// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package message import ( "bytes" "fmt" // TODO: consider copying interfaces from package fmt to avoid dependency. "math" "reflect" "sync" "unicode/utf8" "golang.org/x/text/internal/format" "golang.org/x/text/internal/number" "golang.org/x/text/language" "golang.org/x/text/message/catalog" ) // Strings for use with buffer.WriteString. // This is less overhead than using buffer.Write with byte arrays. const ( commaSpaceString = ", " nilAngleString = "" nilParenString = "(nil)" nilString = "nil" mapString = "map[" percentBangString = "%!" missingString = "(MISSING)" badIndexString = "(BADINDEX)" panicString = "(PANIC=" extraString = "%!(EXTRA " badWidthString = "%!(BADWIDTH)" badPrecString = "%!(BADPREC)" noVerbString = "%!(NOVERB)" invReflectString = "" ) var printerPool = sync.Pool{ New: func() interface{} { return new(printer) }, } // newPrinter allocates a new printer struct or grabs a cached one. func newPrinter(pp *Printer) *printer { p := printerPool.Get().(*printer) p.Printer = *pp // TODO: cache most of the following call. p.catContext = pp.cat.Context(pp.tag, p) p.panicking = false p.erroring = false p.fmt.init(&p.Buffer) return p } // free saves used printer structs in printerFree; avoids an allocation per invocation. func (p *printer) free() { p.Buffer.Reset() p.arg = nil p.value = reflect.Value{} printerPool.Put(p) } // printer is used to store a printer's state. // It implements "golang.org/x/text/internal/format".State. type printer struct { Printer // the context for looking up message translations catContext *catalog.Context // buffer for accumulating output. bytes.Buffer // arg holds the current item, as an interface{}. arg interface{} // value is used instead of arg for reflect values. value reflect.Value // fmt is used to format basic items such as integers or strings. fmt formatInfo // panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion. panicking bool // erroring is set when printing an error string to guard against calling handleMethods. erroring bool } // Language implements "golang.org/x/text/internal/format".State. func (p *printer) Language() language.Tag { return p.tag } func (p *printer) Width() (wid int, ok bool) { return p.fmt.Width, p.fmt.WidthPresent } func (p *printer) Precision() (prec int, ok bool) { return p.fmt.Prec, p.fmt.PrecPresent } func (p *printer) Flag(b int) bool { switch b { case '-': return p.fmt.Minus case '+': return p.fmt.Plus || p.fmt.PlusV case '#': return p.fmt.Sharp || p.fmt.SharpV case ' ': return p.fmt.Space case '0': return p.fmt.Zero } return false } // getField gets the i'th field of the struct value. // If the field is itself is an interface, return a value for // the thing inside the interface, not the interface itself. func getField(v reflect.Value, i int) reflect.Value { val := v.Field(i) if val.Kind() == reflect.Interface && !val.IsNil() { val = val.Elem() } return val } func (p *printer) unknownType(v reflect.Value) { if !v.IsValid() { p.WriteString(nilAngleString) return } p.WriteByte('?') p.WriteString(v.Type().String()) p.WriteByte('?') } func (p *printer) badVerb(verb rune) { p.erroring = true p.WriteString(percentBangString) p.WriteRune(verb) p.WriteByte('(') switch { case p.arg != nil: p.WriteString(reflect.TypeOf(p.arg).String()) p.WriteByte('=') p.printArg(p.arg, 'v') case p.value.IsValid(): p.WriteString(p.value.Type().String()) p.WriteByte('=') p.printValue(p.value, 'v', 0) default: p.WriteString(nilAngleString) } p.WriteByte(')') p.erroring = false } func (p *printer) fmtBool(v bool, verb rune) { switch verb { case 't', 'v': p.fmt.fmt_boolean(v) default: p.badVerb(verb) } } // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or // not, as requested, by temporarily setting the sharp flag. func (p *printer) fmt0x64(v uint64, leading0x bool) { sharp := p.fmt.Sharp p.fmt.Sharp = leading0x p.fmt.fmt_integer(v, 16, unsigned, ldigits) p.fmt.Sharp = sharp } // fmtInteger formats a signed or unsigned integer. func (p *printer) fmtInteger(v uint64, isSigned bool, verb rune) { switch verb { case 'v': if p.fmt.SharpV && !isSigned { p.fmt0x64(v, true) return } fallthrough case 'd': if p.fmt.Sharp || p.fmt.SharpV { p.fmt.fmt_integer(v, 10, isSigned, ldigits) } else { p.fmtDecimalInt(v, isSigned) } case 'b': p.fmt.fmt_integer(v, 2, isSigned, ldigits) case 'o': p.fmt.fmt_integer(v, 8, isSigned, ldigits) case 'x': p.fmt.fmt_integer(v, 16, isSigned, ldigits) case 'X': p.fmt.fmt_integer(v, 16, isSigned, udigits) case 'c': p.fmt.fmt_c(v) case 'q': if v <= utf8.MaxRune { p.fmt.fmt_qc(v) } else { p.badVerb(verb) } case 'U': p.fmt.fmt_unicode(v) default: p.badVerb(verb) } } // fmtFloat formats a float. The default precision for each verb // is specified as last argument in the call to fmt_float. func (p *printer) fmtFloat(v float64, size int, verb rune) { switch verb { case 'b': p.fmt.fmt_float(v, size, verb, -1) case 'v': verb = 'g' fallthrough case 'g', 'G': if p.fmt.Sharp || p.fmt.SharpV { p.fmt.fmt_float(v, size, verb, -1) } else { p.fmtVariableFloat(v, size) } case 'e', 'E': if p.fmt.Sharp || p.fmt.SharpV { p.fmt.fmt_float(v, size, verb, 6) } else { p.fmtScientific(v, size, 6) } case 'f', 'F': if p.fmt.Sharp || p.fmt.SharpV { p.fmt.fmt_float(v, size, verb, 6) } else { p.fmtDecimalFloat(v, size, 6) } default: p.badVerb(verb) } } func (p *printer) setFlags(f *number.Formatter) { f.Flags &^= number.ElideSign if p.fmt.Plus || p.fmt.Space { f.Flags |= number.AlwaysSign if !p.fmt.Plus { f.Flags |= number.ElideSign } } else { f.Flags &^= number.AlwaysSign } } func (p *printer) updatePadding(f *number.Formatter) { f.Flags &^= number.PadMask if p.fmt.Minus { f.Flags |= number.PadAfterSuffix } else { f.Flags |= number.PadBeforePrefix } f.PadRune = ' ' f.FormatWidth = uint16(p.fmt.Width) } func (p *printer) initDecimal(minFrac, maxFrac int) { f := &p.toDecimal f.MinIntegerDigits = 1 f.MaxIntegerDigits = 0 f.MinFractionDigits = uint8(minFrac) f.MaxFractionDigits = int16(maxFrac) p.setFlags(f) f.PadRune = 0 if p.fmt.WidthPresent { if p.fmt.Zero { wid := p.fmt.Width // Use significant integers for this. // TODO: this is not the same as width, but so be it. if f.MinFractionDigits > 0 { wid -= 1 + int(f.MinFractionDigits) } if p.fmt.Plus || p.fmt.Space { wid-- } if wid > 0 && wid > int(f.MinIntegerDigits) { f.MinIntegerDigits = uint8(wid) } } p.updatePadding(f) } } func (p *printer) initScientific(minFrac, maxFrac int) { f := &p.toScientific if maxFrac < 0 { f.SetPrecision(maxFrac) } else { f.SetPrecision(maxFrac + 1) f.MinFractionDigits = uint8(minFrac) f.MaxFractionDigits = int16(maxFrac) } f.MinExponentDigits = 2 p.setFlags(f) f.PadRune = 0 if p.fmt.WidthPresent { f.Flags &^= number.PadMask if p.fmt.Zero { f.PadRune = f.Digit(0) f.Flags |= number.PadAfterPrefix } else { f.PadRune = ' ' f.Flags |= number.PadBeforePrefix } p.updatePadding(f) } } func (p *printer) fmtDecimalInt(v uint64, isSigned bool) { var d number.Decimal f := &p.toDecimal if p.fmt.PrecPresent { p.setFlags(f) f.MinIntegerDigits = uint8(p.fmt.Prec) f.MaxIntegerDigits = 0 f.MinFractionDigits = 0 f.MaxFractionDigits = 0 if p.fmt.WidthPresent { p.updatePadding(f) } } else { p.initDecimal(0, 0) } d.ConvertInt(p.toDecimal.RoundingContext, isSigned, v) out := p.toDecimal.Format([]byte(nil), &d) p.Buffer.Write(out) } func (p *printer) fmtDecimalFloat(v float64, size, prec int) { var d number.Decimal if p.fmt.PrecPresent { prec = p.fmt.Prec } p.initDecimal(prec, prec) d.ConvertFloat(p.toDecimal.RoundingContext, v, size) out := p.toDecimal.Format([]byte(nil), &d) p.Buffer.Write(out) } func (p *printer) fmtVariableFloat(v float64, size int) { prec := -1 if p.fmt.PrecPresent { prec = p.fmt.Prec } var d number.Decimal p.initScientific(0, prec) d.ConvertFloat(p.toScientific.RoundingContext, v, size) // Copy logic of 'g' formatting from strconv. It is simplified a bit as // we don't have to mind having prec > len(d.Digits). shortest := prec < 0 ePrec := prec if shortest { prec = len(d.Digits) ePrec = 6 } else if prec == 0 { prec = 1 ePrec = 1 } exp := int(d.Exp) - 1 if exp < -4 || exp >= ePrec { p.initScientific(0, prec) out := p.toScientific.Format([]byte(nil), &d) p.Buffer.Write(out) } else { if prec > int(d.Exp) { prec = len(d.Digits) } if prec -= int(d.Exp); prec < 0 { prec = 0 } p.initDecimal(0, prec) out := p.toDecimal.Format([]byte(nil), &d) p.Buffer.Write(out) } } func (p *printer) fmtScientific(v float64, size, prec int) { var d number.Decimal if p.fmt.PrecPresent { prec = p.fmt.Prec } p.initScientific(prec, prec) rc := p.toScientific.RoundingContext d.ConvertFloat(rc, v, size) out := p.toScientific.Format([]byte(nil), &d) p.Buffer.Write(out) } // fmtComplex formats a complex number v with // r = real(v) and j = imag(v) as (r+ji) using // fmtFloat for r and j formatting. func (p *printer) fmtComplex(v complex128, size int, verb rune) { // Make sure any unsupported verbs are found before the // calls to fmtFloat to not generate an incorrect error string. switch verb { case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E': p.WriteByte('(') p.fmtFloat(real(v), size/2, verb) // Imaginary part always has a sign. if math.IsNaN(imag(v)) { // By CLDR's rules, NaNs do not use patterns or signs. As this code // relies on AlwaysSign working for imaginary parts, we need to // manually handle NaNs. f := &p.toScientific p.setFlags(f) p.updatePadding(f) p.setFlags(f) nan := f.Symbol(number.SymNan) extra := 0 if w, ok := p.Width(); ok { extra = w - utf8.RuneCountInString(nan) - 1 } if f.Flags&number.PadAfterNumber == 0 { for ; extra > 0; extra-- { p.WriteRune(f.PadRune) } } p.WriteString(f.Symbol(number.SymPlusSign)) p.WriteString(nan) for ; extra > 0; extra-- { p.WriteRune(f.PadRune) } p.WriteString("i)") return } oldPlus := p.fmt.Plus p.fmt.Plus = true p.fmtFloat(imag(v), size/2, verb) p.WriteString("i)") // TODO: use symbol? p.fmt.Plus = oldPlus default: p.badVerb(verb) } } func (p *printer) fmtString(v string, verb rune) { switch verb { case 'v': if p.fmt.SharpV { p.fmt.fmt_q(v) } else { p.fmt.fmt_s(v) } case 's': p.fmt.fmt_s(v) case 'x': p.fmt.fmt_sx(v, ldigits) case 'X': p.fmt.fmt_sx(v, udigits) case 'q': p.fmt.fmt_q(v) default: p.badVerb(verb) } } func (p *printer) fmtBytes(v []byte, verb rune, typeString string) { switch verb { case 'v', 'd': if p.fmt.SharpV { p.WriteString(typeString) if v == nil { p.WriteString(nilParenString) return } p.WriteByte('{') for i, c := range v { if i > 0 { p.WriteString(commaSpaceString) } p.fmt0x64(uint64(c), true) } p.WriteByte('}') } else { p.WriteByte('[') for i, c := range v { if i > 0 { p.WriteByte(' ') } p.fmt.fmt_integer(uint64(c), 10, unsigned, ldigits) } p.WriteByte(']') } case 's': p.fmt.fmt_s(string(v)) case 'x': p.fmt.fmt_bx(v, ldigits) case 'X': p.fmt.fmt_bx(v, udigits) case 'q': p.fmt.fmt_q(string(v)) default: p.printValue(reflect.ValueOf(v), verb, 0) } } func (p *printer) fmtPointer(value reflect.Value, verb rune) { var u uintptr switch value.Kind() { case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer: u = value.Pointer() default: p.badVerb(verb) return } switch verb { case 'v': if p.fmt.SharpV { p.WriteByte('(') p.WriteString(value.Type().String()) p.WriteString(")(") if u == 0 { p.WriteString(nilString) } else { p.fmt0x64(uint64(u), true) } p.WriteByte(')') } else { if u == 0 { p.fmt.padString(nilAngleString) } else { p.fmt0x64(uint64(u), !p.fmt.Sharp) } } case 'p': p.fmt0x64(uint64(u), !p.fmt.Sharp) case 'b', 'o', 'd', 'x', 'X': if verb == 'd' { p.fmt.Sharp = true // Print as standard go. TODO: does this make sense? } p.fmtInteger(uint64(u), unsigned, verb) default: p.badVerb(verb) } } func (p *printer) catchPanic(arg interface{}, verb rune) { if err := recover(); err != nil { // If it's a nil pointer, just say "". The likeliest causes are a // Stringer that fails to guard against nil or a nil pointer for a // value receiver, and in either case, "" is a nice result. if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() { p.WriteString(nilAngleString) return } // Otherwise print a concise panic message. Most of the time the panic // value will print itself nicely. if p.panicking { // Nested panics; the recursion in printArg cannot succeed. panic(err) } oldFlags := p.fmt.Parser // For this output we want default behavior. p.fmt.ClearFlags() p.WriteString(percentBangString) p.WriteRune(verb) p.WriteString(panicString) p.panicking = true p.printArg(err, 'v') p.panicking = false p.WriteByte(')') p.fmt.Parser = oldFlags } } func (p *printer) handleMethods(verb rune) (handled bool) { if p.erroring { return } // Is it a Formatter? if formatter, ok := p.arg.(format.Formatter); ok { handled = true defer p.catchPanic(p.arg, verb) formatter.Format(p, verb) return } if formatter, ok := p.arg.(fmt.Formatter); ok { handled = true defer p.catchPanic(p.arg, verb) formatter.Format(p, verb) return } // If we're doing Go syntax and the argument knows how to supply it, take care of it now. if p.fmt.SharpV { if stringer, ok := p.arg.(fmt.GoStringer); ok { handled = true defer p.catchPanic(p.arg, verb) // Print the result of GoString unadorned. p.fmt.fmt_s(stringer.GoString()) return } } else { // If a string is acceptable according to the format, see if // the value satisfies one of the string-valued interfaces. // Println etc. set verb to %v, which is "stringable". switch verb { case 'v', 's', 'x', 'X', 'q': // Is it an error or Stringer? // The duplication in the bodies is necessary: // setting handled and deferring catchPanic // must happen before calling the method. switch v := p.arg.(type) { case error: handled = true defer p.catchPanic(p.arg, verb) p.fmtString(v.Error(), verb) return case fmt.Stringer: handled = true defer p.catchPanic(p.arg, verb) p.fmtString(v.String(), verb) return } } } return false } func (p *printer) printArg(arg interface{}, verb rune) { p.arg = arg p.value = reflect.Value{} if arg == nil { switch verb { case 'T', 'v': p.fmt.padString(nilAngleString) default: p.badVerb(verb) } return } // Special processing considerations. // %T (the value's type) and %p (its address) are special; we always do them first. switch verb { case 'T': p.fmt.fmt_s(reflect.TypeOf(arg).String()) return case 'p': p.fmtPointer(reflect.ValueOf(arg), 'p') return } // Some types can be done without reflection. switch f := arg.(type) { case bool: p.fmtBool(f, verb) case float32: p.fmtFloat(float64(f), 32, verb) case float64: p.fmtFloat(f, 64, verb) case complex64: p.fmtComplex(complex128(f), 64, verb) case complex128: p.fmtComplex(f, 128, verb) case int: p.fmtInteger(uint64(f), signed, verb) case int8: p.fmtInteger(uint64(f), signed, verb) case int16: p.fmtInteger(uint64(f), signed, verb) case int32: p.fmtInteger(uint64(f), signed, verb) case int64: p.fmtInteger(uint64(f), signed, verb) case uint: p.fmtInteger(uint64(f), unsigned, verb) case uint8: p.fmtInteger(uint64(f), unsigned, verb) case uint16: p.fmtInteger(uint64(f), unsigned, verb) case uint32: p.fmtInteger(uint64(f), unsigned, verb) case uint64: p.fmtInteger(f, unsigned, verb) case uintptr: p.fmtInteger(uint64(f), unsigned, verb) case string: p.fmtString(f, verb) case []byte: p.fmtBytes(f, verb, "[]byte") case reflect.Value: // Handle extractable values with special methods // since printValue does not handle them at depth 0. if f.IsValid() && f.CanInterface() { p.arg = f.Interface() if p.handleMethods(verb) { return } } p.printValue(f, verb, 0) default: // If the type is not simple, it might have methods. if !p.handleMethods(verb) { // Need to use reflection, since the type had no // interface methods that could be used for formatting. p.printValue(reflect.ValueOf(f), verb, 0) } } } // printValue is similar to printArg but starts with a reflect value, not an interface{} value. // It does not handle 'p' and 'T' verbs because these should have been already handled by printArg. func (p *printer) printValue(value reflect.Value, verb rune, depth int) { // Handle values with special methods if not already handled by printArg (depth == 0). if depth > 0 && value.IsValid() && value.CanInterface() { p.arg = value.Interface() if p.handleMethods(verb) { return } } p.arg = nil p.value = value switch f := value; value.Kind() { case reflect.Invalid: if depth == 0 { p.WriteString(invReflectString) } else { switch verb { case 'v': p.WriteString(nilAngleString) default: p.badVerb(verb) } } case reflect.Bool: p.fmtBool(f.Bool(), verb) case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: p.fmtInteger(uint64(f.Int()), signed, verb) case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: p.fmtInteger(f.Uint(), unsigned, verb) case reflect.Float32: p.fmtFloat(f.Float(), 32, verb) case reflect.Float64: p.fmtFloat(f.Float(), 64, verb) case reflect.Complex64: p.fmtComplex(f.Complex(), 64, verb) case reflect.Complex128: p.fmtComplex(f.Complex(), 128, verb) case reflect.String: p.fmtString(f.String(), verb) case reflect.Map: if p.fmt.SharpV { p.WriteString(f.Type().String()) if f.IsNil() { p.WriteString(nilParenString) return } p.WriteByte('{') } else { p.WriteString(mapString) } keys := f.MapKeys() for i, key := range keys { if i > 0 { if p.fmt.SharpV { p.WriteString(commaSpaceString) } else { p.WriteByte(' ') } } p.printValue(key, verb, depth+1) p.WriteByte(':') p.printValue(f.MapIndex(key), verb, depth+1) } if p.fmt.SharpV { p.WriteByte('}') } else { p.WriteByte(']') } case reflect.Struct: if p.fmt.SharpV { p.WriteString(f.Type().String()) } p.WriteByte('{') for i := 0; i < f.NumField(); i++ { if i > 0 { if p.fmt.SharpV { p.WriteString(commaSpaceString) } else { p.WriteByte(' ') } } if p.fmt.PlusV || p.fmt.SharpV { if name := f.Type().Field(i).Name; name != "" { p.WriteString(name) p.WriteByte(':') } } p.printValue(getField(f, i), verb, depth+1) } p.WriteByte('}') case reflect.Interface: value := f.Elem() if !value.IsValid() { if p.fmt.SharpV { p.WriteString(f.Type().String()) p.WriteString(nilParenString) } else { p.WriteString(nilAngleString) } } else { p.printValue(value, verb, depth+1) } case reflect.Array, reflect.Slice: switch verb { case 's', 'q', 'x', 'X': // Handle byte and uint8 slices and arrays special for the above verbs. t := f.Type() if t.Elem().Kind() == reflect.Uint8 { var bytes []byte if f.Kind() == reflect.Slice { bytes = f.Bytes() } else if f.CanAddr() { bytes = f.Slice(0, f.Len()).Bytes() } else { // We have an array, but we cannot Slice() a non-addressable array, // so we build a slice by hand. This is a rare case but it would be nice // if reflection could help a little more. bytes = make([]byte, f.Len()) for i := range bytes { bytes[i] = byte(f.Index(i).Uint()) } } p.fmtBytes(bytes, verb, t.String()) return } } if p.fmt.SharpV { p.WriteString(f.Type().String()) if f.Kind() == reflect.Slice && f.IsNil() { p.WriteString(nilParenString) return } p.WriteByte('{') for i := 0; i < f.Len(); i++ { if i > 0 { p.WriteString(commaSpaceString) } p.printValue(f.Index(i), verb, depth+1) } p.WriteByte('}') } else { p.WriteByte('[') for i := 0; i < f.Len(); i++ { if i > 0 { p.WriteByte(' ') } p.printValue(f.Index(i), verb, depth+1) } p.WriteByte(']') } case reflect.Ptr: // pointer to array or slice or struct? ok at top level // but not embedded (avoid loops) if depth == 0 && f.Pointer() != 0 { switch a := f.Elem(); a.Kind() { case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map: p.WriteByte('&') p.printValue(a, verb, depth+1) return } } fallthrough case reflect.Chan, reflect.Func, reflect.UnsafePointer: p.fmtPointer(f, verb) default: p.unknownType(f) } } func (p *printer) badArgNum(verb rune) { p.WriteString(percentBangString) p.WriteRune(verb) p.WriteString(badIndexString) } func (p *printer) missingArg(verb rune) { p.WriteString(percentBangString) p.WriteRune(verb) p.WriteString(missingString) } func (p *printer) doPrintf(fmt string) { for p.fmt.Parser.SetFormat(fmt); p.fmt.Scan(); { switch p.fmt.Status { case format.StatusText: p.WriteString(p.fmt.Text()) case format.StatusSubstitution: p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb) case format.StatusBadWidthSubstitution: p.WriteString(badWidthString) p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb) case format.StatusBadPrecSubstitution: p.WriteString(badPrecString) p.printArg(p.Arg(p.fmt.ArgNum), p.fmt.Verb) case format.StatusNoVerb: p.WriteString(noVerbString) case format.StatusBadArgNum: p.badArgNum(p.fmt.Verb) case format.StatusMissingArg: p.missingArg(p.fmt.Verb) default: panic("unreachable") } } // Check for extra arguments, but only if there was at least one ordered // argument. Note that this behavior is necessarily different from fmt: // different variants of messages may opt to drop some or all of the // arguments. if !p.fmt.Reordered && p.fmt.ArgNum < len(p.fmt.Args) && p.fmt.ArgNum != 0 { p.fmt.ClearFlags() p.WriteString(extraString) for i, arg := range p.fmt.Args[p.fmt.ArgNum:] { if i > 0 { p.WriteString(commaSpaceString) } if arg == nil { p.WriteString(nilAngleString) } else { p.WriteString(reflect.TypeOf(arg).String()) p.WriteString("=") p.printArg(arg, 'v') } } p.WriteByte(')') } } func (p *printer) doPrint(a []interface{}) { prevString := false for argNum, arg := range a { isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String // Add a space between two non-string arguments. if argNum > 0 && !isString && !prevString { p.WriteByte(' ') } p.printArg(arg, 'v') prevString = isString } } // doPrintln is like doPrint but always adds a space between arguments // and a newline after the last argument. func (p *printer) doPrintln(a []interface{}) { for argNum, arg := range a { if argNum > 0 { p.WriteByte(' ') } p.printArg(arg, 'v') } p.WriteByte('\n') }