/*
* Copyright (C) 2004 Alex Beregszaszi & Pierre Lombard
*
* This file is part of mpv.
*
* mpv is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* mpv is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with mpv. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include "common/common.h"
#include "af.h"
// Methods:
// 1: uses a 1 value memory and coefficients new=a*old+b*cur (with a+b=1)
// 2: uses several samples to smooth the variations (standard weighted mean
// on past samples)
// Size of the memory array
// FIXME: should depend on the frequency of the data (should be a few seconds)
#define NSAMPLES 128
// If summing all the mem[].len is lower than MIN_SAMPLE_SIZE bytes, then we
// choose to ignore the computed value as it's not significant enough
// FIXME: should depend on the frequency of the data (0.5s maybe)
#define MIN_SAMPLE_SIZE 32000
// mul is the value by which the samples are scaled
// and has to be in [MUL_MIN, MUL_MAX]
#define MUL_INIT 1.0
#define MUL_MIN 0.1
#define MUL_MAX 5.0
// Silence level
// FIXME: should be relative to the level of the samples
#define SIL_S16 (SHRT_MAX * 0.01)
#define SIL_FLOAT 0.01
// smooth must be in ]0.0, 1.0[
#define SMOOTH_MUL 0.06
#define SMOOTH_LASTAVG 0.06
#define DEFAULT_TARGET 0.25
// Data for specific instances of this filter
typedef struct af_volume_s
{
int method; // method used
float mul;
// method 1
float lastavg; // history value of the filter
// method 2
int idx;
struct {
float avg; // average level of the sample
int len; // sample size (weight)
} mem[NSAMPLES];
// "Ideal" level
float mid_s16;
float mid_float;
}af_drc_t;
// Initialization and runtime control
static int control(struct af_instance* af, int cmd, void* arg)
{
switch(cmd){
case AF_CONTROL_REINIT:
// Sanity check
if(!arg) return AF_ERROR;
mp_audio_force_interleaved_format((struct mp_audio*)arg);
mp_audio_copy_config(af->data, (struct mp_audio*)arg);
if(((struct mp_audio*)arg)->format != (AF_FORMAT_S16)){
mp_audio_set_format(af->data, AF_FORMAT_FLOAT);
}
return af_test_output(af,(struct mp_audio*)arg);
}
return AF_UNKNOWN;
}
static void method1_int16(af_drc_t *s, struct mp_audio *c)
{
register int i = 0;
int16_t *data = (int16_t*)c->planes[0]; // Audio data
int len = c->samples*c->nch; // Number of samples
float curavg = 0.0, newavg, neededmul;
int tmp;
for (i = 0; i < len; i++)
{
tmp = data[i];
curavg += tmp * tmp;
}
curavg = sqrt(curavg / (float) len);
// Evaluate an adequate 'mul' coefficient based on previous state, current
// samples level, etc
if (curavg > SIL_S16)
{
neededmul = s->mid_s16 / (curavg * s->mul);
s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
// clamp the mul coefficient
s->mul = MPCLAMP(s->mul, MUL_MIN, MUL_MAX);
}
// Scale & clamp the samples
for (i = 0; i < len; i++)
{
tmp = s->mul * data[i];
tmp = MPCLAMP(tmp, SHRT_MIN, SHRT_MAX);
data[i] = tmp;
}
// Evaluation of newavg (not 100% accurate because of values clamping)
newavg = s->mul * curavg;
// Stores computed values for future smoothing
s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
}
static void method1_float(af_drc_t *s, struct mp_audio *c)
{
register int i = 0;
float *data = (float*)c->planes[0]; // Audio data
int len = c->samples*c->nch; // Number of samples
float curavg = 0.0, newavg, neededmul, tmp;
for (i = 0; i < len; i++)
{
tmp = data[i];
curavg += tmp * tmp;
}
curavg = sqrt(curavg / (float) len);
// Evaluate an adequate 'mul' coefficient based on previous state, current
// samples level, etc
if (curavg > SIL_FLOAT) // FIXME
{
neededmul = s->mid_float / (curavg * s->mul);
s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
// clamp the mul coefficient
s->mul = MPCLAMP(s->mul, MUL_MIN, MUL_MAX);
}
// Scale & clamp the samples
for (i = 0; i < len; i++)
data[i] *= s->mul;
// Evaluation of newavg (not 100% accurate because of values clamping)
newavg = s->mul * curavg;
// Stores computed values for future smoothing
s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
}
static void method2_int16(af_drc_t *s, struct mp_audio *c)
{
register int i = 0;
int16_t *data = (int16_t*)c->planes[0]; // Audio data
int len = c->samples*c->nch; // Number of samples
float curavg = 0.0, newavg, avg = 0.0;
int tmp, totallen = 0;
for (i = 0; i < len; i++)
{
tmp = data[i];
curavg += tmp * tmp;
}
curavg = sqrt(curavg / (float) len);
// Evaluate an adequate 'mul' coefficient based on previous state, current
// samples level, etc
for (i = 0; i < NSAMPLES; i++)
{
avg += s->mem[i].avg * (float)s->mem[i].len;
totallen += s->mem[i].len;
}
if (totallen > MIN_SAMPLE_SIZE)
{
avg /= (float)totallen;
if (avg >= SIL_S16)
{
s->mul = s->mid_s16 / avg;
s->mul = MPCLAMP(s->mul, MUL_MIN, MUL_MAX);
}
}
// Scale & clamp the samples
for (i = 0; i < len; i++)
{
tmp = s->mul * data[i];
tmp = MPCLAMP(tmp, SHRT_MIN, SHRT_MAX);
data[i] = tmp;
}
// Evaluation of newavg (not 100% accurate because of values clamping)
newavg = s->mul * curavg;
// Stores computed values for future smoothing
s->mem[s->idx].len = len;
s->mem[s->idx].avg = newavg;
s->idx = (s->idx + 1) % NSAMPLES;
}
static void method2_float(af_drc_t *s, struct mp_audio *c)
{
register int i = 0;
float *data = (float*)c->planes[0]; // Audio data
int len = c->samples*c->nch; // Number of samples
float curavg = 0.0, newavg, avg = 0.0, tmp;
int totallen = 0;
for (i = 0; i < len; i++)
{
tmp = data[i];
curavg += tmp * tmp;
}
curavg = sqrt(curavg / (float) len);
// Evaluate an adequate 'mul' coefficient based on previous state, current
// samples level, etc
for (i = 0; i < NSAMPLES; i++)
{
avg += s->mem[i].avg * (float)s->mem[i].len;
totallen += s->mem[i].len;
}
if (totallen > MIN_SAMPLE_SIZE)
{
avg /= (float)totallen;
if (avg >= SIL_FLOAT)
{
s->mul = s->mid_float / avg;
s->mul = MPCLAMP(s->mul, MUL_MIN, MUL_MAX);
}
}
// Scale & clamp the samples
for (i = 0; i < len; i++)
data[i] *= s->mul;
// Evaluation of newavg (not 100% accurate because of values clamping)
newavg = s->mul * curavg;
// Stores computed values for future smoothing
s->mem[s->idx].len = len;
s->mem[s->idx].avg = newavg;
s->idx = (s->idx + 1) % NSAMPLES;
}
static int filter(struct af_instance *af, struct mp_audio *data)
{
af_drc_t *s = af->priv;
if (!data)
return 0;
if (af_make_writeable(af, data) < 0) {
talloc_free(data);
return -1;
}
if(af->data->format == (AF_FORMAT_S16))
{
if (s->method == 2)
method2_int16(s, data);
else
method1_int16(s, data);
}
else if(af->data->format == (AF_FORMAT_FLOAT))
{
if (s->method == 2)
method2_float(s, data);
else
method1_float(s, data);
}
af_add_output_frame(af, data);
return 0;
}
// Allocate memory and set function pointers
static int af_open(struct af_instance* af){
int i = 0;
af->control=control;
af->filter_frame = filter;
af_drc_t *priv = af->priv;
priv->mul = MUL_INIT;
priv->lastavg = ((float)SHRT_MAX) * DEFAULT_TARGET;
priv->idx = 0;
for (i = 0; i < NSAMPLES; i++)
{
priv->mem[i].len = 0;
priv->mem[i].avg = 0;
}
priv->mid_s16 = ((float)SHRT_MAX) * priv->mid_float;
return AF_OK;
}
#define OPT_BASE_STRUCT af_drc_t
const struct af_info af_info_drc = {
.info = "Dynamic range compression filter",
.name = "drc",
.flags = AF_FLAGS_NOT_REENTRANT,
.open = af_open,
.priv_size = sizeof(af_drc_t),
.options = (const struct m_option[]) {
OPT_INTRANGE("method", method, 0, 1, 2, OPTDEF_INT(1)),
OPT_FLOAT("target", mid_float, 0, OPTDEF_FLOAT(DEFAULT_TARGET)),
{0}
},
};