/* * * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #ifndef TEST_QPS_CLIENT_H #define TEST_QPS_CLIENT_H #include #include #include #include #include #include #include #include #include #include #include #include "src/proto/grpc/testing/benchmark_service.grpc.pb.h" #include "src/proto/grpc/testing/payloads.pb.h" #include "src/core/lib/gpr/env.h" #include "src/cpp/util/core_stats.h" #include "test/cpp/qps/histogram.h" #include "test/cpp/qps/interarrival.h" #include "test/cpp/qps/qps_worker.h" #include "test/cpp/qps/server.h" #include "test/cpp/qps/usage_timer.h" #include "test/cpp/util/create_test_channel.h" #include "test/cpp/util/test_credentials_provider.h" #define INPROC_NAME_PREFIX "qpsinproc:" namespace grpc { namespace testing { template class ClientRequestCreator { public: ClientRequestCreator(RequestType* req, const PayloadConfig&) { // this template must be specialized // fail with an assertion rather than a compile-time // check since these only happen at the beginning anyway GPR_ASSERT(false); } }; template <> class ClientRequestCreator { public: ClientRequestCreator(SimpleRequest* req, const PayloadConfig& payload_config) { if (payload_config.has_bytebuf_params()) { GPR_ASSERT(false); // not appropriate for this specialization } else if (payload_config.has_simple_params()) { req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE); req->set_response_size(payload_config.simple_params().resp_size()); req->mutable_payload()->set_type( grpc::testing::PayloadType::COMPRESSABLE); int size = payload_config.simple_params().req_size(); std::unique_ptr body(new char[size]); req->mutable_payload()->set_body(body.get(), size); } else if (payload_config.has_complex_params()) { GPR_ASSERT(false); // not appropriate for this specialization } else { // default should be simple proto without payloads req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE); req->set_response_size(0); req->mutable_payload()->set_type( grpc::testing::PayloadType::COMPRESSABLE); } } }; template <> class ClientRequestCreator { public: ClientRequestCreator(ByteBuffer* req, const PayloadConfig& payload_config) { if (payload_config.has_bytebuf_params()) { size_t req_sz = static_cast(payload_config.bytebuf_params().req_size()); std::unique_ptr buf(new char[req_sz]); memset(buf.get(), 0, req_sz); Slice slice(buf.get(), req_sz); *req = ByteBuffer(&slice, 1); } else { GPR_ASSERT(false); // not appropriate for this specialization } } }; class HistogramEntry final { public: HistogramEntry() : value_used_(false), status_used_(false) {} bool value_used() const { return value_used_; } double value() const { return value_; } void set_value(double v) { value_used_ = true; value_ = v; } bool status_used() const { return status_used_; } int status() const { return status_; } void set_status(int status) { status_used_ = true; status_ = status; } private: bool value_used_; double value_; bool status_used_; int status_; }; typedef std::unordered_map StatusHistogram; inline void MergeStatusHistogram(const StatusHistogram& from, StatusHistogram* to) { for (StatusHistogram::const_iterator it = from.begin(); it != from.end(); ++it) { (*to)[it->first] += it->second; } } class Client { public: Client() : timer_(new UsageTimer), interarrival_timer_(), started_requests_(false), last_reset_poll_count_(0) { gpr_event_init(&start_requests_); } virtual ~Client() {} ClientStats Mark(bool reset) { Histogram latencies; StatusHistogram statuses; UsageTimer::Result timer_result; MaybeStartRequests(); int cur_poll_count = GetPollCount(); int poll_count = cur_poll_count - last_reset_poll_count_; if (reset) { std::vector to_merge(threads_.size()); std::vector to_merge_status(threads_.size()); for (size_t i = 0; i < threads_.size(); i++) { threads_[i]->BeginSwap(&to_merge[i], &to_merge_status[i]); } std::unique_ptr timer(new UsageTimer); timer_.swap(timer); for (size_t i = 0; i < threads_.size(); i++) { latencies.Merge(to_merge[i]); MergeStatusHistogram(to_merge_status[i], &statuses); } timer_result = timer->Mark(); last_reset_poll_count_ = cur_poll_count; } else { // merge snapshots of each thread histogram for (size_t i = 0; i < threads_.size(); i++) { threads_[i]->MergeStatsInto(&latencies, &statuses); } timer_result = timer_->Mark(); } // Print the median latency per interval for one thread. // If the number of warmup seconds is x, then the first x + 1 numbers in the // vector are from the warmup period and should be discarded. if (median_latency_collection_interval_seconds_ > 0) { std::vector medians_per_interval = threads_[0]->GetMedianPerIntervalList(); gpr_log(GPR_INFO, "Num threads: %ld", threads_.size()); gpr_log(GPR_INFO, "Number of medians: %ld", medians_per_interval.size()); for (size_t j = 0; j < medians_per_interval.size(); j++) { gpr_log(GPR_INFO, "%f", medians_per_interval[j]); } } grpc_stats_data core_stats; grpc_stats_collect(&core_stats); ClientStats stats; latencies.FillProto(stats.mutable_latencies()); for (StatusHistogram::const_iterator it = statuses.begin(); it != statuses.end(); ++it) { RequestResultCount* rrc = stats.add_request_results(); rrc->set_status_code(it->first); rrc->set_count(it->second); } stats.set_time_elapsed(timer_result.wall); stats.set_time_system(timer_result.system); stats.set_time_user(timer_result.user); stats.set_cq_poll_count(poll_count); CoreStatsToProto(core_stats, stats.mutable_core_stats()); return stats; } // Must call AwaitThreadsCompletion before destructor to avoid a race // between destructor and invocation of virtual ThreadFunc void AwaitThreadsCompletion() { gpr_atm_rel_store(&thread_pool_done_, static_cast(true)); DestroyMultithreading(); std::unique_lock g(thread_completion_mu_); while (threads_remaining_ != 0) { threads_complete_.wait(g); } } // Returns the interval (in seconds) between collecting latency medians. If 0, // no periodic median latencies will be collected. double GetLatencyCollectionIntervalInSeconds() { return median_latency_collection_interval_seconds_; } virtual int GetPollCount() { // For sync client. return 0; } protected: bool closed_loop_; gpr_atm thread_pool_done_; double median_latency_collection_interval_seconds_; // In seconds void StartThreads(size_t num_threads) { gpr_atm_rel_store(&thread_pool_done_, static_cast(false)); threads_remaining_ = num_threads; for (size_t i = 0; i < num_threads; i++) { threads_.emplace_back(new Thread(this, i)); } } void EndThreads() { MaybeStartRequests(); threads_.clear(); } virtual void DestroyMultithreading() = 0; void SetupLoadTest(const ClientConfig& config, size_t num_threads) { // Set up the load distribution based on the number of threads const auto& load = config.load_params(); std::unique_ptr random_dist; switch (load.load_case()) { case LoadParams::kClosedLoop: // Closed-loop doesn't use random dist at all break; case LoadParams::kPoisson: random_dist.reset( new ExpDist(load.poisson().offered_load() / num_threads)); break; default: GPR_ASSERT(false); } // Set closed_loop_ based on whether or not random_dist is set if (!random_dist) { closed_loop_ = true; } else { closed_loop_ = false; // set up interarrival timer according to random dist interarrival_timer_.init(*random_dist, num_threads); const auto now = gpr_now(GPR_CLOCK_MONOTONIC); for (size_t i = 0; i < num_threads; i++) { next_time_.push_back(gpr_time_add( now, gpr_time_from_nanos(interarrival_timer_.next(i), GPR_TIMESPAN))); } } } gpr_timespec NextIssueTime(int thread_idx) { const gpr_timespec result = next_time_[thread_idx]; next_time_[thread_idx] = gpr_time_add(next_time_[thread_idx], gpr_time_from_nanos(interarrival_timer_.next(thread_idx), GPR_TIMESPAN)); return result; } std::function NextIssuer(int thread_idx) { return closed_loop_ ? std::function() : std::bind(&Client::NextIssueTime, this, thread_idx); } class Thread { public: Thread(Client* client, size_t idx) : client_(client), idx_(idx), impl_(&Thread::ThreadFunc, this) {} ~Thread() { impl_.join(); } void BeginSwap(Histogram* n, StatusHistogram* s) { std::lock_guard g(mu_); n->Swap(&histogram_); s->swap(statuses_); } void MergeStatsInto(Histogram* hist, StatusHistogram* s) { std::unique_lock g(mu_); hist->Merge(histogram_); MergeStatusHistogram(statuses_, s); } std::vector GetMedianPerIntervalList() { return medians_each_interval_list_; } void UpdateHistogram(HistogramEntry* entry) { std::lock_guard g(mu_); if (entry->value_used()) { histogram_.Add(entry->value()); if (client_->GetLatencyCollectionIntervalInSeconds() > 0) { histogram_per_interval_.Add(entry->value()); double now = UsageTimer::Now(); if ((now - interval_start_time_) >= client_->GetLatencyCollectionIntervalInSeconds()) { // Record the median latency of requests from the last interval. // Divide by 1e3 to get microseconds. medians_each_interval_list_.push_back( histogram_per_interval_.Percentile(50) / 1e3); histogram_per_interval_.Reset(); interval_start_time_ = now; } } } if (entry->status_used()) { statuses_[entry->status()]++; } } private: Thread(const Thread&); Thread& operator=(const Thread&); void ThreadFunc() { int wait_loop = 0; while (!gpr_event_wait( &client_->start_requests_, gpr_time_add(gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(20, GPR_TIMESPAN)))) { gpr_log(GPR_INFO, "%" PRIdPTR ": Waiting for benchmark to start (%d)", idx_, wait_loop); wait_loop++; } client_->ThreadFunc(idx_, this); client_->CompleteThread(); } std::mutex mu_; Histogram histogram_; StatusHistogram statuses_; Client* client_; const size_t idx_; std::thread impl_; // The following are used only if // median_latency_collection_interval_seconds_ is greater than 0 Histogram histogram_per_interval_; std::vector medians_each_interval_list_; double interval_start_time_; }; bool ThreadCompleted() { return static_cast(gpr_atm_acq_load(&thread_pool_done_)); } virtual void ThreadFunc(size_t thread_idx, Client::Thread* t) = 0; std::vector> threads_; std::unique_ptr timer_; InterarrivalTimer interarrival_timer_; std::vector next_time_; std::mutex thread_completion_mu_; size_t threads_remaining_; std::condition_variable threads_complete_; gpr_event start_requests_; bool started_requests_; int last_reset_poll_count_; void MaybeStartRequests() { if (!started_requests_) { started_requests_ = true; gpr_event_set(&start_requests_, (void*)1); } } void CompleteThread() { std::lock_guard g(thread_completion_mu_); threads_remaining_--; if (threads_remaining_ == 0) { threads_complete_.notify_all(); } } }; template class ClientImpl : public Client { public: ClientImpl(const ClientConfig& config, std::function(std::shared_ptr)> create_stub) : cores_(gpr_cpu_num_cores()), create_stub_(create_stub) { for (int i = 0; i < config.client_channels(); i++) { channels_.emplace_back( config.server_targets(i % config.server_targets_size()), config, create_stub_, i); } WaitForChannelsToConnect(); median_latency_collection_interval_seconds_ = config.median_latency_collection_interval_millis() / 1e3; ClientRequestCreator create_req(&request_, config.payload_config()); } virtual ~ClientImpl() {} void WaitForChannelsToConnect() { int connect_deadline_seconds = 10; /* Allow optionally overriding connect_deadline in order * to deal with benchmark environments in which the server * can take a long time to become ready. */ char* channel_connect_timeout_str = gpr_getenv("QPS_WORKER_CHANNEL_CONNECT_TIMEOUT"); if (channel_connect_timeout_str != nullptr && strcmp(channel_connect_timeout_str, "") != 0) { connect_deadline_seconds = atoi(channel_connect_timeout_str); } gpr_log(GPR_INFO, "Waiting for up to %d seconds for all channels to connect", connect_deadline_seconds); gpr_free(channel_connect_timeout_str); gpr_timespec connect_deadline = gpr_time_add( gpr_now(GPR_CLOCK_REALTIME), gpr_time_from_seconds(connect_deadline_seconds, GPR_TIMESPAN)); CompletionQueue cq; size_t num_remaining = 0; for (auto& c : channels_) { if (!c.is_inproc()) { Channel* channel = c.get_channel(); grpc_connectivity_state last_observed = channel->GetState(true); if (last_observed == GRPC_CHANNEL_READY) { gpr_log(GPR_INFO, "Channel %p connected!", channel); } else { num_remaining++; channel->NotifyOnStateChange(last_observed, connect_deadline, &cq, channel); } } } while (num_remaining > 0) { bool ok = false; void* tag = nullptr; cq.Next(&tag, &ok); Channel* channel = static_cast(tag); if (!ok) { gpr_log(GPR_ERROR, "Channel %p failed to connect within the deadline", channel); abort(); } else { grpc_connectivity_state last_observed = channel->GetState(true); if (last_observed == GRPC_CHANNEL_READY) { gpr_log(GPR_INFO, "Channel %p connected!", channel); num_remaining--; } else { channel->NotifyOnStateChange(last_observed, connect_deadline, &cq, channel); } } } } protected: const int cores_; RequestType request_; class ClientChannelInfo { public: ClientChannelInfo( const grpc::string& target, const ClientConfig& config, std::function(std::shared_ptr)> create_stub, int shard) { ChannelArguments args; args.SetInt("shard_to_ensure_no_subchannel_merges", shard); set_channel_args(config, &args); grpc::string type; if (config.has_security_params() && config.security_params().cred_type().empty()) { type = kTlsCredentialsType; } else { type = config.security_params().cred_type(); } grpc::string inproc_pfx(INPROC_NAME_PREFIX); if (target.find(inproc_pfx) != 0) { channel_ = CreateTestChannel( target, type, config.security_params().server_host_override(), !config.security_params().use_test_ca(), std::shared_ptr(), args); gpr_log(GPR_INFO, "Connecting to %s", target.c_str()); is_inproc_ = false; } else { grpc::string tgt = target; tgt.erase(0, inproc_pfx.length()); int srv_num = std::stoi(tgt); channel_ = (*g_inproc_servers)[srv_num]->InProcessChannel(args); is_inproc_ = true; } stub_ = create_stub(channel_); } Channel* get_channel() { return channel_.get(); } StubType* get_stub() { return stub_.get(); } bool is_inproc() { return is_inproc_; } private: void set_channel_args(const ClientConfig& config, ChannelArguments* args) { for (const auto& channel_arg : config.channel_args()) { if (channel_arg.value_case() == ChannelArg::kStrValue) { args->SetString(channel_arg.name(), channel_arg.str_value()); } else if (channel_arg.value_case() == ChannelArg::kIntValue) { args->SetInt(channel_arg.name(), channel_arg.int_value()); } else { gpr_log(GPR_ERROR, "Empty channel arg value."); } } } std::shared_ptr channel_; std::unique_ptr stub_; bool is_inproc_; }; std::vector channels_; std::function(const std::shared_ptr&)> create_stub_; }; std::unique_ptr CreateSynchronousClient(const ClientConfig& args); std::unique_ptr CreateAsyncClient(const ClientConfig& args); std::unique_ptr CreateCallbackClient(const ClientConfig& args); std::unique_ptr CreateGenericAsyncStreamingClient( const ClientConfig& args); } // namespace testing } // namespace grpc #endif