/* * * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/proto/grpc/testing/benchmark_service.grpc.pb.h" #include "test/cpp/qps/client.h" #include "test/cpp/qps/usage_timer.h" namespace grpc { namespace testing { /** * Maintains context info per RPC */ struct CallbackClientRpcContext { CallbackClientRpcContext(BenchmarkService::Stub* stub) : stub_(stub) {} ~CallbackClientRpcContext() {} SimpleResponse response_; ClientContext context_; Alarm alarm_; BenchmarkService::Stub* stub_; }; static std::unique_ptr BenchmarkStubCreator( const std::shared_ptr& ch) { return BenchmarkService::NewStub(ch); } class CallbackClient : public ClientImpl { public: CallbackClient(const ClientConfig& config) : ClientImpl( config, BenchmarkStubCreator) { num_threads_ = NumThreads(config); rpcs_done_ = 0; SetupLoadTest(config, num_threads_); total_outstanding_rpcs_ = config.client_channels() * config.outstanding_rpcs_per_channel(); } virtual ~CallbackClient() {} protected: size_t num_threads_; size_t total_outstanding_rpcs_; // The below mutex and condition variable is used by main benchmark thread to // wait on completion of all RPCs before shutdown std::mutex shutdown_mu_; std::condition_variable shutdown_cv_; // Number of rpcs done after thread completion size_t rpcs_done_; // Vector of Context data pointers for running a RPC std::vector> ctx_; virtual void InitThreadFuncImpl(size_t thread_idx) = 0; virtual bool ThreadFuncImpl(Thread* t, size_t thread_idx) = 0; void ThreadFunc(size_t thread_idx, Thread* t) override { InitThreadFuncImpl(thread_idx); ThreadFuncImpl(t, thread_idx); } virtual void ScheduleRpc(Thread* t, size_t thread_idx, size_t ctx_vector_idx) = 0; /** * The main thread of the benchmark will be waiting on DestroyMultithreading. * Increment the rpcs_done_ variable to signify that the Callback RPC * after thread completion is done. When the last outstanding rpc increments * the counter it should also signal the main thread's conditional variable. */ void NotifyMainThreadOfThreadCompletion() { std::lock_guard l(shutdown_mu_); rpcs_done_++; if (rpcs_done_ == total_outstanding_rpcs_) { shutdown_cv_.notify_one(); } } private: int NumThreads(const ClientConfig& config) { int num_threads = config.async_client_threads(); if (num_threads <= 0) { // Use dynamic sizing num_threads = cores_; gpr_log(GPR_INFO, "Sizing callback client to %d threads", num_threads); } return num_threads; } /** * Wait until all outstanding Callback RPCs are done */ void DestroyMultithreading() final { std::unique_lock l(shutdown_mu_); while (rpcs_done_ != total_outstanding_rpcs_) { shutdown_cv_.wait(l); } EndThreads(); } }; class CallbackUnaryClient final : public CallbackClient { public: CallbackUnaryClient(const ClientConfig& config) : CallbackClient(config) { for (int ch = 0; ch < config.client_channels(); ch++) { for (int i = 0; i < config.outstanding_rpcs_per_channel(); i++) { ctx_.emplace_back( new CallbackClientRpcContext(channels_[ch].get_stub())); } } StartThreads(num_threads_); } ~CallbackUnaryClient() {} protected: bool ThreadFuncImpl(Thread* t, size_t thread_idx) override { for (size_t vector_idx = thread_idx; vector_idx < total_outstanding_rpcs_; vector_idx += num_threads_) { ScheduleRpc(t, thread_idx, vector_idx); } return true; } void InitThreadFuncImpl(size_t thread_idx) override { return; } private: void ScheduleRpc(Thread* t, size_t thread_idx, size_t vector_idx) override { if (!closed_loop_) { gpr_timespec next_issue_time = NextIssueTime(thread_idx); // Start an alarm callback to run the internal callback after // next_issue_time ctx_[vector_idx]->alarm_.experimental().Set( next_issue_time, [this, t, thread_idx, vector_idx](bool ok) { IssueUnaryCallbackRpc(t, thread_idx, vector_idx); }); } else { IssueUnaryCallbackRpc(t, thread_idx, vector_idx); } } void IssueUnaryCallbackRpc(Thread* t, size_t thread_idx, size_t vector_idx) { GPR_TIMER_SCOPE("CallbackUnaryClient::ThreadFunc", 0); double start = UsageTimer::Now(); ctx_[vector_idx]->stub_->experimental_async()->UnaryCall( (&ctx_[vector_idx]->context_), &request_, &ctx_[vector_idx]->response_, [this, t, thread_idx, start, vector_idx](grpc::Status s) { // Update Histogram with data from the callback run HistogramEntry entry; if (s.ok()) { entry.set_value((UsageTimer::Now() - start) * 1e9); } entry.set_status(s.error_code()); t->UpdateHistogram(&entry); if (ThreadCompleted() || !s.ok()) { // Notify thread of completion NotifyMainThreadOfThreadCompletion(); } else { // Reallocate ctx for next RPC ctx_[vector_idx].reset( new CallbackClientRpcContext(ctx_[vector_idx]->stub_)); // Schedule a new RPC ScheduleRpc(t, thread_idx, vector_idx); } }); } }; std::unique_ptr CreateCallbackClient(const ClientConfig& config) { switch (config.rpc_type()) { case UNARY: return std::unique_ptr(new CallbackUnaryClient(config)); case STREAMING: case STREAMING_FROM_CLIENT: case STREAMING_FROM_SERVER: case STREAMING_BOTH_WAYS: assert(false); return nullptr; default: assert(false); return nullptr; } } } // namespace testing } // namespace grpc