/* * scaletempo audio filter * Copyright (c) 2007 Robert Juliano * * This file is part of MPlayer. * * MPlayer is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * MPlayer is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MPlayer; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * scale tempo while maintaining pitch * (WSOLA technique with cross correlation) * inspired by SoundTouch library by Olli Parviainen * * basic algorithm * - produce 'stride' output samples per loop * - consume stride*scale input samples per loop * * to produce smoother transitions between strides, blend next overlap * samples from last stride with correlated samples of current input * */ #include #include #include #include "af.h" #include "libavutil/common.h" #include "subopt-helper.h" #include "help_mp.h" // Data for specific instances of this filter typedef struct af_scaletempo_s { // stride float scale; float speed; float frames_stride_scaled; float frames_stride_error; int bytes_per_frame; int bytes_stride; float bytes_stride_scaled; int bytes_queue; int bytes_queued; int bytes_to_slide; int8_t* buf_queue; // overlap int samples_overlap; int samples_standing; int bytes_overlap; int bytes_standing; void* buf_overlap; void* table_blend; void (*output_overlap)(struct af_scaletempo_s* s, void* out_buf, int bytes_off); // best overlap int frames_search; int num_channels; void* buf_pre_corr; void* table_window; int (*best_overlap_offset)(struct af_scaletempo_s* s); short shift_corr; // command line float scale_nominal; float ms_stride; float percent_overlap; float ms_search; short speed_tempo; short speed_pitch; } af_scaletempo_t; static int fill_queue(struct af_instance_s* af, af_data_t* data, int offset) { af_scaletempo_t* s = af->setup; int bytes_in = data->len - offset; int offset_unchanged = offset; if (s->bytes_to_slide > 0) { if (s->bytes_to_slide < s->bytes_queued) { int bytes_move = s->bytes_queued - s->bytes_to_slide; memmove(s->buf_queue, s->buf_queue + s->bytes_to_slide, bytes_move); s->bytes_to_slide = 0; s->bytes_queued = bytes_move; } else { int bytes_skip; s->bytes_to_slide -= s->bytes_queued; bytes_skip = FFMIN(s->bytes_to_slide, bytes_in); s->bytes_queued = 0; s->bytes_to_slide -= bytes_skip; offset += bytes_skip; bytes_in -= bytes_skip; } } if (bytes_in > 0) { int bytes_copy = FFMIN(s->bytes_queue - s->bytes_queued, bytes_in); memcpy(s->buf_queue + s->bytes_queued, (int8_t*)data->audio + offset, bytes_copy); s->bytes_queued += bytes_copy; offset += bytes_copy; } return offset - offset_unchanged; } static int best_overlap_offset_float(af_scaletempo_t* s) { float *pw, *po, *ppc, *search_start; float best_corr = INT_MIN; int best_off = 0; int i, off; pw = s->table_window; po = s->buf_overlap; po += s->num_channels; ppc = s->buf_pre_corr; for (i=s->num_channels; isamples_overlap; i++) { *ppc++ = *pw++ * *po++; } search_start = (float*)s->buf_queue + s->num_channels; for (off=0; offframes_search; off++) { float corr = 0; float* ps = search_start; ppc = s->buf_pre_corr; for (i=s->num_channels; isamples_overlap; i++) { corr += *ppc++ * *ps++; } if (corr > best_corr) { best_corr = corr; best_off = off; } search_start += s->num_channels; } return best_off * 4 * s->num_channels; } static int best_overlap_offset_s16(af_scaletempo_t* s) { int32_t *pw, *ppc; int16_t *po, *search_start; int32_t best_corr = INT_MIN; int best_off = 0; int i, off; pw = s->table_window; po = s->buf_overlap; po += s->num_channels; ppc = s->buf_pre_corr; for (i=s->num_channels; isamples_overlap; i++) { *ppc++ = ( *pw++ * *po++ ) >> 15; } search_start = (int16_t*)s->buf_queue + s->num_channels; for (off=0; offframes_search; off++) { int32_t corr = 0; int16_t* ps = search_start; ppc = s->buf_pre_corr; ppc += s->samples_overlap - s->num_channels; ps += s->samples_overlap - s->num_channels; i = -(s->samples_overlap - s->num_channels); do { corr += ( *ppc++ * *ps++ ) >> s->shift_corr; } while (++i < 0); if (corr > best_corr) { best_corr = corr; best_off = off; } search_start += s->num_channels; } return best_off * 2 * s->num_channels; } static void output_overlap_float(af_scaletempo_t* s, void* buf_out, int bytes_off) { float* pout = buf_out; float* pb = s->table_blend; float* po = s->buf_overlap; float* pin = (float*)(s->buf_queue + bytes_off); int i; for (i=0; isamples_overlap; i++) { *pout++ = *po - *pb++ * ( *po - *pin++ ); po++; } } static void output_overlap_s16(af_scaletempo_t* s, void* buf_out, int bytes_off) { int16_t* pout = buf_out; int32_t* pb = s->table_blend; int16_t* po = s->buf_overlap; int16_t* pin = (int16_t*)(s->buf_queue + bytes_off); int i; for (i=0; isamples_overlap; i++) { *pout++ = *po - ( ( *pb++ * ( *po - *pin++ ) ) >> 16 ); po++; } } // Filter data through filter static af_data_t* play(struct af_instance_s* af, af_data_t* data) { af_scaletempo_t* s = af->setup; int offset_in; int max_bytes_out; int8_t* pout; if (s->scale == 1.0) { return data; } // RESIZE_LOCAL_BUFFER - can't use macro max_bytes_out = ((int)(data->len / s->bytes_stride_scaled) + 1) * s->bytes_stride; if (max_bytes_out > af->data->len) { af_msg(AF_MSG_VERBOSE, "[libaf] Reallocating memory in module %s, " "old len = %i, new len = %i\n",af->info->name,af->data->len,max_bytes_out); af->data->audio = realloc(af->data->audio, max_bytes_out); if (!af->data->audio) { af_msg(AF_MSG_FATAL, "[libaf] Could not allocate memory\n"); return NULL; } af->data->len = max_bytes_out; } offset_in = fill_queue(af, data, 0); pout = af->data->audio; while (s->bytes_queued >= s->bytes_queue) { int ti; float tf; int bytes_off = 0; // output stride if (s->output_overlap) { if (s->best_overlap_offset) bytes_off = s->best_overlap_offset(s); s->output_overlap(s, pout, bytes_off); } memcpy(pout + s->bytes_overlap, s->buf_queue + bytes_off + s->bytes_overlap, s->bytes_standing); pout += s->bytes_stride; // input stride memcpy(s->buf_overlap, s->buf_queue + bytes_off + s->bytes_stride, s->bytes_overlap); tf = s->frames_stride_scaled + s->frames_stride_error; ti = (int)tf; s->frames_stride_error = tf - ti; s->bytes_to_slide = ti * s->bytes_per_frame; offset_in += fill_queue(af, data, offset_in); } // This filter can have a negative delay when scale > 1: // output corresponding to some length of input can be decided and written // after receiving only a part of that input. af->delay = s->bytes_queued - s->bytes_to_slide; data->audio = af->data->audio; data->len = pout - (int8_t *)af->data->audio; return data; } // Initialization and runtime control static int control(struct af_instance_s* af, int cmd, void* arg) { af_scaletempo_t* s = af->setup; switch(cmd){ case AF_CONTROL_REINIT:{ af_data_t* data = (af_data_t*)arg; float srate = data->rate / 1000; int nch = data->nch; int bps; int use_int = 0; int frames_stride, frames_overlap; int i, j; af_msg(AF_MSG_VERBOSE, "[scaletempo] %.3f speed * %.3f scale_nominal = %.3f\n", s->speed, s->scale_nominal, s->scale); if (s->scale == 1.0) { if (s->speed_tempo && s->speed_pitch) return AF_DETACH; memcpy(af->data, data, sizeof(af_data_t)); return af_test_output(af, data); } af->data->rate = data->rate; af->data->nch = data->nch; if ( data->format == AF_FORMAT_S16_LE || data->format == AF_FORMAT_S16_BE ) { use_int = 1; af->data->format = AF_FORMAT_S16_NE; af->data->bps = bps = 2; } else { af->data->format = AF_FORMAT_FLOAT_NE; af->data->bps = bps = 4; } frames_stride = srate * s->ms_stride; s->bytes_stride = frames_stride * bps * nch; s->bytes_stride_scaled = s->scale * s->bytes_stride; s->frames_stride_scaled = s->scale * frames_stride; s->frames_stride_error = 0; af->mul = (double)s->bytes_stride / s->bytes_stride_scaled; frames_overlap = frames_stride * s->percent_overlap; if (frames_overlap <= 0) { s->bytes_standing = s->bytes_stride; s->samples_standing = s->bytes_standing / bps; s->output_overlap = NULL; } else { s->samples_overlap = frames_overlap * nch; s->bytes_overlap = frames_overlap * nch * bps; s->bytes_standing = s->bytes_stride - s->bytes_overlap; s->samples_standing = s->bytes_standing / bps; s->buf_overlap = realloc(s->buf_overlap, s->bytes_overlap); s->table_blend = realloc(s->table_blend, s->bytes_overlap * 4); if(!s->buf_overlap || !s->table_blend) { af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } bzero(s->buf_overlap, s->bytes_overlap); if (use_int) { int32_t* pb = s->table_blend; int64_t blend = 0; for (i=0; ioutput_overlap = output_overlap_s16; } else { float* pb = s->table_blend; for (i=0; ioutput_overlap = output_overlap_float; } } s->frames_search = (frames_overlap > 1) ? srate * s->ms_search : 0; if (s->frames_search <= 0) { s->best_overlap_offset = NULL; } else { if (use_int) { int64_t t = frames_overlap; int32_t n = 8589934588LL / (t * t); // 4 * (2^31 - 1) / t^2 int32_t* pw; s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap * 2); s->table_window = realloc(s->table_window, s->bytes_overlap * 2 - nch * bps * 2); if(!s->buf_pre_corr || !s->table_window) { af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } pw = s->table_window; for (i=1; i> 15; for (j=0; jshift_corr = av_log2( 2*(s->samples_overlap - nch) - 1 ); s->best_overlap_offset = best_overlap_offset_s16; } else { float* pw; s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap); s->table_window = realloc(s->table_window, s->bytes_overlap - nch * bps); if(!s->buf_pre_corr || !s->table_window) { af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } pw = s->table_window; for (i=1; ibest_overlap_offset = best_overlap_offset_float; } } s->bytes_per_frame = bps * nch; s->num_channels = nch; s->bytes_queue = (s->frames_search + frames_stride + frames_overlap) * bps * nch; s->buf_queue = realloc(s->buf_queue, s->bytes_queue); if(!s->buf_queue) { af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n"); return AF_ERROR; } af_msg (AF_MSG_DEBUG0, "[scaletempo] " "%.2f stride_in, %i stride_out, %i standing, " "%i overlap, %i search, %i queue, %s mode\n", s->frames_stride_scaled, (int)(s->bytes_stride / nch / bps), (int)(s->bytes_standing / nch / bps), (int)(s->bytes_overlap / nch / bps), s->frames_search, (int)(s->bytes_queue / nch / bps), (use_int?"s16":"float")); return af_test_output(af, (af_data_t*)arg); } case AF_CONTROL_PLAYBACK_SPEED | AF_CONTROL_SET:{ if (s->speed_tempo) { if (s->speed_pitch) { break; } s->speed = *(float*)arg; s->scale = s->speed * s->scale_nominal; } else { if (s->speed_pitch) { s->speed = 1 / *(float*)arg; s->scale = s->speed * s->scale_nominal; break; } } return AF_OK; } case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_SET:{ s->scale = *(float*)arg; s->scale = s->speed * s->scale_nominal; return AF_OK; } case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_GET: *(float*)arg = s->scale; return AF_OK; case AF_CONTROL_COMMAND_LINE:{ strarg_t speed = {}; opt_t subopts[] = { {"scale", OPT_ARG_FLOAT, &s->scale_nominal, NULL}, {"stride", OPT_ARG_FLOAT, &s->ms_stride, NULL}, {"overlap", OPT_ARG_FLOAT, &s->percent_overlap, NULL}, {"search", OPT_ARG_FLOAT, &s->ms_search, NULL}, {"speed", OPT_ARG_STR, &speed, NULL}, {NULL}, }; if (subopt_parse(arg, subopts) != 0) { return AF_ERROR; } if (s->scale_nominal <= 0) { af_msg(AF_MSG_ERROR, "[scaletempo] " MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange ": scale > 0\n"); return AF_ERROR; } if (s->ms_stride <= 0) { af_msg(AF_MSG_ERROR, "[scaletempo] " MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange ": stride > 0\n"); return AF_ERROR; } if (s->percent_overlap < 0 || s->percent_overlap > 1) { af_msg(AF_MSG_ERROR, "[scaletempo] " MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange ": 0 <= overlap <= 1\n"); return AF_ERROR; } if (s->ms_search < 0) { af_msg(AF_MSG_ERROR, "[scaletempo] " MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange ": search >= 0\n"); return AF_ERROR; } if (speed.len > 0) { if (strcmp(speed.str, "pitch") == 0) { s->speed_tempo = 0; s->speed_pitch = 1; } else if (strcmp(speed.str, "tempo") == 0) { s->speed_tempo = 1; s->speed_pitch = 0; } else if (strcmp(speed.str, "none") == 0) { s->speed_tempo = 0; s->speed_pitch = 0; } else if (strcmp(speed.str, "both") == 0) { s->speed_tempo = 1; s->speed_pitch = 1; } else { af_msg(AF_MSG_ERROR, "[scaletempo] " MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange ": speed=[pitch|tempo|none|both]\n"); return AF_ERROR; } } s->scale = s->speed * s->scale_nominal; af_msg(AF_MSG_DEBUG0, "[scaletempo] %6.3f scale, %6.2f stride, %6.2f overlap, %6.2f search, speed = %s\n", s->scale_nominal, s->ms_stride, s->percent_overlap, s->ms_search, (s->speed_tempo?(s->speed_pitch?"tempo and speed":"tempo"):(s->speed_pitch?"pitch":"none"))); return AF_OK; } } return AF_UNKNOWN; } // Deallocate memory static void uninit(struct af_instance_s* af) { af_scaletempo_t* s = af->setup; free(af->data->audio); free(af->data); free(s->buf_queue); free(s->buf_overlap); free(s->buf_pre_corr); free(s->table_blend); free(s->table_window); free(af->setup); } // Allocate memory and set function pointers static int af_open(af_instance_t* af){ af_scaletempo_t* s; af->control = control; af->uninit = uninit; af->play = play; af->mul = 1; af->data = calloc(1,sizeof(af_data_t)); af->setup = calloc(1,sizeof(af_scaletempo_t)); if(af->data == NULL || af->setup == NULL) return AF_ERROR; s = af->setup; s->scale = s->speed = s->scale_nominal = 1.0; s->speed_tempo = 1; s->speed_pitch = 0; s->ms_stride = 60; s->percent_overlap = .20; s->ms_search = 14; return AF_OK; } // Description of this filter af_info_t af_info_scaletempo = { "Scale audio tempo while maintaining pitch", "scaletempo", "Robert Juliano", "", AF_FLAGS_REENTRANT, af_open };