/* * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/core/ext/transport/inproc/inproc_transport.h" #include "src/core/lib/profiling/timers.h" #include "src/core/lib/surface/call.h" #include "src/cpp/client/create_channel_internal.h" #include "src/cpp/server/health/default_health_check_service.h" #include "src/cpp/thread_manager/thread_manager.h" namespace grpc { namespace { // The default value for maximum number of threads that can be created in the // sync server. This value of INT_MAX is chosen to match the default behavior if // no ResourceQuota is set. To modify the max number of threads in a sync // server, pass a custom ResourceQuota object (with the desired number of // max-threads set) to the server builder. #define DEFAULT_MAX_SYNC_SERVER_THREADS INT_MAX class DefaultGlobalCallbacks final : public Server::GlobalCallbacks { public: ~DefaultGlobalCallbacks() override {} void PreSynchronousRequest(ServerContext* context) override {} void PostSynchronousRequest(ServerContext* context) override {} }; std::shared_ptr g_callbacks = nullptr; gpr_once g_once_init_callbacks = GPR_ONCE_INIT; void InitGlobalCallbacks() { if (!g_callbacks) { g_callbacks.reset(new DefaultGlobalCallbacks()); } } class ShutdownTag : public internal::CompletionQueueTag { public: bool FinalizeResult(void** tag, bool* status) { return false; } }; class DummyTag : public internal::CompletionQueueTag { public: bool FinalizeResult(void** tag, bool* status) { *status = true; return true; } }; class UnimplementedAsyncRequestContext { protected: UnimplementedAsyncRequestContext() : generic_stream_(&server_context_) {} GenericServerContext server_context_; GenericServerAsyncReaderWriter generic_stream_; }; } // namespace /// Use private inheritance rather than composition only to establish order /// of construction, since the public base class should be constructed after the /// elements belonging to the private base class are constructed. This is not /// possible using true composition. class Server::UnimplementedAsyncRequest final : private UnimplementedAsyncRequestContext, public GenericAsyncRequest { public: UnimplementedAsyncRequest(Server* server, ServerCompletionQueue* cq) : GenericAsyncRequest(server, &server_context_, &generic_stream_, cq, cq, nullptr, false), server_(server), cq_(cq) {} bool FinalizeResult(void** tag, bool* status) override; ServerContext* context() { return &server_context_; } GenericServerAsyncReaderWriter* stream() { return &generic_stream_; } private: Server* const server_; ServerCompletionQueue* const cq_; }; /// UnimplementedAsyncResponse should not post user-visible completions to the /// C++ completion queue, but is generated as a CQ event by the core class Server::UnimplementedAsyncResponse final : public internal::CallOpSet { public: UnimplementedAsyncResponse(UnimplementedAsyncRequest* request); ~UnimplementedAsyncResponse() { delete request_; } bool FinalizeResult(void** tag, bool* status) override { internal::CallOpSet< internal::CallOpSendInitialMetadata, internal::CallOpServerSendStatus>::FinalizeResult(tag, status); delete this; return false; } private: UnimplementedAsyncRequest* const request_; }; class Server::SyncRequest final : public internal::CompletionQueueTag { public: SyncRequest(internal::RpcServiceMethod* method, void* tag) : method_(method), tag_(tag), in_flight_(false), has_request_payload_( method->method_type() == internal::RpcMethod::NORMAL_RPC || method->method_type() == internal::RpcMethod::SERVER_STREAMING), call_details_(nullptr), cq_(nullptr) { grpc_metadata_array_init(&request_metadata_); } ~SyncRequest() { if (call_details_) { delete call_details_; } grpc_metadata_array_destroy(&request_metadata_); } void SetupRequest() { cq_ = grpc_completion_queue_create_for_pluck(nullptr); } void TeardownRequest() { grpc_completion_queue_destroy(cq_); cq_ = nullptr; } void Request(grpc_server* server, grpc_completion_queue* notify_cq) { GPR_ASSERT(cq_ && !in_flight_); in_flight_ = true; if (tag_) { if (GRPC_CALL_OK != grpc_server_request_registered_call( server, tag_, &call_, &deadline_, &request_metadata_, has_request_payload_ ? &request_payload_ : nullptr, cq_, notify_cq, this)) { TeardownRequest(); return; } } else { if (!call_details_) { call_details_ = new grpc_call_details; grpc_call_details_init(call_details_); } if (grpc_server_request_call(server, &call_, call_details_, &request_metadata_, cq_, notify_cq, this) != GRPC_CALL_OK) { TeardownRequest(); return; } } } bool FinalizeResult(void** tag, bool* status) override { if (!*status) { grpc_completion_queue_destroy(cq_); } if (call_details_) { deadline_ = call_details_->deadline; grpc_call_details_destroy(call_details_); grpc_call_details_init(call_details_); } return true; } class CallData final { public: explicit CallData(Server* server, SyncRequest* mrd) : cq_(mrd->cq_), ctx_(mrd->deadline_, &mrd->request_metadata_), has_request_payload_(mrd->has_request_payload_), request_payload_(has_request_payload_ ? mrd->request_payload_ : nullptr), request_(nullptr), method_(mrd->method_), call_(mrd->call_, server, &cq_, server->max_receive_message_size(), ctx_.set_server_rpc_info(experimental::ServerRpcInfo( &ctx_, method_->name(), server->interceptor_creators_))), server_(server), global_callbacks_(nullptr), resources_(false) { ctx_.set_call(mrd->call_); ctx_.cq_ = &cq_; GPR_ASSERT(mrd->in_flight_); mrd->in_flight_ = false; mrd->request_metadata_.count = 0; } ~CallData() { if (has_request_payload_ && request_payload_) { grpc_byte_buffer_destroy(request_payload_); } } void Run(const std::shared_ptr& global_callbacks, bool resources) { global_callbacks_ = global_callbacks; resources_ = resources; interceptor_methods_.SetCall(&call_); interceptor_methods_.SetReverse(); // Set interception point for RECV INITIAL METADATA interceptor_methods_.AddInterceptionHookPoint( experimental::InterceptionHookPoints::POST_RECV_INITIAL_METADATA); interceptor_methods_.SetRecvInitialMetadata(&ctx_.client_metadata_); if (has_request_payload_) { // Set interception point for RECV MESSAGE auto* handler = resources_ ? method_->handler() : server_->resource_exhausted_handler_.get(); request_ = handler->Deserialize(request_payload_, &request_status_); request_payload_ = nullptr; interceptor_methods_.AddInterceptionHookPoint( experimental::InterceptionHookPoints::POST_RECV_MESSAGE); interceptor_methods_.SetRecvMessage(request_); } auto f = std::bind(&CallData::ContinueRunAfterInterception, this); if (interceptor_methods_.RunInterceptors(f)) { ContinueRunAfterInterception(); } else { // There were interceptors to be run, so ContinueRunAfterInterception // will be run when interceptors are done. } } void ContinueRunAfterInterception() { { ctx_.BeginCompletionOp(&call_); global_callbacks_->PreSynchronousRequest(&ctx_); auto* handler = resources_ ? method_->handler() : server_->resource_exhausted_handler_.get(); handler->RunHandler(internal::MethodHandler::HandlerParameter( &call_, &ctx_, request_, request_status_)); request_ = nullptr; global_callbacks_->PostSynchronousRequest(&ctx_); cq_.Shutdown(); internal::CompletionQueueTag* op_tag = ctx_.GetCompletionOpTag(); cq_.TryPluck(op_tag, gpr_inf_future(GPR_CLOCK_REALTIME)); /* Ensure the cq_ is shutdown */ DummyTag ignored_tag; GPR_ASSERT(cq_.Pluck(&ignored_tag) == false); } delete this; } private: CompletionQueue cq_; ServerContext ctx_; const bool has_request_payload_; grpc_byte_buffer* request_payload_; void* request_; Status request_status_; internal::RpcServiceMethod* const method_; internal::Call call_; Server* server_; std::shared_ptr global_callbacks_; bool resources_; internal::InterceptorBatchMethodsImpl interceptor_methods_; }; private: internal::RpcServiceMethod* const method_; void* const tag_; bool in_flight_; const bool has_request_payload_; grpc_call* call_; grpc_call_details* call_details_; gpr_timespec deadline_; grpc_metadata_array request_metadata_; grpc_byte_buffer* request_payload_; grpc_completion_queue* cq_; }; // Implementation of ThreadManager. Each instance of SyncRequestThreadManager // manages a pool of threads that poll for incoming Sync RPCs and call the // appropriate RPC handlers class Server::SyncRequestThreadManager : public ThreadManager { public: SyncRequestThreadManager(Server* server, CompletionQueue* server_cq, std::shared_ptr global_callbacks, grpc_resource_quota* rq, int min_pollers, int max_pollers, int cq_timeout_msec) : ThreadManager("SyncServer", rq, min_pollers, max_pollers), server_(server), server_cq_(server_cq), cq_timeout_msec_(cq_timeout_msec), global_callbacks_(std::move(global_callbacks)) {} WorkStatus PollForWork(void** tag, bool* ok) override { *tag = nullptr; // TODO(ctiller): workaround for GPR_TIMESPAN based deadlines not working // right now gpr_timespec deadline = gpr_time_add(gpr_now(GPR_CLOCK_MONOTONIC), gpr_time_from_millis(cq_timeout_msec_, GPR_TIMESPAN)); switch (server_cq_->AsyncNext(tag, ok, deadline)) { case CompletionQueue::TIMEOUT: return TIMEOUT; case CompletionQueue::SHUTDOWN: return SHUTDOWN; case CompletionQueue::GOT_EVENT: return WORK_FOUND; } GPR_UNREACHABLE_CODE(return TIMEOUT); } void DoWork(void* tag, bool ok, bool resources) override { SyncRequest* sync_req = static_cast(tag); if (!sync_req) { // No tag. Nothing to work on. This is an unlikley scenario and possibly a // bug in RPC Manager implementation. gpr_log(GPR_ERROR, "Sync server. DoWork() was called with NULL tag"); return; } if (ok) { // Calldata takes ownership of the completion queue and interceptors // inside sync_req auto* cd = new SyncRequest::CallData(server_, sync_req); // Prepare for the next request if (!IsShutdown()) { sync_req->SetupRequest(); // Create new completion queue for sync_req sync_req->Request(server_->c_server(), server_cq_->cq()); } GPR_TIMER_SCOPE("cd.Run()", 0); cd->Run(global_callbacks_, resources); } // TODO (sreek) If ok is false here (which it isn't in case of // grpc_request_registered_call), we should still re-queue the request // object } void AddSyncMethod(internal::RpcServiceMethod* method, void* tag) { sync_requests_.emplace_back(new SyncRequest(method, tag)); } void AddUnknownSyncMethod() { if (!sync_requests_.empty()) { unknown_method_.reset(new internal::RpcServiceMethod( "unknown", internal::RpcMethod::BIDI_STREAMING, new internal::UnknownMethodHandler)); sync_requests_.emplace_back( new SyncRequest(unknown_method_.get(), nullptr)); } } void Shutdown() override { ThreadManager::Shutdown(); server_cq_->Shutdown(); } void Wait() override { ThreadManager::Wait(); // Drain any pending items from the queue void* tag; bool ok; while (server_cq_->Next(&tag, &ok)) { // Do nothing } } void Start() { if (!sync_requests_.empty()) { for (auto m = sync_requests_.begin(); m != sync_requests_.end(); m++) { (*m)->SetupRequest(); (*m)->Request(server_->c_server(), server_cq_->cq()); } Initialize(); // ThreadManager's Initialize() } } private: Server* server_; CompletionQueue* server_cq_; int cq_timeout_msec_; std::vector> sync_requests_; std::unique_ptr unknown_method_; std::unique_ptr health_check_; std::shared_ptr global_callbacks_; }; static internal::GrpcLibraryInitializer g_gli_initializer; Server::Server( int max_receive_message_size, ChannelArguments* args, std::shared_ptr>> sync_server_cqs, int min_pollers, int max_pollers, int sync_cq_timeout_msec, grpc_resource_quota* server_rq, std::vector< std::unique_ptr> interceptor_creators) : max_receive_message_size_(max_receive_message_size), sync_server_cqs_(std::move(sync_server_cqs)), started_(false), shutdown_(false), shutdown_notified_(false), has_generic_service_(false), server_(nullptr), server_initializer_(new ServerInitializer(this)), health_check_service_disabled_(false), interceptor_creators_(std::move(interceptor_creators)) { g_gli_initializer.summon(); gpr_once_init(&g_once_init_callbacks, InitGlobalCallbacks); global_callbacks_ = g_callbacks; global_callbacks_->UpdateArguments(args); if (sync_server_cqs_ != nullptr) { bool default_rq_created = false; if (server_rq == nullptr) { server_rq = grpc_resource_quota_create("SyncServer-default-rq"); grpc_resource_quota_set_max_threads(server_rq, DEFAULT_MAX_SYNC_SERVER_THREADS); default_rq_created = true; } for (const auto& it : *sync_server_cqs_) { sync_req_mgrs_.emplace_back(new SyncRequestThreadManager( this, it.get(), global_callbacks_, server_rq, min_pollers, max_pollers, sync_cq_timeout_msec)); } if (default_rq_created) { grpc_resource_quota_unref(server_rq); } } grpc_channel_args channel_args; args->SetChannelArgs(&channel_args); for (size_t i = 0; i < channel_args.num_args; i++) { if (0 == strcmp(channel_args.args[i].key, kHealthCheckServiceInterfaceArg)) { if (channel_args.args[i].value.pointer.p == nullptr) { health_check_service_disabled_ = true; } else { health_check_service_.reset(static_cast( channel_args.args[i].value.pointer.p)); } break; } } server_ = grpc_server_create(&channel_args, nullptr); } Server::~Server() { { std::unique_lock lock(mu_); if (started_ && !shutdown_) { lock.unlock(); Shutdown(); } else if (!started_) { // Shutdown the completion queues for (auto it = sync_req_mgrs_.begin(); it != sync_req_mgrs_.end(); it++) { (*it)->Shutdown(); } } } grpc_server_destroy(server_); } void Server::SetGlobalCallbacks(GlobalCallbacks* callbacks) { GPR_ASSERT(!g_callbacks); GPR_ASSERT(callbacks); g_callbacks.reset(callbacks); } grpc_server* Server::c_server() { return server_; } std::shared_ptr Server::InProcessChannel( const ChannelArguments& args) { grpc_channel_args channel_args = args.c_channel_args(); return CreateChannelInternal( "inproc", grpc_inproc_channel_create(server_, &channel_args, nullptr), nullptr); } std::shared_ptr Server::experimental_type::InProcessChannelWithInterceptors( const ChannelArguments& args, std::unique_ptr>> interceptor_creators) { grpc_channel_args channel_args = args.c_channel_args(); return CreateChannelInternal( "inproc", grpc_inproc_channel_create(server_->server_, &channel_args, nullptr), std::move(interceptor_creators)); } static grpc_server_register_method_payload_handling PayloadHandlingForMethod( internal::RpcServiceMethod* method) { switch (method->method_type()) { case internal::RpcMethod::NORMAL_RPC: case internal::RpcMethod::SERVER_STREAMING: return GRPC_SRM_PAYLOAD_READ_INITIAL_BYTE_BUFFER; case internal::RpcMethod::CLIENT_STREAMING: case internal::RpcMethod::BIDI_STREAMING: return GRPC_SRM_PAYLOAD_NONE; } GPR_UNREACHABLE_CODE(return GRPC_SRM_PAYLOAD_NONE;); } bool Server::RegisterService(const grpc::string* host, Service* service) { bool has_async_methods = service->has_async_methods(); if (has_async_methods) { GPR_ASSERT(service->server_ == nullptr && "Can only register an asynchronous service against one server."); service->server_ = this; } const char* method_name = nullptr; for (auto it = service->methods_.begin(); it != service->methods_.end(); ++it) { if (it->get() == nullptr) { // Handled by generic service if any. continue; } internal::RpcServiceMethod* method = it->get(); void* tag = grpc_server_register_method( server_, method->name(), host ? host->c_str() : nullptr, PayloadHandlingForMethod(method), 0); if (tag == nullptr) { gpr_log(GPR_DEBUG, "Attempt to register %s multiple times", method->name()); return false; } if (method->handler() == nullptr) { // Async method method->set_server_tag(tag); } else { for (auto it = sync_req_mgrs_.begin(); it != sync_req_mgrs_.end(); it++) { (*it)->AddSyncMethod(method, tag); } } method_name = method->name(); } // Parse service name. if (method_name != nullptr) { std::stringstream ss(method_name); grpc::string service_name; if (std::getline(ss, service_name, '/') && std::getline(ss, service_name, '/')) { services_.push_back(service_name); } } return true; } void Server::RegisterAsyncGenericService(AsyncGenericService* service) { GPR_ASSERT(service->server_ == nullptr && "Can only register an async generic service against one server."); service->server_ = this; has_generic_service_ = true; } int Server::AddListeningPort(const grpc::string& addr, ServerCredentials* creds) { GPR_ASSERT(!started_); int port = creds->AddPortToServer(addr, server_); global_callbacks_->AddPort(this, addr, creds, port); return port; } void Server::Start(ServerCompletionQueue** cqs, size_t num_cqs) { GPR_ASSERT(!started_); global_callbacks_->PreServerStart(this); started_ = true; // Only create default health check service when user did not provide an // explicit one. if (health_check_service_ == nullptr && !health_check_service_disabled_ && DefaultHealthCheckServiceEnabled()) { if (sync_server_cqs_ == nullptr || sync_server_cqs_->empty()) { gpr_log(GPR_INFO, "Default health check service disabled at async-only server."); } else { auto* default_hc_service = new DefaultHealthCheckService; health_check_service_.reset(default_hc_service); RegisterService(nullptr, default_hc_service->GetHealthCheckService()); } } grpc_server_start(server_); if (!has_generic_service_) { for (auto it = sync_req_mgrs_.begin(); it != sync_req_mgrs_.end(); it++) { (*it)->AddUnknownSyncMethod(); } for (size_t i = 0; i < num_cqs; i++) { if (cqs[i]->IsFrequentlyPolled()) { new UnimplementedAsyncRequest(this, cqs[i]); } } } // If this server has any support for synchronous methods (has any sync // server CQs), make sure that we have a ResourceExhausted handler // to deal with the case of thread exhaustion if (sync_server_cqs_ != nullptr && !sync_server_cqs_->empty()) { resource_exhausted_handler_.reset(new internal::ResourceExhaustedHandler); } for (auto it = sync_req_mgrs_.begin(); it != sync_req_mgrs_.end(); it++) { (*it)->Start(); } } void Server::ShutdownInternal(gpr_timespec deadline) { std::unique_lock lock(mu_); if (!shutdown_) { shutdown_ = true; /// The completion queue to use for server shutdown completion notification CompletionQueue shutdown_cq; ShutdownTag shutdown_tag; // Dummy shutdown tag grpc_server_shutdown_and_notify(server_, shutdown_cq.cq(), &shutdown_tag); shutdown_cq.Shutdown(); void* tag; bool ok; CompletionQueue::NextStatus status = shutdown_cq.AsyncNext(&tag, &ok, deadline); // If this timed out, it means we are done with the grace period for a clean // shutdown. We should force a shutdown now by cancelling all inflight calls if (status == CompletionQueue::NextStatus::TIMEOUT) { grpc_server_cancel_all_calls(server_); } // Else in case of SHUTDOWN or GOT_EVENT, it means that the server has // successfully shutdown // Shutdown all ThreadManagers. This will try to gracefully stop all the // threads in the ThreadManagers (once they process any inflight requests) for (auto it = sync_req_mgrs_.begin(); it != sync_req_mgrs_.end(); it++) { (*it)->Shutdown(); // ThreadManager's Shutdown() } // Wait for threads in all ThreadManagers to terminate for (auto it = sync_req_mgrs_.begin(); it != sync_req_mgrs_.end(); it++) { (*it)->Wait(); } // Drain the shutdown queue (if the previous call to AsyncNext() timed out // and we didn't remove the tag from the queue yet) while (shutdown_cq.Next(&tag, &ok)) { // Nothing to be done here. Just ignore ok and tag values } shutdown_notified_ = true; shutdown_cv_.notify_all(); } } void Server::Wait() { std::unique_lock lock(mu_); while (started_ && !shutdown_notified_) { shutdown_cv_.wait(lock); } } void Server::PerformOpsOnCall(internal::CallOpSetInterface* ops, internal::Call* call) { ops->FillOps(call); } ServerInterface::BaseAsyncRequest::BaseAsyncRequest( ServerInterface* server, ServerContext* context, internal::ServerAsyncStreamingInterface* stream, CompletionQueue* call_cq, ServerCompletionQueue* notification_cq, void* tag, bool delete_on_finalize) : server_(server), context_(context), stream_(stream), call_cq_(call_cq), notification_cq_(notification_cq), tag_(tag), delete_on_finalize_(delete_on_finalize), call_(nullptr), done_intercepting_(false) { /* Set up interception state partially for the receive ops. call_wrapper_ is * not filled at this point, but it will be filled before the interceptors are * run. */ interceptor_methods_.SetCall(&call_wrapper_); interceptor_methods_.SetReverse(); call_cq_->RegisterAvalanching(); // This op will trigger more ops } ServerInterface::BaseAsyncRequest::~BaseAsyncRequest() { call_cq_->CompleteAvalanching(); } bool ServerInterface::BaseAsyncRequest::FinalizeResult(void** tag, bool* status) { if (done_intercepting_) { delete static_cast(dummy_alarm_); dummy_alarm_ = nullptr; *tag = tag_; if (delete_on_finalize_) { delete this; } return true; } context_->set_call(call_); context_->cq_ = call_cq_; if (call_wrapper_.call() == nullptr) { // Fill it since it is empty. call_wrapper_ = internal::Call( call_, server_, call_cq_, server_->max_receive_message_size(), nullptr); } // just the pointers inside call are copied here stream_->BindCall(&call_wrapper_); if (*status && call_ && call_wrapper_.server_rpc_info()) { done_intercepting_ = true; // Set interception point for RECV INITIAL METADATA interceptor_methods_.AddInterceptionHookPoint( experimental::InterceptionHookPoints::POST_RECV_INITIAL_METADATA); interceptor_methods_.SetRecvInitialMetadata(&context_->client_metadata_); auto f = std::bind(&ServerInterface::BaseAsyncRequest:: ContinueFinalizeResultAfterInterception, this); if (interceptor_methods_.RunInterceptors(f)) { // There are no interceptors to run. Continue } else { // There were interceptors to be run, so // ContinueFinalizeResultAfterInterception will be run when interceptors // are done. return false; } } if (*status && call_) { context_->BeginCompletionOp(&call_wrapper_); } *tag = tag_; if (delete_on_finalize_) { delete this; } return true; } void ServerInterface::BaseAsyncRequest:: ContinueFinalizeResultAfterInterception() { context_->BeginCompletionOp(&call_wrapper_); // Queue a tag which will be returned immediately dummy_alarm_ = new Alarm(); static_cast(dummy_alarm_) ->Set(notification_cq_, g_core_codegen_interface->gpr_time_0(GPR_CLOCK_MONOTONIC), this); } ServerInterface::RegisteredAsyncRequest::RegisteredAsyncRequest( ServerInterface* server, ServerContext* context, internal::ServerAsyncStreamingInterface* stream, CompletionQueue* call_cq, ServerCompletionQueue* notification_cq, void* tag, const char* name) : BaseAsyncRequest(server, context, stream, call_cq, notification_cq, tag, true), name_(name) {} void ServerInterface::RegisteredAsyncRequest::IssueRequest( void* registered_method, grpc_byte_buffer** payload, ServerCompletionQueue* notification_cq) { GPR_ASSERT(GRPC_CALL_OK == grpc_server_request_registered_call( server_->server(), registered_method, &call_, &context_->deadline_, context_->client_metadata_.arr(), payload, call_cq_->cq(), notification_cq->cq(), this)); } ServerInterface::GenericAsyncRequest::GenericAsyncRequest( ServerInterface* server, GenericServerContext* context, internal::ServerAsyncStreamingInterface* stream, CompletionQueue* call_cq, ServerCompletionQueue* notification_cq, void* tag, bool delete_on_finalize) : BaseAsyncRequest(server, context, stream, call_cq, notification_cq, tag, delete_on_finalize) { grpc_call_details_init(&call_details_); GPR_ASSERT(notification_cq); GPR_ASSERT(call_cq); GPR_ASSERT(GRPC_CALL_OK == grpc_server_request_call( server->server(), &call_, &call_details_, context->client_metadata_.arr(), call_cq->cq(), notification_cq->cq(), this)); } bool ServerInterface::GenericAsyncRequest::FinalizeResult(void** tag, bool* status) { // If we are done intercepting, there is nothing more for us to do if (done_intercepting_) { return BaseAsyncRequest::FinalizeResult(tag, status); } // TODO(yangg) remove the copy here. if (*status) { static_cast(context_)->method_ = StringFromCopiedSlice(call_details_.method); static_cast(context_)->host_ = StringFromCopiedSlice(call_details_.host); context_->deadline_ = call_details_.deadline; } grpc_slice_unref(call_details_.method); grpc_slice_unref(call_details_.host); call_wrapper_ = internal::Call( call_, server_, call_cq_, server_->max_receive_message_size(), context_->set_server_rpc_info(experimental::ServerRpcInfo( context_, static_cast(context_)->method_.c_str(), *server_->interceptor_creators()))); return BaseAsyncRequest::FinalizeResult(tag, status); } bool Server::UnimplementedAsyncRequest::FinalizeResult(void** tag, bool* status) { if (GenericAsyncRequest::FinalizeResult(tag, status)) { // We either had no interceptors run or we are done intercepting if (*status) { new UnimplementedAsyncRequest(server_, cq_); new UnimplementedAsyncResponse(this); } else { delete this; } } else { // The tag was swallowed due to interception. We will see it again. } return false; } Server::UnimplementedAsyncResponse::UnimplementedAsyncResponse( UnimplementedAsyncRequest* request) : request_(request) { Status status(StatusCode::UNIMPLEMENTED, ""); internal::UnknownMethodHandler::FillOps(request_->context(), this); request_->stream()->call_.PerformOps(this); } ServerInitializer* Server::initializer() { return server_initializer_.get(); } } // namespace grpc