/* This audio output filter changes the format of a data block. Valid formats are: AFMT_U8, AFMT_S8, AFMT_S16_LE, AFMT_S16_BE AFMT_U16_LE, AFMT_U16_BE, AFMT_S32_LE and AFMT_S32_BE. */ // Must be defined before any libc headers are included! #define _ISOC9X_SOURCE #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <inttypes.h> #include <limits.h> #include "af.h" #include "bswap.h" #include "libvo/fastmemcpy.h" // Integer to float conversion through lrintf() #ifdef HAVE_LRINTF #include <math.h> long int lrintf(float); #else #define lrintf(x) ((int)(x)) #endif /* Functions used by play to convert the input audio to the correct format */ /* The below includes retrives functions for converting to and from ulaw and alaw */ #include "af_format_ulaw.c" #include "af_format_alaw.c" // Switch endianess static void endian(void* in, void* out, int len, int bps); // From singed to unsigned and the other way static void si2us(void* data, int len, int bps); // Change the number of bits per sample static void change_bps(void* in, void* out, int len, int inbps, int outbps); // From float to int signed static void float2int(float* in, void* out, int len, int bps); // From signed int to float static void int2float(void* in, float* out, int len, int bps); static af_data_t* play(struct af_instance_s* af, af_data_t* data); static af_data_t* play_swapendian(struct af_instance_s* af, af_data_t* data); static af_data_t* play_float_s16(struct af_instance_s* af, af_data_t* data); static af_data_t* play_s16_float(struct af_instance_s* af, af_data_t* data); // Helper functions to check sanity for input arguments // Sanity check for bytes per sample static int check_bps(int bps) { if(bps != 4 && bps != 3 && bps != 2 && bps != 1){ af_msg(AF_MSG_ERROR,"[format] The number of bytes per sample" " must be 1, 2, 3 or 4. Current value is %i \n",bps); return AF_ERROR; } return AF_OK; } // Check for unsupported formats static int check_format(int format) { char buf[256]; switch(format & AF_FORMAT_SPECIAL_MASK){ case(AF_FORMAT_IMA_ADPCM): case(AF_FORMAT_MPEG2): case(AF_FORMAT_AC3): af_msg(AF_MSG_ERROR,"[format] Sample format %s not yet supported \n", af_fmt2str(format,buf,256)); return AF_ERROR; } return AF_OK; } // Initialization and runtime control static int control(struct af_instance_s* af, int cmd, void* arg) { switch(cmd){ case AF_CONTROL_REINIT:{ char buf1[256]; char buf2[256]; af_data_t *data = arg; // Make sure this filter isn't redundant if(af->data->format == data->format && af->data->bps == data->bps) return AF_DETACH; // Check for errors in configuraton if((AF_OK != check_bps(data->bps)) || (AF_OK != check_format(data->format)) || (AF_OK != check_bps(af->data->bps)) || (AF_OK != check_format(af->data->format))) return AF_ERROR; af_msg(AF_MSG_VERBOSE,"[format] Changing sample format from %s to %s\n", af_fmt2str(data->format,buf1,256), af_fmt2str(af->data->format,buf2,256)); af->data->rate = data->rate; af->data->nch = data->nch; af->mul.n = af->data->bps; af->mul.d = data->bps; af_frac_cancel(&af->mul); af->play = play; // set default // look whether only endianess differences are there if ((af->data->format & ~AF_FORMAT_END_MASK) == (data->format & ~AF_FORMAT_END_MASK)) { af_msg(AF_MSG_VERBOSE,"[format] Accelerated endianess conversion only\n"); af->play = play_swapendian; } if ((data->format == AF_FORMAT_FLOAT_NE) && (af->data->format == AF_FORMAT_S16_NE)) { af_msg(AF_MSG_VERBOSE,"[format] Accelerated %s to %s conversion\n", af_fmt2str(data->format,buf1,256), af_fmt2str(af->data->format,buf2,256)); af->play = play_float_s16; } if ((data->format == AF_FORMAT_S16_NE) && (af->data->format == AF_FORMAT_FLOAT_NE)) { af_msg(AF_MSG_VERBOSE,"[format] Accelerated %s to %s conversion\n", af_fmt2str(data->format,buf1,256), af_fmt2str(af->data->format,buf2,256)); af->play = play_s16_float; } return AF_OK; } case AF_CONTROL_COMMAND_LINE:{ int format = af_str2fmt_short(arg); if (format == -1) { af_msg(AF_MSG_ERROR, "[format] %s is not a valid format\n", (char *)arg); return AF_ERROR; } if(AF_OK != af->control(af,AF_CONTROL_FORMAT_FMT | AF_CONTROL_SET,&format)) return AF_ERROR; return AF_OK; } case AF_CONTROL_FORMAT_FMT | AF_CONTROL_SET:{ // Check for errors in configuraton if(AF_OK != check_format(*(int*)arg)) return AF_ERROR; af->data->format = *(int*)arg; af->data->bps = af_fmt2bits(af->data->format)/8; return AF_OK; } } return AF_UNKNOWN; } // Deallocate memory static void uninit(struct af_instance_s* af) { if(af->data) free(af->data); af->setup = 0; } static af_data_t* play_swapendian(struct af_instance_s* af, af_data_t* data) { af_data_t* l = af->data; // Local data af_data_t* c = data; // Current working data int len = c->len/c->bps; // Lenght in samples of current audio block if(AF_OK != RESIZE_LOCAL_BUFFER(af,data)) return NULL; endian(c->audio,l->audio,len,c->bps); c->audio = l->audio; c->format = l->format; return c; } static af_data_t* play_float_s16(struct af_instance_s* af, af_data_t* data) { af_data_t* l = af->data; // Local data af_data_t* c = data; // Current working data int len = c->len/4; // Lenght in samples of current audio block if(AF_OK != RESIZE_LOCAL_BUFFER(af,data)) return NULL; float2int(c->audio, l->audio, len, 2); c->audio = l->audio; c->len = len*2; c->bps = 2; c->format = l->format; return c; } static af_data_t* play_s16_float(struct af_instance_s* af, af_data_t* data) { af_data_t* l = af->data; // Local data af_data_t* c = data; // Current working data int len = c->len/2; // Lenght in samples of current audio block if(AF_OK != RESIZE_LOCAL_BUFFER(af,data)) return NULL; int2float(c->audio, l->audio, len, 2); c->audio = l->audio; c->len = len*4; c->bps = 4; c->format = l->format; return c; } // Filter data through filter static af_data_t* play(struct af_instance_s* af, af_data_t* data) { af_data_t* l = af->data; // Local data af_data_t* c = data; // Current working data int len = c->len/c->bps; // Lenght in samples of current audio block if(AF_OK != RESIZE_LOCAL_BUFFER(af,data)) return NULL; // Change to cpu native endian format if((c->format&AF_FORMAT_END_MASK)!=AF_FORMAT_NE) endian(c->audio,c->audio,len,c->bps); // Conversion table if((c->format & AF_FORMAT_SPECIAL_MASK) == AF_FORMAT_MU_LAW) { from_ulaw(c->audio, l->audio, len, l->bps, l->format&AF_FORMAT_POINT_MASK); if(AF_FORMAT_A_LAW == (l->format&AF_FORMAT_SPECIAL_MASK)) to_ulaw(l->audio, l->audio, len, 1, AF_FORMAT_SI); if((l->format&AF_FORMAT_SIGN_MASK) == AF_FORMAT_US) si2us(l->audio,len,l->bps); } else if((c->format & AF_FORMAT_SPECIAL_MASK) == AF_FORMAT_A_LAW) { from_alaw(c->audio, l->audio, len, l->bps, l->format&AF_FORMAT_POINT_MASK); if(AF_FORMAT_A_LAW == (l->format&AF_FORMAT_SPECIAL_MASK)) to_alaw(l->audio, l->audio, len, 1, AF_FORMAT_SI); if((l->format&AF_FORMAT_SIGN_MASK) == AF_FORMAT_US) si2us(l->audio,len,l->bps); } else if((c->format & AF_FORMAT_POINT_MASK) == AF_FORMAT_F) { switch(l->format&AF_FORMAT_SPECIAL_MASK){ case(AF_FORMAT_MU_LAW): to_ulaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK); break; case(AF_FORMAT_A_LAW): to_alaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK); break; default: float2int(c->audio, l->audio, len, l->bps); if((l->format&AF_FORMAT_SIGN_MASK) == AF_FORMAT_US) si2us(l->audio,len,l->bps); break; } } else { // Input must be int // Change signed/unsigned if((c->format&AF_FORMAT_SIGN_MASK) != (l->format&AF_FORMAT_SIGN_MASK)){ si2us(c->audio,len,c->bps); } // Convert to special formats switch(l->format&(AF_FORMAT_SPECIAL_MASK|AF_FORMAT_POINT_MASK)){ case(AF_FORMAT_MU_LAW): to_ulaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK); break; case(AF_FORMAT_A_LAW): to_alaw(c->audio, l->audio, len, c->bps, c->format&AF_FORMAT_POINT_MASK); break; case(AF_FORMAT_F): int2float(c->audio, l->audio, len, c->bps); break; default: // Change the number of bits if(c->bps != l->bps) change_bps(c->audio,l->audio,len,c->bps,l->bps); else memcpy(l->audio,c->audio,len*c->bps); break; } } // Switch from cpu native endian to the correct endianess if((l->format&AF_FORMAT_END_MASK)!=AF_FORMAT_NE) endian(l->audio,l->audio,len,l->bps); // Set output data c->audio = l->audio; c->len = len*l->bps; c->bps = l->bps; c->format = l->format; return c; } // Allocate memory and set function pointers static int open(af_instance_t* af){ af->control=control; af->uninit=uninit; af->play=play; af->mul.n=1; af->mul.d=1; af->data=calloc(1,sizeof(af_data_t)); if(af->data == NULL) return AF_ERROR; return AF_OK; } // Description of this filter af_info_t af_info_format = { "Sample format conversion", "format", "Anders", "", AF_FLAGS_REENTRANT, open }; static inline uint32_t load24bit(void* data, int pos) { #if WORDS_BIGENDIAN return (((uint32_t)((uint8_t*)data)[3*pos])<<24) | (((uint32_t)((uint8_t*)data)[3*pos+1])<<16) | (((uint32_t)((uint8_t*)data)[3*pos+2])<<8); #else return (((uint32_t)((uint8_t*)data)[3*pos])<<8) | (((uint32_t)((uint8_t*)data)[3*pos+1])<<16) | (((uint32_t)((uint8_t*)data)[3*pos+2])<<24); #endif } static inline void store24bit(void* data, int pos, uint32_t expanded_value) { #if WORDS_BIGENDIAN ((uint8_t*)data)[3*pos]=expanded_value>>24; ((uint8_t*)data)[3*pos+1]=expanded_value>>16; ((uint8_t*)data)[3*pos+2]=expanded_value>>8; #else ((uint8_t*)data)[3*pos]=expanded_value>>8; ((uint8_t*)data)[3*pos+1]=expanded_value>>16; ((uint8_t*)data)[3*pos+2]=expanded_value>>24; #endif } // Function implementations used by play static void endian(void* in, void* out, int len, int bps) { register int i; switch(bps){ case(2):{ for(i=0;i<len;i++){ ((uint16_t*)out)[i]=bswap_16(((uint16_t*)in)[i]); } break; } case(3):{ register uint8_t s; for(i=0;i<len;i++){ s=((uint8_t*)in)[3*i]; ((uint8_t*)out)[3*i]=((uint8_t*)in)[3*i+2]; if (in != out) ((uint8_t*)out)[3*i+1]=((uint8_t*)in)[3*i+1]; ((uint8_t*)out)[3*i+2]=s; } break; } case(4):{ for(i=0;i<len;i++){ ((uint32_t*)out)[i]=bswap_32(((uint32_t*)in)[i]); } break; } } } static void si2us(void* data, int len, int bps) { register long i = -(len * bps); register uint8_t *p = &((uint8_t *)data)[len * bps]; #if AF_FORMAT_NE == AF_FORMAT_LE p += bps - 1; #endif if (len <= 0) return; do { p[i] ^= 0x80; } while (i += bps); } static void change_bps(void* in, void* out, int len, int inbps, int outbps) { register int i; switch(inbps){ case(1): switch(outbps){ case(2): for(i=0;i<len;i++) ((uint16_t*)out)[i]=((uint16_t)((uint8_t*)in)[i])<<8; break; case(3): for(i=0;i<len;i++) store24bit(out, i, ((uint32_t)((uint8_t*)in)[i])<<24); break; case(4): for(i=0;i<len;i++) ((uint32_t*)out)[i]=((uint32_t)((uint8_t*)in)[i])<<24; break; } break; case(2): switch(outbps){ case(1): for(i=0;i<len;i++) ((uint8_t*)out)[i]=(uint8_t)((((uint16_t*)in)[i])>>8); break; case(3): for(i=0;i<len;i++) store24bit(out, i, ((uint32_t)((uint16_t*)in)[i])<<16); break; case(4): for(i=0;i<len;i++) ((uint32_t*)out)[i]=((uint32_t)((uint16_t*)in)[i])<<16; break; } break; case(3): switch(outbps){ case(1): for(i=0;i<len;i++) ((uint8_t*)out)[i]=(uint8_t)(load24bit(in, i)>>24); break; case(2): for(i=0;i<len;i++) ((uint16_t*)out)[i]=(uint16_t)(load24bit(in, i)>>16); break; case(4): for(i=0;i<len;i++) ((uint32_t*)out)[i]=(uint32_t)load24bit(in, i); break; } break; case(4): switch(outbps){ case(1): for(i=0;i<len;i++) ((uint8_t*)out)[i]=(uint8_t)((((uint32_t*)in)[i])>>24); break; case(2): for(i=0;i<len;i++) ((uint16_t*)out)[i]=(uint16_t)((((uint32_t*)in)[i])>>16); break; case(3): for(i=0;i<len;i++) store24bit(out, i, ((uint32_t*)in)[i]); break; } break; } } static void float2int(float* in, void* out, int len, int bps) { register int i; switch(bps){ case(1): for(i=0;i<len;i++) ((int8_t*)out)[i] = lrintf(127.0 * in[i]); break; case(2): for(i=0;i<len;i++) ((int16_t*)out)[i] = lrintf(32767.0 * in[i]); break; case(3): for(i=0;i<len;i++) store24bit(out, i, lrintf(2147483647.0 * in[i])); break; case(4): for(i=0;i<len;i++) ((int32_t*)out)[i] = lrintf(2147483647.0 * in[i]); break; } } static void int2float(void* in, float* out, int len, int bps) { register int i; switch(bps){ case(1): for(i=0;i<len;i++) out[i]=(1.0/128.0)*((int8_t*)in)[i]; break; case(2): for(i=0;i<len;i++) out[i]=(1.0/32768.0)*((int16_t*)in)[i]; break; case(3): for(i=0;i<len;i++) out[i]=(1.0/2147483648.0)*((int32_t)load24bit(in, i)); break; case(4): for(i=0;i<len;i++) out[i]=(1.0/2147483648.0)*((int32_t*)in)[i]; break; } }