlut or srgb) is enabled, or if // sigmoidal upscaling is requested, or if the source is linear XYZ, we // always scale in linear light bool use_linear_light = p->opts.linear_scaling || p->opts.sigmoid_upscaling || use_cms || is_xyz; // The inverse of the above transformation is normally handled by // the CMS cases, but if CMS is disabled we need to go back manually bool use_inv_bt1886 = false; if (use_linear_light && !use_cms) { if (gamma_fun == MP_CSP_TRC_SRGB) { use_srgb = true; } else { use_inv_bt1886 = true; } } // Optionally transform to sigmoidal color space if requested. p->sigmoid_enabled = p->opts.sigmoid_upscaling; bool use_sigmoid = p->sigmoid_enabled && p->upscaling; // Figure out the right color spaces we need to convert, if any enum mp_csp_prim prim_src = p->image_params.primaries, prim_dest; if (use_cms) { // sRGB mode wants sRGB aka BT.709 primaries, but the 3DLUT is // always built against BT.2020. prim_dest = p->opts.srgb ? MP_CSP_PRIM_BT_709 : MP_CSP_PRIM_BT_2020; } else { // If no CMS is being done we just want to output stuff as-is, // in the native colorspace of the source. prim_dest = prim_src; } // XYZ input has no defined input color space, so we can directly convert // it to whatever output space we actually need. if (p->image_desc.flags & MP_IMGFLAG_XYZ) prim_src = prim_dest; // Set the colorspace primaries and figure out whether we need to perform // an extra conversion. p->csp_src = mp_get_csp_primaries(prim_src); p->csp_dest = mp_get_csp_primaries(prim_dest); bool use_cms_matrix = prim_src != prim_dest; if (p->gl_target == GL_TEXTURE_RECTANGLE) { shader_def(&header, "VIDEO_SAMPLER", "sampler2DRect"); shader_def_opt(&header, "USE_RECTANGLE", true); } else { shader_def(&header, "VIDEO_SAMPLER", "sampler2D"); } // Need to pass alpha through the whole chain. (Not needed for OSD shaders.) if (p->opts.alpha_mode == 1) shader_def_opt(&header, "USE_ALPHA", p->has_alpha); char *header_osd = talloc_strdup(tmp, header); shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_BT1886", use_cms && gamma_fun == MP_CSP_TRC_BT_1886); shader_def_opt(&header_osd, "USE_OSD_LINEAR_CONV_SRGB", use_cms && gamma_fun == MP_CSP_TRC_SRGB); shader_def_opt(&header_osd, "USE_OSD_CMS_MATRIX", use_cms_matrix); shader_def_opt(&header_osd, "USE_OSD_3DLUT", p->use_lut_3d); shader_def_opt(&header_osd, "USE_OSD_SRGB", use_cms && use_srgb); for (int n = 0; n < SUBBITMAP_COUNT; n++) { const char *name = osd_shaders[n]; if (name) { char *s_osd = get_section(tmp, src, name); p->osd_programs[n] = create_program(p, name, header_osd, vertex_shader, s_osd, &p->osd->vao); } } struct gl_vao *v = &p->vao; // VAO to use to draw primitives char *header_conv = talloc_strdup(tmp, ""); char *header_final = talloc_strdup(tmp, ""); char *header_inter = talloc_strdup(tmp, ""); char *header_sep = NULL; if (p->image_desc.id == IMGFMT_NV12 || p->image_desc.id == IMGFMT_NV21) { shader_def(&header_conv, "USE_CONV", "CONV_NV12"); } else if (p->plane_count > 1) { shader_def(&header_conv, "USE_CONV", "CONV_PLANAR"); } if (p->color_swizzle[0]) shader_def(&header_conv, "USE_COLOR_SWIZZLE", p->color_swizzle); shader_def_opt(&header_conv, "USE_INPUT_GAMMA", use_input_gamma); shader_def_opt(&header_conv, "USE_COLORMATRIX", !p->is_rgb); shader_def_opt(&header_conv, "USE_CONV_GAMMA", use_conv_gamma); shader_def_opt(&header_conv, "USE_CONST_LUMA", use_const_luma); shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_BT1886", use_linear_light && gamma_fun == MP_CSP_TRC_BT_1886); shader_def_opt(&header_conv, "USE_LINEAR_LIGHT_SRGB", use_linear_light && gamma_fun == MP_CSP_TRC_SRGB); shader_def_opt(&header_conv, "USE_SIGMOID", use_sigmoid); if (p->opts.alpha_mode > 0 && p->has_alpha && p->plane_count > 3) shader_def(&header_conv, "USE_ALPHA_PLANE", "3"); if (p->opts.alpha_mode == 2 && p->has_alpha) shader_def(&header_conv, "USE_ALPHA_BLEND", "1"); shader_def_opt(&header_conv, "USE_CHROMA_FIX", p->chroma_fix[0] != 1.0f || p->chroma_fix[1] != 1.0f); shader_def_opt(&header_final, "USE_SIGMOID_INV", use_sigmoid); shader_def_opt(&header_final, "USE_INV_GAMMA", p->user_gamma_enabled); shader_def_opt(&header_final, "USE_CMS_MATRIX", use_cms_matrix); shader_def_opt(&header_final, "USE_3DLUT", p->use_lut_3d); shader_def_opt(&header_final, "USE_SRGB", use_srgb); shader_def_opt(&header_final, "USE_INV_BT1886", use_inv_bt1886); shader_def_opt(&header_final, "USE_DITHER", p->dither_texture != 0); shader_def_opt(&header_final, "USE_TEMPORAL_DITHER", p->opts.temporal_dither); if (p->scalers[0].kernel && !p->scalers[0].kernel->polar) { header_sep = talloc_strdup(tmp, ""); shader_def_opt(&header_sep, "FIXED_SCALE", true); shader_setup_scaler(&header_sep, &p->scalers[0], 0); shader_setup_scaler(&header_inter, &p->scalers[0], 1); } else { shader_setup_scaler(&header_inter, &p->scalers[0], -1); } bool use_interpolation = p->opts.smoothmotion; if (use_interpolation) { shader_def_opt(&header_inter, "FIXED_SCALE", true); shader_def_opt(&header_final, "USE_LINEAR_INTERPOLATION", 1); } // The indirect pass is used to preprocess the image before scaling. bool use_indirect = false; // Don't sample from input video textures before converting the input to // its proper gamma. if (use_input_gamma || use_conv_gamma || use_linear_light || use_const_luma) use_indirect = true; // Trivial scalers are implemented directly and efficiently by the GPU. // This only includes bilinear and nearest neighbour in OpenGL, but we // don't support nearest neighbour upsampling. bool trivial_scaling = strcmp(p->scalers[0].name, "bilinear") == 0 && strcmp(p->scalers[1].name, "bilinear") == 0; // If the video is subsampled, chroma information needs to be pulled up to // the input size before scaling can be done. Even for 4:4:4 or planar RGB // this is also faster because it means the scalers can operate on all // channels simultaneously. This is unnecessary for trivial scaling. if (p->plane_count > 1 && !trivial_scaling) use_indirect = true; if (input_is_subsampled(p)) { shader_setup_scaler(&header_conv, &p->scalers[1], -1); } else { // Force using the normal scaler on chroma. If the "indirect" stage is // used, the actual scaling will happen in the next stage. shader_def(&header_conv, "SAMPLE_C", use_indirect ? "SAMPLE_TRIVIAL" : "SAMPLE"); } if (use_indirect) { // We don't use filtering for the Y-plane (luma), because it's never // scaled in this scenario. shader_def(&header_conv, "SAMPLE", "SAMPLE_TRIVIAL"); shader_def_opt(&header_conv, "FIXED_SCALE", true); header_conv = t_concat(tmp, header, header_conv); p->indirect_program = create_program(p, "indirect", header_conv, vertex_shader, s_video, v); } else if (header_sep) { header_sep = t_concat(tmp, header_sep, header_conv); } else { header_inter = t_concat(tmp, header_inter, header_conv); } if (header_sep) { header_sep = t_concat(tmp, header, header_sep); p->scale_sep_program = create_program(p, "scale_sep", header_sep, vertex_shader, s_video, v); } if (use_interpolation) { header_inter = t_concat(tmp, header, header_inter); p->inter_program = create_program(p, "inter", header_inter, vertex_shader, s_video, v); } else { header_final = t_concat(tmp, header_final, header_inter); } header_final = t_concat(tmp, header, header_final); p->final_program = create_program(p, "final", header_final, vertex_shader, s_video, v); debug_check_gl(p, "shader compilation"); talloc_free(tmp); } static void delete_program(GL *gl, GLuint *prog) { gl->DeleteProgram(*prog); *prog = 0; } static void delete_shaders(struct gl_video *p) { GL *gl = p->gl; for (int n = 0; n < SUBBITMAP_COUNT; n++) delete_program(gl, &p->osd->programs[n]); delete_program(gl, &p->indirect_program); delete_program(gl, &p->scale_sep_program); delete_program(gl, &p->final_program); delete_program(gl, &p->inter_program); } static void get_scale_factors(struct gl_video *p, double xy[2]) { xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) / (double)(p->src_rect.x1 - p->src_rect.x0); xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) / (double)(p->src_rect.y1 - p->src_rect.y0); } static double get_scale_factor(struct gl_video *p) { double xy[2]; get_scale_factors(p, xy); return FFMIN(xy[0], xy[1]); } static void update_scale_factor(struct gl_video *p, struct scaler *scaler) { double scale = 1.0; double xy[2]; get_scale_factors(p, xy); double f = MPMIN(xy[0], xy[1]); if (p->opts.fancy_downscaling && scaler->index == 0 && f < 1.0 && fabs(xy[0] - f) < 0.01 && fabs(xy[1] - f) < 0.01) { MP_VERBOSE(p, "Using fancy-downscaling (scaler %d).\n", scaler->index); scale = FFMAX(1.0, 1.0 / f); } scaler->insufficient = !mp_init_filter(scaler->kernel, filter_sizes, scale); } static void init_scaler(struct gl_video *p, struct scaler *scaler) { GL *gl = p->gl; assert(scaler->name); scaler->kernel = NULL; scaler->insufficient = false; const struct filter_kernel *t_kernel = mp_find_filter_kernel(scaler->name); if (!t_kernel) return; scaler->kernel_storage = *t_kernel; scaler->kernel = &scaler->kernel_storage; for (int n = 0; n < 2; n++) { if (!isnan(p->opts.scaler_params[scaler->index][n])) scaler->kernel->params[n] = p->opts.scaler_params[scaler->index][n]; } scaler->antiring = p->opts.scaler_antiring[scaler->index]; if (scaler->kernel->radius < 0) scaler->kernel->radius = p->opts.scaler_radius[scaler->index]; update_scale_factor(p, scaler); int size = scaler->kernel->size; int elems_per_pixel = 4; if (size == 1) { elems_per_pixel = 1; } else if (size == 2) { elems_per_pixel = 2; } else if (size == 6) { elems_per_pixel = 3; } int width = size / elems_per_pixel; assert(size == width * elems_per_pixel); const struct fmt_entry *fmt = &gl_float16_formats[elems_per_pixel - 1]; int target; if (scaler->kernel->polar) { target = GL_TEXTURE_1D; scaler->lut_name = scaler->index == 0 ? "lut_1d_l" : "lut_1d_c"; } else { target = GL_TEXTURE_2D; scaler->lut_name = scaler->index == 0 ? "lut_2d_l" : "lut_2d_c"; } gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_SCALERS + scaler->index); if (!scaler->gl_lut) gl->GenTextures(1, &scaler->gl_lut); gl->BindTexture(target, scaler->gl_lut); float *weights = talloc_array(NULL, float, LOOKUP_TEXTURE_SIZE * size); mp_compute_lut(scaler->kernel, LOOKUP_TEXTURE_SIZE, weights); if (target == GL_TEXTURE_1D) { gl->TexImage1D(target, 0, fmt->internal_format, LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT, weights); } else { gl->TexImage2D(target, 0, fmt->internal_format, width, LOOKUP_TEXTURE_SIZE, 0, fmt->format, GL_FLOAT, weights); } talloc_free(weights); gl->TexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); if (target != GL_TEXTURE_1D) gl->TexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl->ActiveTexture(GL_TEXTURE0); debug_check_gl(p, "after initializing scaler"); } static void init_dither(struct gl_video *p) { GL *gl = p->gl; // Assume 8 bits per component if unknown. int dst_depth = p->depth_g ? p->depth_g : 8; if (p->opts.dither_depth > 0) dst_depth = p->opts.dither_depth; if (p->opts.dither_depth < 0 || p->opts.dither_algo < 0) return; MP_VERBOSE(p, "Dither to %d.\n", dst_depth); int tex_size; void *tex_data; GLint tex_iformat; GLint tex_format; GLenum tex_type; unsigned char temp[256]; if (p->opts.dither_algo == 0) { int sizeb = p->opts.dither_size; int size = 1 << sizeb; if (p->last_dither_matrix_size != size) { p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix, float, size * size); mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb); p->last_dither_matrix_size = size; } tex_size = size; tex_iformat = gl_float16_formats[0].internal_format; tex_format = gl_float16_formats[0].format; tex_type = GL_FLOAT; tex_data = p->last_dither_matrix; } else { assert(sizeof(temp) >= 8 * 8); mp_make_ordered_dither_matrix(temp, 8); const struct fmt_entry *fmt = find_tex_format(gl, 1, 1); tex_size = 8; tex_iformat = fmt->internal_format; tex_format = fmt->format; tex_type = fmt->type; tex_data = temp; } // This defines how many bits are considered significant for output on // screen. The superfluous bits will be used for rounding according to the // dither matrix. The precision of the source implicitly decides how many // dither patterns can be visible. p->dither_quantization = (1 << dst_depth) - 1; p->dither_center = 0.5 / (tex_size * tex_size); p->dither_size = tex_size; gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_DITHER); gl->GenTextures(1, &p->dither_texture); gl->BindTexture(GL_TEXTURE_2D, p->dither_texture); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 1); gl->TexImage2D(GL_TEXTURE_2D, 0, tex_iformat, tex_size, tex_size, 0, tex_format, tex_type, tex_data); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); gl->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); gl->ActiveTexture(GL_TEXTURE0); debug_check_gl(p, "dither setup"); } static void recreate_osd(struct gl_video *p) { if (p->osd) mpgl_osd_destroy(p->osd); p->osd = mpgl_osd_init(p->gl, p->log, p->osd_state, p->osd_programs); p->osd->use_pbo = p->opts.pbo; } static bool does_resize(struct mp_rect src, struct mp_rect dst) { return src.x1 - src.x0 != dst.x1 - dst.x0 || src.y1 - src.y0 != dst.y1 - dst.y0; } static const char *expected_scaler(struct gl_video *p, int unit) { if (p->opts.scaler_resizes_only && unit == 0 && !does_resize(p->src_rect, p->dst_rect)) { return "bilinear"; } if (unit == 0 && p->opts.dscaler && get_scale_factor(p) < 1.0) return p->opts.dscaler; return p->opts.scalers[unit]; } static void update_settings(struct gl_video *p) { struct mp_csp_params params; mp_csp_copy_equalizer_values(¶ms, &p->video_eq); p->user_gamma = params.gamma * p->opts.gamma; // Lazy gamma shader initialization (a microoptimization) if (p->user_gamma != 1.0f && !p->user_gamma_enabled) { p->user_gamma_enabled = true; p->need_reinit_rendering = true; } } static void reinit_rendering(struct gl_video *p) { GL *gl = p->gl; MP_VERBOSE(p, "Reinit rendering.\n"); debug_check_gl(p, "before scaler initialization"); uninit_rendering(p); if (!p->image_params.imgfmt) return; update_settings(p); for (int n = 0; n < 2; n++) p->scalers[n].name = expected_scaler(p, n); init_dither(p); init_scaler(p, &p->scalers[0]); init_scaler(p, &p->scalers[1]); compile_shaders(p); update_all_uniforms(p); int w = p->image_w; int h = p->image_h; // Convolution filters don't need linear sampling, so using nearest is // often faster. GLenum filter = p->scalers[0].kernel ? GL_NEAREST : GL_LINEAR; if (p->indirect_program) { fbotex_init(&p->indirect_fbo, gl, p->log, w, h, p->gl_target, filter, p->opts.fbo_format); } recreate_osd(p); p->need_reinit_rendering = false; } static void uninit_rendering(struct gl_video *p) { GL *gl = p->gl; delete_shaders(p); for (int n = 0; n < 2; n++) { gl->DeleteTextures(1, &p->scalers[n].gl_lut); p->scalers[n].gl_lut = 0; p->scalers[n].lut_name = NULL; p->scalers[n].kernel = NULL; } gl->DeleteTextures(1, &p->dither_texture); p->dither_texture = 0; fbotex_uninit(&p->indirect_fbo); for (int i = 0; i < FBOSURFACES_MAX; i++) { fbotex_uninit(&p->surfaces[i].fbotex); p->surfaces[i].valid = false; } fbotex_uninit(&p->scale_sep_fbo); } void gl_video_set_lut3d(struct gl_video *p, struct lut3d *lut3d) { GL *gl = p->gl; if (!lut3d) { if (p->use_lut_3d) { p->use_lut_3d = false; reinit_rendering(p); } return; } if (!(gl->mpgl_caps & MPGL_CAP_3D_TEX)) return; if (!p->lut_3d_texture) gl->GenTextures(1, &p->lut_3d_texture); gl->ActiveTexture(GL_TEXTURE0 + TEXUNIT_3DLUT); gl->BindTexture(GL_TEXTURE_3D, p->lut_3d_texture); gl->TexImage3D(GL_TEXTURE_3D, 0, GL_RGB16, lut3d->size[0], lut3d->size[1], lut3d->size[2], 0, GL_RGB, GL_UNSIGNED_SHORT, lut3d->data); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl->TexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); gl->ActiveTexture(GL_TEXTURE0); p->use_lut_3d = true; check_gl_features(p); debug_check_gl(p, "after 3d lut creation"); reinit_rendering(p); } static void set_image_textures(struct gl_video *p, struct video_image *vimg, GLuint imgtex[4]) { GL *gl = p->gl; GLuint dummy[4] = {0}; if (!imgtex) imgtex = dummy; assert(vimg->mpi); if (p->hwdec_active) { p->hwdec->driver->map_image(p->hwdec, vimg->mpi, imgtex); } else { for (int n = 0; n < p->plane_count; n++) imgtex[n] = vimg->planes[n].gl_texture; } for (int n = 0; n < 4; n++) { gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(p->gl_target, imgtex[n]); } gl->ActiveTexture(GL_TEXTURE0); } static void unset_image_textures(struct gl_video *p) { GL *gl = p->gl; for (int n = 0; n < 4; n++) { gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(p->gl_target, 0); } gl->ActiveTexture(GL_TEXTURE0); if (p->hwdec_active) p->hwdec->driver->unmap_image(p->hwdec); } static int align_pow2(int s) { int r = 1; while (r < s) r *= 2; return r; } static void init_video(struct gl_video *p) { GL *gl = p->gl; check_gl_features(p); init_format(p->image_params.imgfmt, p); p->gl_target = p->opts.use_rectangle ? GL_TEXTURE_RECTANGLE : GL_TEXTURE_2D; if (p->hwdec_active) { if (p->hwdec->driver->reinit(p->hwdec, &p->image_params) < 0) MP_ERR(p, "Initializing texture for hardware decoding failed.\n"); init_format(p->image_params.imgfmt, p); p->gl_target = p->hwdec->gl_texture_target; } mp_image_params_guess_csp(&p->image_params); p->image_w = p->image_params.w; p->image_h = p->image_params.h; int eq_caps = MP_CSP_EQ_CAPS_GAMMA; if (p->is_yuv && p->image_params.colorspace != MP_CSP_BT_2020_C) eq_caps |= MP_CSP_EQ_CAPS_COLORMATRIX; if (p->image_desc.flags & MP_IMGFLAG_XYZ) eq_caps |= MP_CSP_EQ_CAPS_BRIGHTNESS; p->video_eq.capabilities = eq_caps; debug_check_gl(p, "before video texture creation"); struct video_image *vimg = &p->image; for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; plane->w = mp_chroma_div_up(p->image_w, p->image_desc.xs[n]); plane->h = mp_chroma_div_up(p->image_h, p->image_desc.ys[n]); plane->tex_w = plane->w; plane->tex_h = plane->h; if (!p->hwdec_active) { if (!p->opts.npot) { plane->tex_w = align_pow2(plane->tex_w); plane->tex_h = align_pow2(plane->tex_h); } gl->ActiveTexture(GL_TEXTURE0 + n); gl->GenTextures(1, &plane->gl_texture); gl->BindTexture(p->gl_target, plane->gl_texture); gl->TexImage2D(p->gl_target, 0, plane->gl_internal_format, plane->tex_w, plane->tex_h, 0, plane->gl_format, plane->gl_type, NULL); gl->TexParameteri(p->gl_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl->TexParameteri(p->gl_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gl->TexParameteri(p->gl_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl->TexParameteri(p->gl_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } MP_VERBOSE(p, "Texture for plane %d: %dx%d\n", n, plane->tex_w, plane->tex_h); } gl->ActiveTexture(GL_TEXTURE0); // If the dimensions of the Y plane are not aligned on the luma. // Assume 4:2:0 with size (3,3). The last luma pixel is (2,2). // The last chroma pixel is (1,1), not (0,0). So for luma, the // coordinate range is [0,3), for chroma it is [0,2). This means the // texture coordinates for chroma are stretched by adding 1 luma pixel // to the range. Undo this. p->chroma_fix[0] = p->image.planes[0].tex_w / (double)p->image.planes[1].tex_w / (1 << p->image_desc.chroma_xs); p->chroma_fix[1] = p->image.planes[0].tex_h / (double)p->image.planes[1].tex_h / (1 << p->image_desc.chroma_ys); debug_check_gl(p, "after video texture creation"); reinit_rendering(p); } static void uninit_video(struct gl_video *p) { GL *gl = p->gl; uninit_rendering(p); struct video_image *vimg = &p->image; for (int n = 0; n < 3; n++) { struct texplane *plane = &vimg->planes[n]; gl->DeleteTextures(1, &plane->gl_texture); plane->gl_texture = 0; gl->DeleteBuffers(1, &plane->gl_buffer); plane->gl_buffer = 0; plane->buffer_ptr = NULL; plane->buffer_size = 0; } mp_image_unrefp(&vimg->mpi); // Invalidate image_params to ensure that gl_video_config() will call // init_video() on uninitialized gl_video. p->real_image_params = (struct mp_image_params){0}; p->image_params = p->real_image_params; } static void change_dither_trafo(struct gl_video *p) { GL *gl = p->gl; int program = p->final_program; int phase = p->frames_rendered % 8u; float r = phase * (M_PI / 2); // rotate float m = phase < 4 ? 1 : -1; // mirror gl->UseProgram(program); float matrix[2][2] = {{cos(r), -sin(r) }, {sin(r) * m, cos(r) * m}}; gl->UniformMatrix2fv(gl->GetUniformLocation(program, "dither_trafo"), 1, GL_TRUE, &matrix[0][0]); gl->UseProgram(0); } struct pass { int num; // Not necessarily a FBO; we just abuse this struct because it's convenient. // It specifies the source texture/sub-rectangle for the next pass. struct fbotex f; // If true, render source (f) to dst, instead of the full dest. fbo viewport bool use_dst; struct mp_rect dst; int flags; // for write_quad }; // *chain contains the source, and is overwritten with a copy of the result // fbo is used as destination texture/render target. static void handle_pass(struct gl_video *p, struct pass *chain, struct fbotex *fbo, GLuint program) { GL *gl = p->gl; if (!program) return; gl->BindTexture(p->gl_target, chain->f.texture); gl->UseProgram(program); gl->Viewport(fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h); gl->BindFramebuffer(GL_FRAMEBUFFER, fbo->fbo); int tex_w = chain->f.tex_w; int tex_h = chain->f.tex_h; struct mp_rect src = { .x0 = chain->f.vp_x, .y0 = chain->f.vp_y, .x1 = chain->f.vp_x + chain->f.vp_w, .y1 = chain->f.vp_y + chain->f.vp_h, }; struct mp_rect dst = {-1, -1, 1, 1}; if (chain->use_dst) dst = chain->dst; MP_TRACE(p, "Pass %d: [%d,%d,%d,%d] -> [%d,%d,%d,%d][%d,%d@%dx%d/%dx%d] (%d)\n", chain->num, src.x0, src.y0, src.x1, src.y1, dst.x0, dst.y0, dst.x1, dst.y1, fbo->vp_x, fbo->vp_y, fbo->vp_w, fbo->vp_h, fbo->tex_w, fbo->tex_h, chain->flags); draw_quad(p, dst.x0, dst.y0, dst.x1, dst.y1, src.x0, src.y0, src.x1, src.y1, tex_w, tex_h, chain->flags); *chain = (struct pass){ .num = chain->num + 1, .f = *fbo, }; } static size_t fbosurface_next(struct gl_video *p) { return (p->surface_idx + 1) % FBOSURFACES_MAX; } // Handle all of the frame passes upto and including upscaling, assuming // upscaling is not part of the final pass static void gl_video_upscale_frame(struct gl_video *p, struct pass *chain, struct fbotex *inter_fbo) { // Order of processing: [indirect -> [scale_sep ->]] inter handle_pass(p, chain, &p->indirect_fbo, p->indirect_program); // compensated for optional rotation struct mp_rect src_rect_rot = p->src_rect; if ((p->image_params.rotate % 180) == 90) { MPSWAP(int, src_rect_rot.x0, src_rect_rot.y0); MPSWAP(int, src_rect_rot.x1, src_rect_rot.y1); } // Clip to visible height so that separate scaling scales the visible part // only (and the target FBO texture can have a bounded size). // Don't clamp width; too hard to get correct final scaling on l/r borders. chain->f.vp_y = src_rect_rot.y0; chain->f.vp_h = src_rect_rot.y1 - src_rect_rot.y0; handle_pass(p, chain, &p->scale_sep_fbo, p->scale_sep_program); // For Y direction, use the whole source viewport; it has been fit to the // correct origin/height before. // For X direction, assume the texture wasn't scaled yet, so we can // select the correct portion, which will be scaled to screen. chain->f.vp_x = src_rect_rot.x0; chain->f.vp_w = src_rect_rot.x1 - src_rect_rot.x0; if (inter_fbo) handle_pass(p, chain, inter_fbo, p->inter_program); } static double gl_video_interpolate_frame(struct gl_video *p, struct pass *chain, struct frame_timing *t) { GL *gl = p->gl; double inter_coeff = 0.0; int64_t prev_pts = p->surfaces[fbosurface_next(p)].pts; // Make sure all surfaces are actually valid, and redraw them manually // if this is not the case for (int i = 0; i < FBOSURFACES_MAX; i++) { if (!p->surfaces[i].valid) { struct pass frame = { .f = chain->f }; gl_video_upscale_frame(p, &frame, &p->surfaces[i].fbotex); p->surfaces[i].valid = true; } } if (t && prev_pts < t->pts) { MP_STATS(p, "new-pts"); gl_video_upscale_frame(p, chain, &p->surfaces[p->surface_idx].fbotex); p->surfaces[p->surface_idx].valid = true; p->surfaces[p->surface_idx].pts = t->pts; p->surface_idx = fbosurface_next(p); } else { // re-use the previously rendered surface as source chain->f = p->surfaces[fbosurface_next(p)].fbotex; } // fbosurface 0 is bound by handle_pass gl->ActiveTexture(GL_TEXTURE0 + 1); gl->BindTexture(p->gl_target, p->surfaces[p->surface_idx].fbotex.texture); gl->ActiveTexture(GL_TEXTURE0); if (!t) { p->is_interpolated = false; return 0.0; } int64_t vsync_interval = t->next_vsync - t->prev_vsync; if (t->pts > t->next_vsync && t->pts < t->next_vsync + vsync_interval) { // current frame overlaps PTS boundary, blend double R = t->pts - t->next_vsync; float ts = p->opts.smoothmotion_threshold; inter_coeff = R / vsync_interval; inter_coeff = inter_coeff <= 0.0 + ts ? 0.0 : inter_coeff; inter_coeff = inter_coeff >= 1.0 - ts ? 1.0 : inter_coeff; MP_DBG(p, "inter frame ppts: %lld, pts: %lld, " "vsync: %lld, mix: %f\n", (long long)prev_pts, (long long)t->pts, (long long)t->next_vsync, inter_coeff); MP_STATS(p, "frame-mix"); // the value is scaled to fit in the graph with the completely // unrelated "phase" value (which is stupid) MP_STATS(p, "value-timed %lld %f mix-value", (long long)t->pts, inter_coeff * 10000); } else if (t->pts > t->next_vsync) { // there's a new frame, but we haven't displayed or blended it yet, // so we still draw the old frame inter_coeff = 1.0; } p->is_interpolated = inter_coeff > 0.0; return inter_coeff; } // (fbo==0 makes BindFramebuffer select the screen backbuffer) void gl_video_render_frame(struct gl_video *p, int fbo, struct frame_timing *t) { GL *gl = p->gl; struct video_image *vimg = &p->image; p->is_interpolated = false; gl->BindFramebuffer(GL_FRAMEBUFFER, fbo); gl->Viewport(p->vp_x, p->vp_y, p->vp_w, p->vp_h); if (p->opts.temporal_dither) change_dither_trafo(p); if (p->dst_rect.x0 > p->vp_x || p->dst_rect.y0 > p->vp_y || p->dst_rect.x1 < p->vp_x + p->vp_w || p->dst_rect.y1 < p->vp_y + p->vp_h) { gl->Clear(GL_COLOR_BUFFER_BIT); } if (!vimg->mpi) { gl->Clear(GL_COLOR_BUFFER_BIT); goto draw_osd; } GLuint imgtex[4] = {0}; set_image_textures(p, vimg, imgtex); struct pass chain = { .f = { .vp_w = p->image_w, .vp_h = p->image_h, .tex_w = vimg->planes[0].tex_w, .tex_h = vimg->planes[0].tex_h, .texture = imgtex[0], }, }; double inter_coeff = 0.0; if (p->opts.smoothmotion) { inter_coeff = gl_video_interpolate_frame(p, &chain, t); } else { gl_video_upscale_frame(p, &chain, NULL); } struct fbotex screen = { .vp_x = p->vp_x, .vp_y = p->vp_y, .vp_w = p->vp_w, .vp_h = p->vp_h, .fbo = fbo, }; chain.use_dst = true; chain.dst = p->dst_rect; chain.flags = (p->image_params.rotate % 90 ? 0 : p->image_params.rotate / 90) | (vimg->image_flipped ? 4 : 0); gl->UseProgram(p->final_program); GLint loc = gl->GetUniformLocation(p->final_program, "inter_coeff"); gl->Uniform1f(loc, inter_coeff); handle_pass(p, &chain, &screen, p->final_program); gl->UseProgram(0); unset_image_textures(p); p->frames_rendered++; debug_check_gl(p, "after video rendering"); draw_osd: mpgl_osd_draw(p->osd, p->osd_rect, p->osd_pts, p->image_params.stereo_out); gl->BindFramebuffer(GL_FRAMEBUFFER, 0); } static void update_window_sized_objects(struct gl_video *p) { int w = p->dst_rect.x1 - p->dst_rect.x0; int h = p->dst_rect.y1 - p->dst_rect.y0; if ((p->image_params.rotate % 180) == 90) MPSWAP(int, w, h); // Round up to an arbitrary alignment to make window resizing or // panscan controls smoother (less texture reallocations). int width = FFALIGN(w, 256); int height = FFALIGN(h, 256); if (p->scale_sep_program) { if (h > p->scale_sep_fbo.tex_h) { fbotex_uninit(&p->scale_sep_fbo); fbotex_init(&p->scale_sep_fbo, p->gl, p->log, p->image_w, height, p->gl_target, GL_NEAREST, p->opts.fbo_format); } p->scale_sep_fbo.vp_w = p->image_w; p->scale_sep_fbo.vp_h = h; } if (p->opts.smoothmotion) { for (int i = 0; i < FBOSURFACES_MAX; i++) { struct fbotex *fbo = &p->surfaces[i].fbotex; if (w > fbo->tex_w || h > fbo->tex_h) { fbotex_uninit(fbo); fbotex_init(fbo, p->gl, p->log, width, height, p->gl_target, GL_NEAREST, p->opts.fbo_format); } fbo->vp_w = w; fbo->vp_h = h; p->surfaces[i].valid = false; } } } static void check_resize(struct gl_video *p) { bool need_scaler_reinit = false; // filter size change needed bool need_scaler_update = false; // filter LUT change needed bool too_small = false; for (int n = 0; n < 2; n++) { if (p->scalers[n].kernel) { struct filter_kernel old = *p->scalers[n].kernel; update_scale_factor(p, &p->scalers[n]); struct filter_kernel new = *p->scalers[n].kernel; need_scaler_reinit |= (new.size != old.size); need_scaler_update |= (new.inv_scale != old.inv_scale); too_small |= p->scalers[n].insufficient; } } for (int n = 0; n < 2; n++) { if (strcmp(p->scalers[n].name, expected_scaler(p, n)) != 0) need_scaler_reinit = true; } if (p->upscaling != (get_scale_factor(p) > 1.0)) { p->upscaling = !p->upscaling; // Switching between upscaling and downscaling also requires sigmoid // to be toggled need_scaler_reinit |= p->sigmoid_enabled; } if (need_scaler_reinit) { reinit_rendering(p); } else if (need_scaler_update) { init_scaler(p, &p->scalers[0]); init_scaler(p, &p->scalers[1]); } if (too_small) { MP_WARN(p, "Can't downscale that much, window " "output may look suboptimal.\n"); } update_window_sized_objects(p); update_all_uniforms(p); } void gl_video_resize(struct gl_video *p, struct mp_rect *window, struct mp_rect *src, struct mp_rect *dst, struct mp_osd_res *osd, bool vflip) { p->src_rect = *src; p->dst_rect = *dst; p->osd_rect = *osd; p->vp_x = window->x0; p->vp_y = window->y0; p->vp_w = window->x1 - window->x0; p->vp_h = window->y1 - window->y0; p->vp_vflipped = vflip; check_resize(p); } static bool get_image(struct gl_video *p, struct mp_image *mpi) { GL *gl = p->gl; if (!p->opts.pbo) return false; struct video_image *vimg = &p->image; // See comments in init_video() about odd video sizes. // The normal upload path does this too, but less explicit. mp_image_set_size(mpi, vimg->planes[0].w, vimg->planes[0].h); for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; mpi->stride[n] = mpi->plane_w[n] * p->image_desc.bytes[n]; int needed_size = mpi->plane_h[n] * mpi->stride[n]; if (!plane->gl_buffer) gl->GenBuffers(1, &plane->gl_buffer); gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer); if (needed_size > plane->buffer_size) { plane->buffer_size = needed_size; gl->BufferData(GL_PIXEL_UNPACK_BUFFER, plane->buffer_size, NULL, GL_DYNAMIC_DRAW); } if (!plane->buffer_ptr) plane->buffer_ptr = gl->MapBuffer(GL_PIXEL_UNPACK_BUFFER, GL_WRITE_ONLY); mpi->planes[n] = plane->buffer_ptr; gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); } return true; } void gl_video_upload_image(struct gl_video *p, struct mp_image *mpi) { GL *gl = p->gl; struct video_image *vimg = &p->image; p->osd_pts = mpi->pts; talloc_free(vimg->mpi); vimg->mpi = mpi; if (p->hwdec_active) return; assert(mpi->num_planes == p->plane_count); mp_image_t mpi2 = *mpi; bool pbo = false; if (!vimg->planes[0].buffer_ptr && get_image(p, &mpi2)) { for (int n = 0; n < p->plane_count; n++) { int line_bytes = mpi->plane_w[n] * p->image_desc.bytes[n]; memcpy_pic(mpi2.planes[n], mpi->planes[n], line_bytes, mpi->plane_h[n], mpi2.stride[n], mpi->stride[n]); } pbo = true; } vimg->image_flipped = mpi2.stride[0] < 0; for (int n = 0; n < p->plane_count; n++) { struct texplane *plane = &vimg->planes[n]; void *plane_ptr = mpi2.planes[n]; if (pbo) { gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, plane->gl_buffer); if (!gl->UnmapBuffer(GL_PIXEL_UNPACK_BUFFER)) MP_FATAL(p, "Video PBO upload failed. " "Remove the 'pbo' suboption.\n"); plane->buffer_ptr = NULL; plane_ptr = NULL; // PBO offset 0 } gl->ActiveTexture(GL_TEXTURE0 + n); gl->BindTexture(p->gl_target, plane->gl_texture); glUploadTex(gl, p->gl_target, plane->gl_format, plane->gl_type, plane_ptr, mpi2.stride[n], 0, 0, plane->w, plane->h, 0); } gl->ActiveTexture(GL_TEXTURE0); if (pbo) gl->BindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); } static bool test_fbo(struct gl_video *p, bool *success) { if (!*success) return false; GL *gl = p->gl; *success = false; MP_VERBOSE(p, "Testing user-set FBO format (0x%x)\n", (unsigned)p->opts.fbo_format); struct fbotex fbo = {0}; if (fbotex_init(&fbo, p->gl, p->log, 16, 16, p->gl_target, GL_LINEAR, p->opts.fbo_format)) { gl->BindFramebuffer(GL_FRAMEBUFFER, fbo.fbo); gl->BindFramebuffer(GL_FRAMEBUFFER, 0); *success = true; } fbotex_uninit(&fbo); glCheckError(gl, p->log, "FBO test"); return *success; } // Disable features that are not supported with the current OpenGL version. static void check_gl_features(struct gl_video *p) { GL *gl = p->gl; bool have_float_tex = gl->mpgl_caps & MPGL_CAP_FLOAT_TEX; bool have_fbo = gl->mpgl_caps & MPGL_CAP_FB; bool have_arrays = gl->mpgl_caps & MPGL_CAP_1ST_CLASS_ARRAYS; bool have_1d_tex = gl->mpgl_caps & MPGL_CAP_1D_TEX; bool have_3d_tex = gl->mpgl_caps & MPGL_CAP_3D_TEX; bool have_mix = gl->glsl_version >= 130; char *disabled[10]; int n_disabled = 0; // Normally, we want to disable them by default if FBOs are unavailable, // because they will be slow (not critically slow, but still slower). // Without FP textures, we must always disable them. // I don't know if luminance alpha float textures exist, so disregard them. for (int n = 0; n < 2; n++) { const struct filter_kernel *kernel = mp_find_filter_kernel(p->opts.scalers[n]); if (kernel) { char *reason = NULL; if (!test_fbo(p, &have_fbo)) reason = "scaler (FBO)"; if (!have_float_tex) reason = "scaler (float tex.)"; if (!have_arrays) reason = "scaler (no GLSL support)"; if (!have_1d_tex && kernel->polar) reason = "scaler (1D tex.)"; if (reason) { p->opts.scalers[n] = "bilinear"; disabled[n_disabled++] = reason; } } } // GLES3 doesn't provide filtered 16 bit integer textures // GLES2 doesn't even provide 3D textures if (p->use_lut_3d && !(have_3d_tex && have_float_tex)) { p->use_lut_3d = false; disabled[n_disabled++] = "color management (GLES unsupported)"; } // Missing float textures etc. (maybe ordered would actually work) if (p->opts.dither_algo >= 0 && gl->es) { p->opts.dither_algo = -1; disabled[n_disabled++] = "dithering (GLES unsupported)"; } int use_cms = p->opts.srgb || p->use_lut_3d; // srgb_compand() not available if (!have_mix && p->opts.srgb) { p->opts.srgb = false; disabled[n_disabled++] = "sRGB output (GLSL version)"; } if (use_cms && !test_fbo(p, &have_fbo)) { p->opts.srgb = false; p->use_lut_3d = false; disabled[n_disabled++] = "color management (FBO)"; } if (p->opts.smoothmotion && !test_fbo(p, &have_fbo)) { p->opts.smoothmotion = false; disabled[n_disabled++] = "smoothmotion (FBO)"; } // because of bt709_expand() if (!have_mix && p->use_lut_3d) { p->use_lut_3d = false; disabled[n_disabled++] = "color management (GLSL version)"; } if (gl->es && p->opts.pbo) { p->opts.pbo = 0; disabled[n_disabled++] = "PBOs (GLES unsupported)"; } if (n_disabled) { MP_ERR(p, "Some OpenGL extensions not detected, disabling: "); for (int n = 0; n < n_disabled; n++) { if (n) MP_ERR(p, ", "); MP_ERR(p, "%s", disabled[n]); } MP_ERR(p, ".\n"); } } static int init_gl(struct gl_video *p) { GL *gl = p->gl; debug_check_gl(p, "before init_gl"); check_gl_features(p); gl->Disable(GL_DITHER); gl_vao_init(&p->vao, gl, sizeof(struct vertex), vertex_vao); gl_video_set_gl_state(p); // Test whether we can use 10 bit. Hope that testing a single format/channel // is good enough (instead of testing all 1-4 channels variants etc.). const struct fmt_entry *fmt = find_tex_format(gl, 2, 1); if (gl->GetTexLevelParameteriv && fmt->format) { GLuint tex; gl->GenTextures(1, &tex); gl->BindTexture(GL_TEXTURE_2D, tex); gl->TexImage2D(GL_TEXTURE_2D, 0, fmt->internal_format, 64, 64, 0, fmt->format, fmt->type, NULL); GLenum pname = 0; switch (fmt->format) { case GL_RED: pname = GL_TEXTURE_RED_SIZE; break; case GL_LUMINANCE: pname = GL_TEXTURE_LUMINANCE_SIZE; break; } GLint param = 0; if (pname) gl->GetTexLevelParameteriv(GL_TEXTURE_2D, 0, pname, ¶m); if (param) { MP_VERBOSE(p, "16 bit texture depth: %d.\n", (int)param); p->texture_16bit_depth = param; } gl->DeleteTextures(1, &tex); } debug_check_gl(p, "after init_gl"); return 1; } void gl_video_uninit(struct gl_video *p) { if (!p) return; GL *gl = p->gl; uninit_video(p); gl_vao_uninit(&p->vao); gl->DeleteTextures(1, &p->lut_3d_texture); mpgl_osd_destroy(p->osd); gl_set_debug_logger(gl, NULL); talloc_free(p); } void gl_video_set_gl_state(struct gl_video *p) { GL *gl = p->gl; struct m_color c = p->opts.background; gl->ClearColor(c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0); gl->ActiveTexture(GL_TEXTURE0); if (gl->mpgl_caps & MPGL_CAP_ROW_LENGTH) gl->PixelStorei(GL_UNPACK_ROW_LENGTH, 0); gl->PixelStorei(GL_UNPACK_ALIGNMENT, 4); } void gl_video_unset_gl_state(struct gl_video *p) { /* nop */ } void gl_video_reset(struct gl_video *p) { for (int i = 0; i < FBOSURFACES_MAX; i++) p->surfaces[i].pts = 0; p->surface_idx = 0; } bool gl_video_showing_interpolated_frame(struct gl_video *p) { return p->is_interpolated; } // dest = src. (always using 4 components) static void packed_fmt_swizzle(char w[5], const struct fmt_entry *texfmt, const struct packed_fmt_entry *fmt) { const char *comp = "rgba"; // Normally, we work with GL_RG if (texfmt && texfmt->internal_format == GL_LUMINANCE_ALPHA) comp = "ragb"; for (int c = 0; c < 4; c++) w[c] = comp[MPMAX(fmt->components[c] - 1, 0)]; w[4] = '\0'; } static bool init_format(int fmt, struct gl_video *init) { struct GL *gl = init->gl; init->hwdec_active = false; if (init->hwdec && init->hwdec->driver->imgfmt == fmt) { fmt = init->hwdec->converted_imgfmt; init->hwdec_active = true; } struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(fmt); if (!desc.id) return false; if (desc.num_planes > 4) return false; const struct fmt_entry *plane_format[4] = {0}; init->color_swizzle[0] = '\0'; init->has_alpha = false; // YUV/planar formats if (desc.flags & MP_IMGFLAG_YUV_P) { int bits = desc.component_bits; if ((desc.flags & MP_IMGFLAG_NE) && bits >= 8 && bits <= 16) { init->has_alpha = desc.num_planes > 3; plane_format[0] = find_tex_format(gl, (bits + 7) / 8, 1); for (int p = 1; p < desc.num_planes; p++) plane_format[p] = plane_format[0]; goto supported; } } // YUV/half-packed if (fmt == IMGFMT_NV12 || fmt == IMGFMT_NV21) { if (!(init->gl->mpgl_caps & MPGL_CAP_TEX_RG)) return false; plane_format[0] = find_tex_format(gl, 1, 1); plane_format[1] = find_tex_format(gl, 1, 2); if (fmt == IMGFMT_NV21) snprintf(init->color_swizzle, sizeof(init->color_swizzle), "rbga"); goto supported; } // RGB/planar if (fmt == IMGFMT_GBRP) { snprintf(init->color_swizzle, sizeof(init->color_swizzle), "brga"); plane_format[0] = find_tex_format(gl, 1, 1); for (int p = 1; p < desc.num_planes; p++) plane_format[p] = plane_format[0]; goto supported; } // XYZ (same organization as RGB packed, but requires conversion matrix) if (fmt == IMGFMT_XYZ12) { plane_format[0] = find_tex_format(gl, 2, 3); goto supported; } // Packed RGB special formats for (const struct fmt_entry *e = mp_to_gl_formats; e->mp_format; e++) { if (!gl->es && e->mp_format == fmt) { plane_format[0] = e; goto supported; } } // Packed RGB(A) formats for (const struct packed_fmt_entry *e = mp_packed_formats; e->fmt; e++) { if (e->fmt == fmt) { int n_comp = desc.bytes[0] / e->component_size; plane_format[0] = find_tex_format(gl, e->component_size, n_comp); packed_fmt_swizzle(init->color_swizzle, plane_format[0], e); init->has_alpha = e->components[3] != 0; goto supported; } } // Packed YUV Apple formats if (init->gl->mpgl_caps & MPGL_CAP_APPLE_RGB_422) { for (const struct fmt_entry *e = gl_apple_formats; e->mp_format; e++) { if (e->mp_format == fmt) { init->is_packed_yuv = true; snprintf(init->color_swizzle, sizeof(init->color_swizzle), "gbra"); plane_format[0] = e; goto supported; } } } // Unsupported format return false; supported: // Stuff like IMGFMT_420AP10. Untested, most likely insane. if (desc.num_planes == 4 && (desc.component_bits % 8) != 0) return false; if (desc.component_bits > 8 && desc.component_bits < 16) { if (init->texture_16bit_depth < 16) return false; } for (int p = 0; p < desc.num_planes; p++) { if (!plane_format[p]->format) return false; } for (int p = 0; p < desc.num_planes; p++) { struct texplane *plane = &init->image.planes[p]; const struct fmt_entry *format = plane_format[p]; assert(format); plane->gl_format = format->format; plane->gl_internal_format = format->internal_format; plane->gl_type = format->type; } init->is_yuv = desc.flags & MP_IMGFLAG_YUV; init->is_rgb = desc.flags & MP_IMGFLAG_RGB; init->plane_count = desc.num_planes; init->image_desc = desc; return true; } bool gl_video_check_format(struct gl_video *p, int mp_format) { struct gl_video tmp = *p; return init_format(mp_format, &tmp); } void gl_video_config(struct gl_video *p, struct mp_image_params *params) { mp_image_unrefp(&p->image.mpi); if (!mp_image_params_equal(&p->real_image_params, params)) { uninit_video(p); p->real_image_params = *params; p->image_params = *params; if (params->imgfmt) init_video(p); } check_resize(p); } void gl_video_set_output_depth(struct gl_video *p, int r, int g, int b) { MP_VERBOSE(p, "Display depth: R=%d, G=%d, B=%d\n", r, g, b); p->depth_g = g; } struct gl_video *gl_video_init(GL *gl, struct mp_log *log, struct osd_state *osd) { if (gl->version < 210 && gl->es < 200) { mp_err(log, "At least OpenGL 2.1 or OpenGL ES 2.0 required.\n"); return NULL; } struct gl_video *p = talloc_ptrtype(NULL, p); *p = (struct gl_video) { .gl = gl, .log = log, .osd_state = osd, .opts = gl_video_opts_def, .gl_target = GL_TEXTURE_2D, .texture_16bit_depth = 16, .user_gamma = 1.0f, .scalers = { { .index = 0, .name = "bilinear" }, { .index = 1, .name = "bilinear" }, }, .scratch = talloc_zero_array(p, char *, 1), }; gl_video_set_debug(p, true); init_gl(p); recreate_osd(p); return p; } // Get static string for scaler shader. static const char *handle_scaler_opt(const char *name) { if (name && name[0]) { const struct filter_kernel *kernel = mp_find_filter_kernel(name); if (kernel) return kernel->name; for (const char *const *filter = fixed_scale_filters; *filter; filter++) { if (strcmp(*filter, name) == 0) return *filter; } } return NULL; } // Set the options, and possibly update the filter chain too. // Note: assumes all options are valid and verified by the option parser. void gl_video_set_options(struct gl_video *p, struct gl_video_opts *opts) { p->opts = *opts; for (int n = 0; n < 2; n++) { p->opts.scalers[n] = (char *)handle_scaler_opt(p->opts.scalers[n]); p->opts.dscaler = (char *)handle_scaler_opt(p->opts.dscaler); } check_gl_features(p); reinit_rendering(p); check_resize(p); } void gl_video_get_colorspace(struct gl_video *p, struct mp_image_params *params) { *params = p->image_params; // supports everything } struct mp_csp_equalizer *gl_video_eq_ptr(struct gl_video *p) { return &p->video_eq; } // Call when the mp_csp_equalizer returned by gl_video_eq_ptr() was changed. void gl_video_eq_update(struct gl_video *p) { update_settings(p); if (p->need_reinit_rendering) { reinit_rendering(p); check_resize(p); } else { update_all_uniforms(p); } } static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt, struct bstr name, struct bstr param) { char s[20] = {0}; int r = 1; if (bstr_equals0(param, "help")) { r = M_OPT_EXIT - 1; } else { snprintf(s, sizeof(s), "%.*s", BSTR_P(param)); if (!handle_scaler_opt(s)) r = M_OPT_INVALID; } if (r < 1) { mp_info(log, "Available scalers:\n"); for (const char *const *filter = fixed_scale_filters; *filter; filter++) mp_info(log, " %s\n", *filter); for (int n = 0; mp_filter_kernels[n].name; n++) mp_info(log, " %s\n", mp_filter_kernels[n].name); if (s[0]) mp_fatal(log, "No scaler named '%s' found!\n", s); } return r; } // Resize and redraw the contents of the window without further configuration. // Intended to be used in situations where the frontend can't really be // involved with reconfiguring the VO properly. // gl_video_resize() should be called when user interaction is done. void gl_video_resize_redraw(struct gl_video *p, int w, int h) { p->vp_w = w; p->vp_h = h; gl_video_render_frame(p, 0, NULL); } float gl_video_scale_ambient_lux(float lmin, float lmax, float rmin, float rmax, float lux) { assert(lmax > lmin); float num = (rmax - rmin) * (log10(lux) - log10(lmin)); float den = log10(lmax) - log10(lmin); float result = num / den + rmin; // clamp the result float max = MPMAX(rmax, rmin); float min = MPMIN(rmax, rmin); return MPMAX(MPMIN(result, max), min); } void gl_video_set_ambient_lux(struct gl_video *p, int lux) { if (p->opts.gamma_auto) { float gamma = gl_video_scale_ambient_lux(16.0, 64.0, 2.40, 1.961, lux); MP_VERBOSE(p, "ambient light changed: %dlux (gamma: %f)\n", lux, gamma); p->opts.gamma = MPMIN(1.0, 1.961 / gamma); gl_video_eq_update(p); } } void gl_video_set_hwdec(struct gl_video *p, struct gl_hwdec *hwdec) { p->hwdec = hwdec; mp_image_unrefp(&p->image.mpi); }