/*
* scaletempo audio filter
*
* scale tempo while maintaining pitch
* (WSOLA technique with cross correlation)
* inspired by SoundTouch library by Olli Parviainen
*
* basic algorithm
* - produce 'stride' output samples per loop
* - consume stride*scale input samples per loop
*
* to produce smoother transitions between strides, blend next overlap
* samples from last stride with correlated samples of current input
*
* Copyright (c) 2007 Robert Juliano
*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with mpv. If not, see .
*/
#include
#include
#include
#include
#include "audio/aframe.h"
#include "audio/format.h"
#include "common/common.h"
#include "filters/f_autoconvert.h"
#include "filters/filter_internal.h"
#include "filters/user_filters.h"
#include "options/m_option.h"
struct f_opts {
float scale_nominal;
float ms_stride;
float ms_search;
float percent_overlap;
#define SCALE_TEMPO 1
#define SCALE_PITCH 2
int speed_opt;
};
struct priv {
struct f_opts *opts;
struct mp_pin *in_pin;
struct mp_aframe *cur_format;
struct mp_aframe_pool *out_pool;
double current_pts;
struct mp_aframe *in;
// stride
float scale;
float speed;
int frames_stride;
float frames_stride_scaled;
float frames_stride_error;
int bytes_per_frame;
int bytes_stride;
int bytes_queue;
int bytes_queued;
int bytes_to_slide;
int8_t *buf_queue;
// overlap
int samples_overlap;
int samples_standing;
int bytes_overlap;
int bytes_standing;
void *buf_overlap;
void *table_blend;
void (*output_overlap)(struct priv *s, void *out_buf,
int bytes_off);
// best overlap
int frames_search;
int num_channels;
void *buf_pre_corr;
void *table_window;
int (*best_overlap_offset)(struct priv *s);
};
static bool reinit(struct mp_filter *f);
// Return whether it got enough data for filtering.
static bool fill_queue(struct priv *s)
{
int bytes_in = s->in ? mp_aframe_get_size(s->in) * s->bytes_per_frame : 0;
int offset = 0;
if (s->bytes_to_slide > 0) {
if (s->bytes_to_slide < s->bytes_queued) {
int bytes_move = s->bytes_queued - s->bytes_to_slide;
memmove(s->buf_queue, s->buf_queue + s->bytes_to_slide, bytes_move);
s->bytes_to_slide = 0;
s->bytes_queued = bytes_move;
} else {
int bytes_skip;
s->bytes_to_slide -= s->bytes_queued;
bytes_skip = MPMIN(s->bytes_to_slide, bytes_in);
s->bytes_queued = 0;
s->bytes_to_slide -= bytes_skip;
offset += bytes_skip;
bytes_in -= bytes_skip;
}
}
int bytes_needed = s->bytes_queue - s->bytes_queued;
assert(bytes_needed >= 0);
int bytes_copy = MPMIN(bytes_needed, bytes_in);
if (bytes_copy > 0) {
uint8_t **planes = mp_aframe_get_data_ro(s->in);
memcpy(s->buf_queue + s->bytes_queued, planes[0] + offset, bytes_copy);
s->bytes_queued += bytes_copy;
offset += bytes_copy;
bytes_needed -= bytes_copy;
}
if (s->in)
mp_aframe_skip_samples(s->in, offset / s->bytes_per_frame);
return bytes_needed == 0;
}
#define UNROLL_PADDING (4 * 4)
static int best_overlap_offset_float(struct priv *s)
{
float best_corr = INT_MIN;
int best_off = 0;
float *pw = s->table_window;
float *po = s->buf_overlap;
po += s->num_channels;
float *ppc = s->buf_pre_corr;
for (int i = s->num_channels; i < s->samples_overlap; i++)
*ppc++ = *pw++ **po++;
float *search_start = (float *)s->buf_queue + s->num_channels;
for (int off = 0; off < s->frames_search; off++) {
float corr = 0;
float *ps = search_start;
ppc = s->buf_pre_corr;
for (int i = s->num_channels; i < s->samples_overlap; i++)
corr += *ppc++ **ps++;
if (corr > best_corr) {
best_corr = corr;
best_off = off;
}
search_start += s->num_channels;
}
return best_off * 4 * s->num_channels;
}
static int best_overlap_offset_s16(struct priv *s)
{
int64_t best_corr = INT64_MIN;
int best_off = 0;
int32_t *pw = s->table_window;
int16_t *po = s->buf_overlap;
po += s->num_channels;
int32_t *ppc = s->buf_pre_corr;
for (long i = s->num_channels; i < s->samples_overlap; i++)
*ppc++ = (*pw++ **po++) >> 15;
int16_t *search_start = (int16_t *)s->buf_queue + s->num_channels;
for (int off = 0; off < s->frames_search; off++) {
int64_t corr = 0;
int16_t *ps = search_start;
ppc = s->buf_pre_corr;
ppc += s->samples_overlap - s->num_channels;
ps += s->samples_overlap - s->num_channels;
long i = -(s->samples_overlap - s->num_channels);
do {
corr += ppc[i + 0] * ps[i + 0];
corr += ppc[i + 1] * ps[i + 1];
corr += ppc[i + 2] * ps[i + 2];
corr += ppc[i + 3] * ps[i + 3];
i += 4;
} while (i < 0);
if (corr > best_corr) {
best_corr = corr;
best_off = off;
}
search_start += s->num_channels;
}
return best_off * 2 * s->num_channels;
}
static void output_overlap_float(struct priv *s, void *buf_out,
int bytes_off)
{
float *pout = buf_out;
float *pb = s->table_blend;
float *po = s->buf_overlap;
float *pin = (float *)(s->buf_queue + bytes_off);
for (int i = 0; i < s->samples_overlap; i++) {
*pout++ = *po - *pb++ *(*po - *pin++);
po++;
}
}
static void output_overlap_s16(struct priv *s, void *buf_out,
int bytes_off)
{
int16_t *pout = buf_out;
int32_t *pb = s->table_blend;
int16_t *po = s->buf_overlap;
int16_t *pin = (int16_t *)(s->buf_queue + bytes_off);
for (int i = 0; i < s->samples_overlap; i++) {
*pout++ = *po - ((*pb++ *(*po - *pin++)) >> 16);
po++;
}
}
static void process(struct mp_filter *f)
{
struct priv *s = f->priv;
if (!mp_pin_in_needs_data(f->ppins[1]))
return;
struct mp_aframe *out = NULL;
bool drain = false;
bool is_eof = false;
if (!s->in) {
struct mp_frame frame = mp_pin_out_read(s->in_pin);
if (!frame.type)
return; // no input yet
if (frame.type != MP_FRAME_AUDIO && frame.type != MP_FRAME_EOF) {
MP_ERR(f, "unexpected frame type\n");
goto error;
}
s->in = frame.type == MP_FRAME_AUDIO ? frame.data : NULL;
is_eof = drain = !s->in;
// EOF before it was even initialized once.
if (is_eof && !mp_aframe_config_is_valid(s->cur_format)) {
mp_pin_in_write(f->ppins[1], MP_EOF_FRAME);
return;
}
if (s->in && !mp_aframe_config_equals(s->in, s->cur_format)) {
if (s->bytes_queued) {
// Drain remaining data before executing the format change.
MP_VERBOSE(f, "draining\n");
mp_pin_out_unread(s->in_pin, frame);
s->in = NULL;
drain = true;
} else {
if (!reinit(f)) {
MP_ERR(f, "initialization failed\n");
goto error;
}
}
}
if (s->in)
s->current_pts = mp_aframe_end_pts(s->in);
}
if (!fill_queue(s) && !drain) {
TA_FREEP(&s->in);
mp_pin_out_request_data_next(s->in_pin);
return;
}
int max_out_samples = s->bytes_stride / s->bytes_per_frame;
if (drain)
max_out_samples += s->bytes_queued;
out = mp_aframe_new_ref(s->cur_format);
if (mp_aframe_pool_allocate(s->out_pool, out, max_out_samples) < 0)
goto error;
if (s->in)
mp_aframe_copy_attributes(out, s->in);
uint8_t **out_planes = mp_aframe_get_data_rw(out);
if (!out_planes)
goto error;
int8_t *pout = out_planes[0];
int out_offset = 0;
if (s->bytes_queued >= s->bytes_queue) {
int ti;
float tf;
int bytes_off = 0;
// output stride
if (s->output_overlap) {
if (s->best_overlap_offset)
bytes_off = s->best_overlap_offset(s);
s->output_overlap(s, pout + out_offset, bytes_off);
}
memcpy(pout + out_offset + s->bytes_overlap,
s->buf_queue + bytes_off + s->bytes_overlap,
s->bytes_standing);
out_offset += s->bytes_stride;
// input stride
memcpy(s->buf_overlap,
s->buf_queue + bytes_off + s->bytes_stride,
s->bytes_overlap);
tf = s->frames_stride_scaled + s->frames_stride_error;
ti = (int)tf;
s->frames_stride_error = tf - ti;
s->bytes_to_slide = ti * s->bytes_per_frame;
}
// Drain remaining buffered data.
if (drain && s->bytes_queued) {
memcpy(pout + out_offset, s->buf_queue, s->bytes_queued);
out_offset += s->bytes_queued;
s->bytes_queued = 0;
}
mp_aframe_set_size(out, out_offset / s->bytes_per_frame);
// This filter can have a negative delay when scale > 1:
// output corresponding to some length of input can be decided and written
// after receiving only a part of that input.
float delay = (out_offset * s->speed + s->bytes_queued - s->bytes_to_slide) /
s->bytes_per_frame / mp_aframe_get_effective_rate(out)
+ (s->in ? mp_aframe_duration(s->in) : 0);
if (s->current_pts != MP_NOPTS_VALUE)
mp_aframe_set_pts(out, s->current_pts - delay);
mp_aframe_mul_speed(out, s->speed);
if (!mp_aframe_get_size(out))
TA_FREEP(&out);
if (is_eof && out) {
mp_pin_out_repeat_eof(s->in_pin);
} else if (is_eof && !out) {
mp_pin_in_write(f->ppins[1], MP_EOF_FRAME);
} else if (!is_eof && !out) {
mp_pin_out_request_data_next(s->in_pin);
}
if (out)
mp_pin_in_write(f->ppins[1], MAKE_FRAME(MP_FRAME_AUDIO, out));
return;
error:
TA_FREEP(&s->in);
talloc_free(out);
mp_filter_internal_mark_failed(f);
}
static void update_speed(struct priv *s, float speed)
{
s->speed = speed;
double factor = (s->opts->speed_opt & SCALE_PITCH) ? 1.0 / s->speed : s->speed;
s->scale = factor * s->opts->scale_nominal;
s->frames_stride_scaled = s->scale * s->frames_stride;
s->frames_stride_error = MPMIN(s->frames_stride_error, s->frames_stride_scaled);
}
static bool reinit(struct mp_filter *f)
{
struct priv *s = f->priv;
mp_aframe_reset(s->cur_format);
float srate = mp_aframe_get_rate(s->in) / 1000.0;
int nch = mp_aframe_get_channels(s->in);
int format = mp_aframe_get_format(s->in);
int use_int = 0;
if (format == AF_FORMAT_S16) {
use_int = 1;
} else if (format != AF_FORMAT_FLOAT) {
return false;
}
int bps = use_int ? 2 : 4;
s->frames_stride = srate * s->opts->ms_stride;
s->bytes_stride = s->frames_stride * bps * nch;
update_speed(s, s->speed);
int frames_overlap = s->frames_stride * s->opts->percent_overlap;
if (frames_overlap <= 0) {
s->bytes_standing = s->bytes_stride;
s->samples_standing = s->bytes_standing / bps;
s->output_overlap = NULL;
s->bytes_overlap = 0;
} else {
s->samples_overlap = frames_overlap * nch;
s->bytes_overlap = frames_overlap * nch * bps;
s->bytes_standing = s->bytes_stride - s->bytes_overlap;
s->samples_standing = s->bytes_standing / bps;
s->buf_overlap = realloc(s->buf_overlap, s->bytes_overlap);
s->table_blend = realloc(s->table_blend, s->bytes_overlap * 4);
if (!s->buf_overlap || !s->table_blend) {
MP_FATAL(f, "Out of memory\n");
return false;
}
memset(s->buf_overlap, 0, s->bytes_overlap);
if (use_int) {
int32_t *pb = s->table_blend;
int64_t blend = 0;
for (int i = 0; i < frames_overlap; i++) {
int32_t v = blend / frames_overlap;
for (int j = 0; j < nch; j++)
*pb++ = v;
blend += 65536; // 2^16
}
s->output_overlap = output_overlap_s16;
} else {
float *pb = s->table_blend;
for (int i = 0; i < frames_overlap; i++) {
float v = i / (float)frames_overlap;
for (int j = 0; j < nch; j++)
*pb++ = v;
}
s->output_overlap = output_overlap_float;
}
}
s->frames_search = (frames_overlap > 1) ? srate * s->opts->ms_search : 0;
if (s->frames_search <= 0)
s->best_overlap_offset = NULL;
else {
if (use_int) {
int64_t t = frames_overlap;
int32_t n = 8589934588LL / (t * t); // 4 * (2^31 - 1) / t^2
s->buf_pre_corr = realloc(s->buf_pre_corr,
s->bytes_overlap * 2 + UNROLL_PADDING);
s->table_window = realloc(s->table_window,
s->bytes_overlap * 2 - nch * bps * 2);
if (!s->buf_pre_corr || !s->table_window) {
MP_FATAL(f, "Out of memory\n");
return false;
}
memset((char *)s->buf_pre_corr + s->bytes_overlap * 2, 0,
UNROLL_PADDING);
int32_t *pw = s->table_window;
for (int i = 1; i < frames_overlap; i++) {
int32_t v = (i * (t - i) * n) >> 15;
for (int j = 0; j < nch; j++)
*pw++ = v;
}
s->best_overlap_offset = best_overlap_offset_s16;
} else {
s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap);
s->table_window = realloc(s->table_window,
s->bytes_overlap - nch * bps);
if (!s->buf_pre_corr || !s->table_window) {
MP_FATAL(f, "Out of memory\n");
return false;
}
float *pw = s->table_window;
for (int i = 1; i < frames_overlap; i++) {
float v = i * (frames_overlap - i);
for (int j = 0; j < nch; j++)
*pw++ = v;
}
s->best_overlap_offset = best_overlap_offset_float;
}
}
s->bytes_per_frame = bps * nch;
s->num_channels = nch;
s->bytes_queue = (s->frames_search + s->frames_stride + frames_overlap)
* bps * nch;
s->buf_queue = realloc(s->buf_queue, s->bytes_queue + UNROLL_PADDING);
if (!s->buf_queue) {
MP_FATAL(f, "Out of memory\n");
return false;
}
s->bytes_queued = 0;
s->bytes_to_slide = 0;
MP_DBG(f, ""
"%.2f stride_in, %i stride_out, %i standing, "
"%i overlap, %i search, %i queue, %s mode\n",
s->frames_stride_scaled,
(int)(s->bytes_stride / nch / bps),
(int)(s->bytes_standing / nch / bps),
(int)(s->bytes_overlap / nch / bps),
s->frames_search,
(int)(s->bytes_queue / nch / bps),
(use_int ? "s16" : "float"));
mp_aframe_config_copy(s->cur_format, s->in);
return true;
}
static bool command(struct mp_filter *f, struct mp_filter_command *cmd)
{
struct priv *s = f->priv;
if (cmd->type == MP_FILTER_COMMAND_SET_SPEED) {
if (s->opts->speed_opt & SCALE_TEMPO) {
if (s->opts->speed_opt & SCALE_PITCH)
return false;
update_speed(s, cmd->speed);
return true;
} else if (s->opts->speed_opt & SCALE_PITCH) {
update_speed(s, cmd->speed);
return false; // do not signal OK
}
}
return false;
}
static void reset(struct mp_filter *f)
{
struct priv *s = f->priv;
s->current_pts = MP_NOPTS_VALUE;
s->bytes_queued = 0;
s->bytes_to_slide = 0;
s->frames_stride_error = 0;
memset(s->buf_overlap, 0, s->bytes_overlap);
TA_FREEP(&s->in);
}
static void destroy(struct mp_filter *f)
{
struct priv *s = f->priv;
free(s->buf_queue);
free(s->buf_overlap);
free(s->buf_pre_corr);
free(s->table_blend);
free(s->table_window);
TA_FREEP(&s->in);
mp_filter_free_children(f);
}
static const struct mp_filter_info af_scaletempo_filter = {
.name = "scaletempo",
.priv_size = sizeof(struct priv),
.process = process,
.command = command,
.reset = reset,
.destroy = destroy,
};
static struct mp_filter *af_scaletempo_create(struct mp_filter *parent,
void *options)
{
struct mp_filter *f = mp_filter_create(parent, &af_scaletempo_filter);
if (!f) {
talloc_free(options);
return NULL;
}
mp_filter_add_pin(f, MP_PIN_IN, "in");
mp_filter_add_pin(f, MP_PIN_OUT, "out");
struct priv *s = f->priv;
s->opts = talloc_steal(s, options);
s->speed = 1.0;
s->cur_format = talloc_steal(s, mp_aframe_create());
s->out_pool = mp_aframe_pool_create(s);
struct mp_autoconvert *conv = mp_autoconvert_create(f);
if (!conv)
abort();
mp_autoconvert_add_afmt(conv, AF_FORMAT_S16);
mp_autoconvert_add_afmt(conv, AF_FORMAT_FLOAT);
mp_pin_connect(conv->f->pins[0], f->ppins[0]);
s->in_pin = conv->f->pins[1];
return f;
}
#define OPT_BASE_STRUCT struct f_opts
const struct mp_user_filter_entry af_scaletempo = {
.desc = {
.description = "Scale audio tempo while maintaining pitch",
.name = "scaletempo",
.priv_size = sizeof(OPT_BASE_STRUCT),
.priv_defaults = &(const OPT_BASE_STRUCT) {
.ms_stride = 60,
.percent_overlap = .20,
.ms_search = 14,
.speed_opt = SCALE_TEMPO,
.scale_nominal = 1.0,
},
.options = (const struct m_option[]) {
OPT_FLOAT("scale", scale_nominal, M_OPT_MIN, .min = 0.01),
OPT_FLOAT("stride", ms_stride, M_OPT_MIN, .min = 0.01),
OPT_FLOAT("overlap", percent_overlap, M_OPT_RANGE, .min = 0, .max = 1),
OPT_FLOAT("search", ms_search, M_OPT_MIN, .min = 0),
OPT_CHOICE("speed", speed_opt, 0,
({"pitch", SCALE_PITCH},
{"tempo", SCALE_TEMPO},
{"none", 0},
{"both", SCALE_TEMPO | SCALE_PITCH})),
{0}
},
},
.create = af_scaletempo_create,
};