/* * * Copyright 2016, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* Benchmark gRPC end2end in various configurations */ #include #include #include "src/core/lib/profiling/timers.h" #include "src/cpp/client/create_channel_internal.h" #include "src/proto/grpc/testing/echo.grpc.pb.h" #include "test/cpp/microbenchmarks/fullstack_context_mutators.h" #include "test/cpp/microbenchmarks/fullstack_fixtures.h" namespace grpc { namespace testing { // force library initialization auto& force_library_initialization = Library::get(); /******************************************************************************* * BENCHMARKING KERNELS */ static void* tag(intptr_t x) { return reinterpret_cast(x); } // Repeatedly makes Streaming Bidi calls (exchanging a configurable number of // messages in each call) in a loop on a single channel // // First parmeter (i.e state.range(0)): Message size (in bytes) to use // Second parameter (i.e state.range(1)): Number of ping pong messages. // Note: One ping-pong means two messages (one from client to server and // the other from server to client): template static void BM_StreamingPingPong(benchmark::State& state) { const int msg_size = state.range(0); const int max_ping_pongs = state.range(1); EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoResponse send_response; EchoResponse recv_response; EchoRequest send_request; EchoRequest recv_request; if (msg_size > 0) { send_request.set_message(std::string(msg_size, 'a')); send_response.set_message(std::string(msg_size, 'b')); } std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); while (state.KeepRunning()) { ServerContext svr_ctx; ServerContextMutator svr_ctx_mut(&svr_ctx); ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); ClientContext cli_ctx; ClientContextMutator cli_ctx_mut(&cli_ctx); auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); // Establish async stream between client side and server side void* t; bool ok; int need_tags = (1 << 0) | (1 << 1); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } // Send 'max_ping_pongs' number of ping pong messages int ping_pong_cnt = 0; while (ping_pong_cnt < max_ping_pongs) { request_rw->Write(send_request, tag(0)); // Start client send response_rw.Read(&recv_request, tag(1)); // Start server recv request_rw->Read(&recv_response, tag(2)); // Start client recv need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; // If server recv is complete, start the server send operation if (i == 1) { response_rw.Write(send_response, tag(3)); } GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } ping_pong_cnt++; } request_rw->WritesDone(tag(0)); response_rw.Finish(Status::OK, tag(1)); Status recv_status; request_rw->Finish(&recv_status, tag(2)); need_tags = (1 << 0) | (1 << 1) | (1 << 2); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } GPR_ASSERT(recv_status.ok()); } } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(msg_size * state.iterations() * max_ping_pongs * 2); } // Repeatedly sends ping pong messages in a single streaming Bidi call in a loop // First parmeter (i.e state.range(0)): Message size (in bytes) to use template static void BM_StreamingPingPongMsgs(benchmark::State& state) { const int msg_size = state.range(0); EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoResponse send_response; EchoResponse recv_response; EchoRequest send_request; EchoRequest recv_request; if (msg_size > 0) { send_request.set_message(std::string(msg_size, 'a')); send_response.set_message(std::string(msg_size, 'b')); } std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); ServerContext svr_ctx; ServerContextMutator svr_ctx_mut(&svr_ctx); ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); ClientContext cli_ctx; ClientContextMutator cli_ctx_mut(&cli_ctx); auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); // Establish async stream between client side and server side void* t; bool ok; int need_tags = (1 << 0) | (1 << 1); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } while (state.KeepRunning()) { GPR_TIMER_SCOPE("BenchmarkCycle", 0); request_rw->Write(send_request, tag(0)); // Start client send response_rw.Read(&recv_request, tag(1)); // Start server recv request_rw->Read(&recv_response, tag(2)); // Start client recv need_tags = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; // If server recv is complete, start the server send operation if (i == 1) { response_rw.Write(send_response, tag(3)); } GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } } request_rw->WritesDone(tag(0)); response_rw.Finish(Status::OK, tag(1)); Status recv_status; request_rw->Finish(&recv_status, tag(2)); need_tags = (1 << 0) | (1 << 1) | (1 << 2); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } GPR_ASSERT(recv_status.ok()); } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(msg_size * state.iterations() * 2); } // Repeatedly makes Streaming Bidi calls (exchanging a configurable number of // messages in each call) in a loop on a single channel. Different from // BM_StreamingPingPong we are using stream coalescing api, e.g. WriteLast, // WriteAndFinish, set_initial_metadata_corked. These apis aim at saving // sendmsg syscalls for streaming by coalescing 1. initial metadata with first // message; 2. final streaming message with trailing metadata. // // First parmeter (i.e state.range(0)): Message size (in bytes) to use // Second parameter (i.e state.range(1)): Number of ping pong messages. // Note: One ping-pong means two messages (one from client to server and // the other from server to client): // Third parameter (i.e state.range(2)): Switch between using WriteAndFinish // API and WriteLast API for server. template static void BM_StreamingPingPongWithCoalescingApi(benchmark::State& state) { const int msg_size = state.range(0); const int max_ping_pongs = state.range(1); // This options is used to test out server API: WriteLast and WriteAndFinish // respectively, since we can not use both of them on server side at the same // time. Value 1 means we are testing out the WriteAndFinish API, and // otherwise we are testing out the WriteLast API. const int write_and_finish = state.range(2); EchoTestService::AsyncService service; std::unique_ptr fixture(new Fixture(&service)); { EchoResponse send_response; EchoResponse recv_response; EchoRequest send_request; EchoRequest recv_request; if (msg_size > 0) { send_request.set_message(std::string(msg_size, 'a')); send_response.set_message(std::string(msg_size, 'b')); } std::unique_ptr stub( EchoTestService::NewStub(fixture->channel())); while (state.KeepRunning()) { ServerContext svr_ctx; ServerContextMutator svr_ctx_mut(&svr_ctx); ServerAsyncReaderWriter response_rw(&svr_ctx); service.RequestBidiStream(&svr_ctx, &response_rw, fixture->cq(), fixture->cq(), tag(0)); ClientContext cli_ctx; ClientContextMutator cli_ctx_mut(&cli_ctx); cli_ctx.set_initial_metadata_corked(true); // tag:1 here will never comes up, since we are not performing any op due // to initial metadata coalescing. auto request_rw = stub->AsyncBidiStream(&cli_ctx, fixture->cq(), tag(1)); void* t; bool ok; int need_tags; // Send 'max_ping_pongs' number of ping pong messages int ping_pong_cnt = 0; while (ping_pong_cnt < max_ping_pongs) { if (ping_pong_cnt == max_ping_pongs - 1) { request_rw->WriteLast(send_request, WriteOptions(), tag(2)); } else { request_rw->Write(send_request, tag(2)); // Start client send } need_tags = (1 << 2) | (1 << 3) | (1 << 4) | (1 << 5); if (ping_pong_cnt == 0) { // wait for the server call structure (call_hook, etc.) to be // initialized (async stream between client side and server side // established). It is necessary when client init metadata is // coalesced GPR_ASSERT(fixture->cq()->Next(&t, &ok)); while ((int)(intptr_t)t != 0) { // In some cases tag:2 comes before tag:0 (write tag comes out // first), this while loop is to make sure get tag:0. int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); GPR_ASSERT(fixture->cq()->Next(&t, &ok)); } } response_rw.Read(&recv_request, tag(3)); // Start server recv request_rw->Read(&recv_response, tag(4)); // Start client recv while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); GPR_ASSERT(ok); int i = (int)(intptr_t)t; // If server recv is complete, start the server send operation if (i == 3) { if (ping_pong_cnt == max_ping_pongs - 1) { if (write_and_finish == 1) { response_rw.WriteAndFinish(send_response, WriteOptions(), Status::OK, tag(5)); } else { response_rw.WriteLast(send_response, WriteOptions(), tag(5)); // WriteLast buffers the write, so neither server write op nor // client read op will finish inside the while loop. need_tags &= ~(1 << 4); need_tags &= ~(1 << 5); } } else { response_rw.Write(send_response, tag(5)); } } GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } ping_pong_cnt++; } if (max_ping_pongs == 0) { need_tags = (1 << 6) | (1 << 7) | (1 << 8); } else { if (write_and_finish == 1) { need_tags = (1 << 8); } else { // server's buffered write and the client's read of the buffered write // tags should come up. need_tags = (1 << 4) | (1 << 5) | (1 << 7) | (1 << 8); } } // No message write or initial metadata write happened yet. if (max_ping_pongs == 0) { request_rw->WritesDone(tag(6)); // wait for server call data structure(call_hook, etc.) to be // initialized, since initial metadata is corked. GPR_ASSERT(fixture->cq()->Next(&t, &ok)); while ((int)(intptr_t)t != 0) { int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); GPR_ASSERT(fixture->cq()->Next(&t, &ok)); } response_rw.Finish(Status::OK, tag(7)); } else { if (write_and_finish != 1) { response_rw.Finish(Status::OK, tag(7)); } } Status recv_status; request_rw->Finish(&recv_status, tag(8)); while (need_tags) { GPR_ASSERT(fixture->cq()->Next(&t, &ok)); int i = (int)(intptr_t)t; GPR_ASSERT(need_tags & (1 << i)); need_tags &= ~(1 << i); } GPR_ASSERT(recv_status.ok()); } } fixture->Finish(state); fixture.reset(); state.SetBytesProcessed(msg_size * state.iterations() * max_ping_pongs * 2); } /******************************************************************************* * CONFIGURATIONS */ // Generate Args for StreamingPingPong benchmarks. Currently generates args for // only "small streams" (i.e streams with 0, 1 or 2 messages) static void StreamingPingPongArgs(benchmark::internal::Benchmark* b) { int msg_size = 0; b->Args({0, 0}); // spl case: 0 ping-pong msgs (msg_size doesn't matter here) for (msg_size = 0; msg_size <= 128 * 1024 * 1024; msg_size == 0 ? msg_size++ : msg_size *= 8) { b->Args({msg_size, 1}); b->Args({msg_size, 2}); } } BENCHMARK_TEMPLATE(BM_StreamingPingPong, InProcessCHTTP2, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPong, TCP, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, InProcessCHTTP2, NoOpMutator, NoOpMutator) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, TCP, NoOpMutator, NoOpMutator) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_StreamingPingPong, MinInProcessCHTTP2, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPong, MinTCP, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, MinInProcessCHTTP2, NoOpMutator, NoOpMutator) ->Range(0, 128 * 1024 * 1024); BENCHMARK_TEMPLATE(BM_StreamingPingPongMsgs, MinTCP, NoOpMutator, NoOpMutator) ->Range(0, 128 * 1024 * 1024); // Generate Args for StreamingPingPongWithCoalescingApi benchmarks. Currently // generates args for only "small streams" (i.e streams with 0, 1 or 2 messages) static void StreamingPingPongWithCoalescingApiArgs( benchmark::internal::Benchmark* b) { int msg_size = 0; b->Args( {0, 0, 0}); // spl case: 0 ping-pong msgs (msg_size doesn't matter here) b->Args( {0, 0, 1}); // spl case: 0 ping-pong msgs (msg_size doesn't matter here) for (msg_size = 0; msg_size <= 128 * 1024 * 1024; msg_size == 0 ? msg_size++ : msg_size *= 8) { b->Args({msg_size, 1, 0}); b->Args({msg_size, 2, 0}); b->Args({msg_size, 1, 1}); b->Args({msg_size, 2, 1}); } } BENCHMARK_TEMPLATE(BM_StreamingPingPongWithCoalescingApi, InProcessCHTTP2, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongWithCoalescingApiArgs); BENCHMARK_TEMPLATE(BM_StreamingPingPongWithCoalescingApi, MinInProcessCHTTP2, NoOpMutator, NoOpMutator) ->Apply(StreamingPingPongWithCoalescingApiArgs); } // namespace testing } // namespace grpc BENCHMARK_MAIN();