/* * * Copyright 2015-2016, Google Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #import "GRPCCall.h" #include #include #import #import "private/GRPCConnectivityMonitor.h" #import "private/GRPCHost.h" #import "private/GRPCRequestHeaders.h" #import "private/GRPCWrappedCall.h" #import "private/NSData+GRPC.h" #import "private/NSDictionary+GRPC.h" #import "private/NSError+GRPC.h" NSString * const kGRPCHeadersKey = @"io.grpc.HeadersKey"; NSString * const kGRPCTrailersKey = @"io.grpc.TrailersKey"; @interface GRPCCall () // Make them read-write. @property(atomic, strong) NSDictionary *responseHeaders; @property(atomic, strong) NSDictionary *responseTrailers; @end // The following methods of a C gRPC call object aren't reentrant, and thus // calls to them must be serialized: // - start_batch // - destroy // // start_batch with a SEND_MESSAGE argument can only be called after the // OP_COMPLETE event for any previous write is received. This is achieved by // pausing the requests writer immediately every time it writes a value, and // resuming it again when OP_COMPLETE is received. // // Similarly, start_batch with a RECV_MESSAGE argument can only be called after // the OP_COMPLETE event for any previous read is received.This is easier to // enforce, as we're writing the received messages into the writeable: // start_batch is enqueued once upon receiving the OP_COMPLETE event for the // RECV_METADATA batch, and then once after receiving each OP_COMPLETE event for // each RECV_MESSAGE batch. @implementation GRPCCall { dispatch_queue_t _callQueue; NSString *_host; NSString *_path; GRPCWrappedCall *_wrappedCall; dispatch_once_t _callAlreadyInvoked; GRPCConnectivityMonitor *_connectivityMonitor; // The C gRPC library has less guarantees on the ordering of events than we // do. Particularly, in the face of errors, there's no ordering guarantee at // all. This wrapper over our actual writeable ensures thread-safety and // correct ordering. GRXConcurrentWriteable *_responseWriteable; // The network thread wants the requestWriter to resume (when the server is ready for more input), // or to stop (on errors), concurrently with user threads that want to start it, pause it or stop // it. Because a writer isn't thread-safe, we'll synchronize those operations on it. // We don't use a dispatch queue for that purpose, because the writer can call writeValue: or // writesFinishedWithError: on this GRPCCall as part of those operations. We want to be able to // pause the writer immediately on writeValue:, so we need our locking to be recursive. GRXWriter *_requestWriter; // To create a retain cycle when a call is started, up until it finishes. See // |startWithWriteable:| and |finishWithError:|. This saves users from having to retain a // reference to the call object if all they're interested in is the handler being executed when // the response arrives. GRPCCall *_retainSelf; GRPCRequestHeaders *_requestHeaders; } @synthesize state = _state; - (instancetype)init { return [self initWithHost:nil path:nil requestsWriter:nil]; } // Designated initializer - (instancetype)initWithHost:(NSString *)host path:(NSString *)path requestsWriter:(GRXWriter *)requestWriter { if (!host || !path) { [NSException raise:NSInvalidArgumentException format:@"Neither host nor path can be nil."]; } if (requestWriter.state != GRXWriterStateNotStarted) { [NSException raise:NSInvalidArgumentException format:@"The requests writer can't be already started."]; } if ((self = [super init])) { _host = [host copy]; _path = [path copy]; // Serial queue to invoke the non-reentrant methods of the grpc_call object. _callQueue = dispatch_queue_create("io.grpc.call", NULL); _requestWriter = requestWriter; _requestHeaders = [[GRPCRequestHeaders alloc] initWithCall:self]; } return self; } #pragma mark Finish - (void)finishWithError:(NSError *)errorOrNil { // If the call isn't retained anywhere else, it can be deallocated now. _retainSelf = nil; // If there were still request messages coming, stop them. @synchronized(_requestWriter) { _requestWriter.state = GRXWriterStateFinished; } if (errorOrNil) { [_responseWriteable cancelWithError:errorOrNil]; } else { [_responseWriteable enqueueSuccessfulCompletion]; } } - (void)cancelCall { // Can be called from any thread, any number of times. [_wrappedCall cancel]; } - (void)cancel { [self finishWithError:[NSError errorWithDomain:kGRPCErrorDomain code:GRPCErrorCodeCancelled userInfo:@{NSLocalizedDescriptionKey: @"Canceled by app"}]]; [self cancelCall]; } - (void)dealloc { __block GRPCWrappedCall *wrappedCall = _wrappedCall; dispatch_async(_callQueue, ^{ wrappedCall = nil; }); } #pragma mark Read messages // Only called from the call queue. // The handler will be called from the network queue. - (void)startReadWithHandler:(void(^)(grpc_byte_buffer *))handler { // TODO(jcanizales): Add error handlers for async failures [_wrappedCall startBatchWithOperations:@[[[GRPCOpRecvMessage alloc] initWithHandler:handler]]]; } // Called initially from the network queue once response headers are received, // then "recursively" from the responseWriteable queue after each response from the // server has been written. // If the call is currently paused, this is a noop. Restarting the call will invoke this // method. // TODO(jcanizales): Rename to readResponseIfNotPaused. - (void)startNextRead { if (self.state == GRXWriterStatePaused) { return; } __weak GRPCCall *weakSelf = self; __weak GRXConcurrentWriteable *weakWriteable = _responseWriteable; dispatch_async(_callQueue, ^{ [weakSelf startReadWithHandler:^(grpc_byte_buffer *message) { if (message == NULL) { // No more messages from the server return; } NSData *data = [NSData grpc_dataWithByteBuffer:message]; grpc_byte_buffer_destroy(message); if (!data) { // The app doesn't have enough memory to hold the server response. We // don't want to throw, because the app shouldn't crash for a behavior // that's on the hands of any server to have. Instead we finish and ask // the server to cancel. // // TODO(jcanizales): No canonical code is appropriate for this situation // (because it's just a client problem). Use another domain and an // appropriately-documented code. [weakSelf finishWithError:[NSError errorWithDomain:kGRPCErrorDomain code:GRPCErrorCodeInternal userInfo:nil]]; [weakSelf cancelCall]; return; } [weakWriteable enqueueValue:data completionHandler:^{ [weakSelf startNextRead]; }]; }]; }); } #pragma mark Send headers - (void)sendHeaders:(NSDictionary *)headers { // TODO(jcanizales): Add error handlers for async failures [_wrappedCall startBatchWithOperations:@[[[GRPCOpSendMetadata alloc] initWithMetadata:headers handler:nil]]]; } #pragma mark GRXWriteable implementation // Only called from the call queue. The error handler will be called from the // network queue if the write didn't succeed. - (void)writeMessage:(NSData *)message withErrorHandler:(void (^)())errorHandler { __weak GRPCCall *weakSelf = self; void(^resumingHandler)(void) = ^{ // Resume the request writer. GRPCCall *strongSelf = weakSelf; if (strongSelf) { @synchronized(strongSelf->_requestWriter) { strongSelf->_requestWriter.state = GRXWriterStateStarted; } } }; [_wrappedCall startBatchWithOperations:@[[[GRPCOpSendMessage alloc] initWithMessage:message handler:resumingHandler]] errorHandler:errorHandler]; } - (void)writeValue:(id)value { // TODO(jcanizales): Throw/assert if value isn't NSData. // Pause the input and only resume it when the C layer notifies us that writes // can proceed. @synchronized(_requestWriter) { _requestWriter.state = GRXWriterStatePaused; } __weak GRPCCall *weakSelf = self; dispatch_async(_callQueue, ^{ [weakSelf writeMessage:value withErrorHandler:^{ [weakSelf finishWithError:[NSError errorWithDomain:kGRPCErrorDomain code:GRPCErrorCodeInternal userInfo:nil]]; }]; }); } // Only called from the call queue. The error handler will be called from the // network queue if the requests stream couldn't be closed successfully. - (void)finishRequestWithErrorHandler:(void (^)())errorHandler { [_wrappedCall startBatchWithOperations:@[[[GRPCOpSendClose alloc] init]] errorHandler:errorHandler]; } - (void)writesFinishedWithError:(NSError *)errorOrNil { if (errorOrNil) { [self cancel]; } else { __weak GRPCCall *weakSelf = self; dispatch_async(_callQueue, ^{ [weakSelf finishRequestWithErrorHandler:^{ [weakSelf finishWithError:[NSError errorWithDomain:kGRPCErrorDomain code:GRPCErrorCodeInternal userInfo:nil]]; }]; }); } } #pragma mark Invoke // Both handlers will eventually be called, from the network queue. Writes can start immediately // after this. // The first one (headersHandler), when the response headers are received. // The second one (completionHandler), whenever the RPC finishes for any reason. - (void)invokeCallWithHeadersHandler:(void(^)(NSDictionary *))headersHandler completionHandler:(void(^)(NSError *, NSDictionary *))completionHandler { // TODO(jcanizales): Add error handlers for async failures [_wrappedCall startBatchWithOperations:@[[[GRPCOpRecvMetadata alloc] initWithHandler:headersHandler]]]; [_wrappedCall startBatchWithOperations:@[[[GRPCOpRecvStatus alloc] initWithHandler:completionHandler]]]; } - (void)invokeCall { [self invokeCallWithHeadersHandler:^(NSDictionary *headers) { // Response headers received. self.responseHeaders = headers; [self startNextRead]; } completionHandler:^(NSError *error, NSDictionary *trailers) { self.responseTrailers = trailers; if (error) { NSMutableDictionary *userInfo = [NSMutableDictionary dictionary]; if (error.userInfo) { [userInfo addEntriesFromDictionary:error.userInfo]; } userInfo[kGRPCTrailersKey] = self.responseTrailers; // TODO(jcanizales): The C gRPC library doesn't guarantee that the headers block will be // called before this one, so an error might end up with trailers but no headers. We // shouldn't call finishWithError until ater both blocks are called. It is also when this is // done that we can provide a merged view of response headers and trailers in a thread-safe // way. if (self.responseHeaders) { userInfo[kGRPCHeadersKey] = self.responseHeaders; } error = [NSError errorWithDomain:error.domain code:error.code userInfo:userInfo]; } [self finishWithError:error]; }]; // Now that the RPC has been initiated, request writes can start. @synchronized(_requestWriter) { [_requestWriter startWithWriteable:self]; } } #pragma mark GRXWriter implementation - (void)startWithWriteable:(id)writeable { // Create a retain cycle so that this instance lives until the RPC finishes (or is cancelled). // This makes RPCs in which the call isn't externally retained possible (as long as it is started // before being autoreleased). // Care is taken not to retain self strongly in any of the blocks used in this implementation, so // that the life of the instance is determined by this retain cycle. _retainSelf = self; _responseWriteable = [[GRXConcurrentWriteable alloc] initWithWriteable:writeable]; _wrappedCall = [[GRPCWrappedCall alloc] initWithHost:_host path:_path]; NSAssert(_wrappedCall, @"Error allocating RPC objects. Low memory?"); [self sendHeaders:_requestHeaders]; [self invokeCall]; // TODO(jcanizales): Extract this logic somewhere common. NSString *host = [NSURL URLWithString:[@"https://" stringByAppendingString:_host]].host; if (!host) { // TODO(jcanizales): Check this on init. [NSException raise:NSInvalidArgumentException format:@"host of %@ is nil", _host]; } __weak typeof(self) weakSelf = self; _connectivityMonitor = [GRPCConnectivityMonitor monitorWithHost:host]; [_connectivityMonitor handleLossWithHandler:^{ typeof(self) strongSelf = weakSelf; if (strongSelf) { [strongSelf finishWithError:[NSError errorWithDomain:kGRPCErrorDomain code:GRPCErrorCodeUnavailable userInfo:@{NSLocalizedDescriptionKey: @"Connectivity lost."}]]; } }]; } - (void)setState:(GRXWriterState)newState { // Manual transitions are only allowed from the started or paused states. if (_state == GRXWriterStateNotStarted || _state == GRXWriterStateFinished) { return; } switch (newState) { case GRXWriterStateFinished: _state = newState; // Per GRXWriter's contract, setting the state to Finished manually // means one doesn't wish the writeable to be messaged anymore. [_responseWriteable cancelSilently]; _responseWriteable = nil; return; case GRXWriterStatePaused: _state = newState; return; case GRXWriterStateStarted: if (_state == GRXWriterStatePaused) { _state = newState; [self startNextRead]; } return; case GRXWriterStateNotStarted: return; } } @end