/* * * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include "src/core/lib/iomgr/port.h" #ifdef GRPC_TIMER_USE_GENERIC #include "src/core/lib/iomgr/timer.h" #include #include #include #include #include #include #include "src/core/lib/debug/trace.h" #include "src/core/lib/iomgr/time_averaged_stats.h" #include "src/core/lib/iomgr/timer_heap.h" #include "src/core/lib/support/spinlock.h" #define INVALID_HEAP_INDEX 0xffffffffu #define LOG2_NUM_SHARDS 5 #define NUM_SHARDS (1 << LOG2_NUM_SHARDS) #define ADD_DEADLINE_SCALE 0.33 #define MIN_QUEUE_WINDOW_DURATION 0.01 #define MAX_QUEUE_WINDOW_DURATION 1 grpc_tracer_flag grpc_timer_trace = GRPC_TRACER_INITIALIZER(false); grpc_tracer_flag grpc_timer_check_trace = GRPC_TRACER_INITIALIZER(false); /* A "timer shard". Contains a 'heap' and a 'list' of timers. All timers with * deadlines earlier than 'queue_deadline" cap are maintained in the heap and * others are maintained in the list (unordered). This helps to keep the number * of elements in the heap low. * * The 'queue_deadline_cap' gets recomputed periodically based on the timer * stats maintained in 'stats' and the relevant timers are then moved from the * 'list' to 'heap' */ typedef struct { gpr_mu mu; grpc_time_averaged_stats stats; /* All and only timers with deadlines <= this will be in the heap. */ gpr_atm queue_deadline_cap; /* The deadline of the next timer due in this shard */ gpr_atm min_deadline; /* Index of this timer_shard in the g_shard_queue */ uint32_t shard_queue_index; /* This holds all timers with deadlines < queue_deadline_cap. Timers in this list have the top bit of their deadline set to 0. */ grpc_timer_heap heap; /* This holds timers whose deadline is >= queue_deadline_cap. */ grpc_timer list; } timer_shard; /* Array of timer shards. Whenever a timer (grpc_timer *) is added, its address * is hashed to select the timer shard to add the timer to */ static timer_shard g_shards[NUM_SHARDS]; /* Maintains a sorted list of timer shards (sorted by their min_deadline, i.e * the deadline of the next timer in each shard). * Access to this is protected by g_shared_mutables.mu */ static timer_shard *g_shard_queue[NUM_SHARDS]; /* Thread local variable that stores the deadline of the next timer the thread * has last-seen. This is an optimization to prevent the thread from checking * shared_mutables.min_timer (which requires acquiring shared_mutables.mu lock, * an expensive operation) */ GPR_TLS_DECL(g_last_seen_min_timer); struct shared_mutables { /* The deadline of the next timer due across all timer shards */ gpr_atm min_timer; /* Allow only one run_some_expired_timers at once */ gpr_spinlock checker_mu; bool initialized; /* Protects g_shard_queue (and the shared_mutables struct itself) */ gpr_mu mu; } GPR_ALIGN_STRUCT(GPR_CACHELINE_SIZE); static struct shared_mutables g_shared_mutables = { .checker_mu = GPR_SPINLOCK_STATIC_INITIALIZER, .initialized = false, }; static gpr_clock_type g_clock_type; static gpr_timespec g_start_time; static gpr_atm saturating_add(gpr_atm a, gpr_atm b) { if (a > GPR_ATM_MAX - b) { return GPR_ATM_MAX; } return a + b; } static grpc_timer_check_result run_some_expired_timers(grpc_exec_ctx *exec_ctx, gpr_atm now, gpr_atm *next, grpc_error *error); static gpr_timespec dbl_to_ts(double d) { gpr_timespec ts; ts.tv_sec = (int64_t)d; ts.tv_nsec = (int32_t)(1e9 * (d - (double)ts.tv_sec)); ts.clock_type = GPR_TIMESPAN; return ts; } static gpr_atm timespec_to_atm_round_up(gpr_timespec ts) { ts = gpr_time_sub(ts, g_start_time); double x = GPR_MS_PER_SEC * (double)ts.tv_sec + (double)ts.tv_nsec / GPR_NS_PER_MS + (double)(GPR_NS_PER_SEC - 1) / (double)GPR_NS_PER_SEC; if (x < 0) return 0; if (x > GPR_ATM_MAX) return GPR_ATM_MAX; return (gpr_atm)x; } static gpr_atm timespec_to_atm_round_down(gpr_timespec ts) { ts = gpr_time_sub(ts, g_start_time); double x = GPR_MS_PER_SEC * (double)ts.tv_sec + (double)ts.tv_nsec / GPR_NS_PER_MS; if (x < 0) return 0; if (x > GPR_ATM_MAX) return GPR_ATM_MAX; return (gpr_atm)x; } static gpr_timespec atm_to_timespec(gpr_atm x) { return gpr_time_add(g_start_time, dbl_to_ts((double)x / 1000.0)); } static gpr_atm compute_min_deadline(timer_shard *shard) { return grpc_timer_heap_is_empty(&shard->heap) ? saturating_add(shard->queue_deadline_cap, 1) : grpc_timer_heap_top(&shard->heap)->deadline; } void grpc_timer_list_init(gpr_timespec now) { uint32_t i; g_shared_mutables.initialized = true; gpr_mu_init(&g_shared_mutables.mu); g_clock_type = now.clock_type; g_start_time = now; g_shared_mutables.min_timer = timespec_to_atm_round_down(now); gpr_tls_init(&g_last_seen_min_timer); gpr_tls_set(&g_last_seen_min_timer, 0); grpc_register_tracer("timer", &grpc_timer_trace); grpc_register_tracer("timer_check", &grpc_timer_check_trace); for (i = 0; i < NUM_SHARDS; i++) { timer_shard *shard = &g_shards[i]; gpr_mu_init(&shard->mu); grpc_time_averaged_stats_init(&shard->stats, 1.0 / ADD_DEADLINE_SCALE, 0.1, 0.5); shard->queue_deadline_cap = g_shared_mutables.min_timer; shard->shard_queue_index = i; grpc_timer_heap_init(&shard->heap); shard->list.next = shard->list.prev = &shard->list; shard->min_deadline = compute_min_deadline(shard); g_shard_queue[i] = shard; } } void grpc_timer_list_shutdown(grpc_exec_ctx *exec_ctx) { int i; run_some_expired_timers( exec_ctx, GPR_ATM_MAX, NULL, GRPC_ERROR_CREATE_FROM_STATIC_STRING("Timer list shutdown")); for (i = 0; i < NUM_SHARDS; i++) { timer_shard *shard = &g_shards[i]; gpr_mu_destroy(&shard->mu); grpc_timer_heap_destroy(&shard->heap); } gpr_mu_destroy(&g_shared_mutables.mu); gpr_tls_destroy(&g_last_seen_min_timer); g_shared_mutables.initialized = false; } static double ts_to_dbl(gpr_timespec ts) { return (double)ts.tv_sec + 1e-9 * ts.tv_nsec; } /* returns true if the first element in the list */ static void list_join(grpc_timer *head, grpc_timer *timer) { timer->next = head; timer->prev = head->prev; timer->next->prev = timer->prev->next = timer; } static void list_remove(grpc_timer *timer) { timer->next->prev = timer->prev; timer->prev->next = timer->next; } static void swap_adjacent_shards_in_queue(uint32_t first_shard_queue_index) { timer_shard *temp; temp = g_shard_queue[first_shard_queue_index]; g_shard_queue[first_shard_queue_index] = g_shard_queue[first_shard_queue_index + 1]; g_shard_queue[first_shard_queue_index + 1] = temp; g_shard_queue[first_shard_queue_index]->shard_queue_index = first_shard_queue_index; g_shard_queue[first_shard_queue_index + 1]->shard_queue_index = first_shard_queue_index + 1; } static void note_deadline_change(timer_shard *shard) { while (shard->shard_queue_index > 0 && shard->min_deadline < g_shard_queue[shard->shard_queue_index - 1]->min_deadline) { swap_adjacent_shards_in_queue(shard->shard_queue_index - 1); } while (shard->shard_queue_index < NUM_SHARDS - 1 && shard->min_deadline > g_shard_queue[shard->shard_queue_index + 1]->min_deadline) { swap_adjacent_shards_in_queue(shard->shard_queue_index); } } void grpc_timer_init(grpc_exec_ctx *exec_ctx, grpc_timer *timer, gpr_timespec deadline, grpc_closure *closure, gpr_timespec now) { int is_first_timer = 0; timer_shard *shard = &g_shards[GPR_HASH_POINTER(timer, NUM_SHARDS)]; GPR_ASSERT(deadline.clock_type == g_clock_type); GPR_ASSERT(now.clock_type == g_clock_type); timer->closure = closure; gpr_atm deadline_atm = timer->deadline = timespec_to_atm_round_up(deadline); if (GRPC_TRACER_ON(grpc_timer_trace)) { gpr_log(GPR_DEBUG, "TIMER %p: SET %" PRId64 ".%09d [%" PRIdPTR "] now %" PRId64 ".%09d [%" PRIdPTR "] call %p[%p]", timer, deadline.tv_sec, deadline.tv_nsec, deadline_atm, now.tv_sec, now.tv_nsec, timespec_to_atm_round_down(now), closure, closure->cb); } if (!g_shared_mutables.initialized) { timer->pending = false; GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_CREATE_FROM_STATIC_STRING( "Attempt to create timer before initialization")); return; } gpr_mu_lock(&shard->mu); timer->pending = true; if (gpr_time_cmp(deadline, now) <= 0) { timer->pending = false; GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_NONE); gpr_mu_unlock(&shard->mu); /* early out */ return; } grpc_time_averaged_stats_add_sample(&shard->stats, ts_to_dbl(gpr_time_sub(deadline, now))); if (deadline_atm < shard->queue_deadline_cap) { is_first_timer = grpc_timer_heap_add(&shard->heap, timer); } else { timer->heap_index = INVALID_HEAP_INDEX; list_join(&shard->list, timer); } if (GRPC_TRACER_ON(grpc_timer_trace)) { gpr_log(GPR_DEBUG, " .. add to shard %d with queue_deadline_cap=%" PRIdPTR " => is_first_timer=%s", (int)(shard - g_shards), shard->queue_deadline_cap, is_first_timer ? "true" : "false"); } gpr_mu_unlock(&shard->mu); /* Deadline may have decreased, we need to adjust the master queue. Note that there is a potential racy unlocked region here. There could be a reordering of multiple grpc_timer_init calls, at this point, but the < test below should ensure that we err on the side of caution. There could also be a race with grpc_timer_check, which might beat us to the lock. In that case, it is possible that the timer that we added will have already run by the time we hold the lock, but that too is a safe error. Finally, it's possible that the grpc_timer_check that intervened failed to trigger the new timer because the min_deadline hadn't yet been reduced. In that case, the timer will simply have to wait for the next grpc_timer_check. */ if (is_first_timer) { gpr_mu_lock(&g_shared_mutables.mu); if (GRPC_TRACER_ON(grpc_timer_trace)) { gpr_log(GPR_DEBUG, " .. old shard min_deadline=%" PRIdPTR, shard->min_deadline); } if (deadline_atm < shard->min_deadline) { gpr_atm old_min_deadline = g_shard_queue[0]->min_deadline; shard->min_deadline = deadline_atm; note_deadline_change(shard); if (shard->shard_queue_index == 0 && deadline_atm < old_min_deadline) { gpr_atm_no_barrier_store(&g_shared_mutables.min_timer, deadline_atm); grpc_kick_poller(); } } gpr_mu_unlock(&g_shared_mutables.mu); } } void grpc_timer_consume_kick(void) { /* force re-evaluation of last seeen min */ gpr_tls_set(&g_last_seen_min_timer, 0); } void grpc_timer_cancel(grpc_exec_ctx *exec_ctx, grpc_timer *timer) { if (!g_shared_mutables.initialized) { /* must have already been cancelled, also the shard mutex is invalid */ return; } timer_shard *shard = &g_shards[GPR_HASH_POINTER(timer, NUM_SHARDS)]; gpr_mu_lock(&shard->mu); if (GRPC_TRACER_ON(grpc_timer_trace)) { gpr_log(GPR_DEBUG, "TIMER %p: CANCEL pending=%s", timer, timer->pending ? "true" : "false"); } if (timer->pending) { GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_CANCELLED); timer->pending = false; if (timer->heap_index == INVALID_HEAP_INDEX) { list_remove(timer); } else { grpc_timer_heap_remove(&shard->heap, timer); } } gpr_mu_unlock(&shard->mu); } /* Rebalances the timer shard by computing a new 'queue_deadline_cap' and moving all relevant timers in shard->list (i.e timers with deadlines earlier than 'queue_deadline_cap') into into shard->heap. Returns 'true' if shard->heap has atleast ONE element REQUIRES: shard->mu locked */ static int refill_heap(timer_shard *shard, gpr_atm now) { /* Compute the new queue window width and bound by the limits: */ double computed_deadline_delta = grpc_time_averaged_stats_update_average(&shard->stats) * ADD_DEADLINE_SCALE; double deadline_delta = GPR_CLAMP(computed_deadline_delta, MIN_QUEUE_WINDOW_DURATION, MAX_QUEUE_WINDOW_DURATION); grpc_timer *timer, *next; /* Compute the new cap and put all timers under it into the queue: */ shard->queue_deadline_cap = saturating_add(GPR_MAX(now, shard->queue_deadline_cap), (gpr_atm)(deadline_delta * 1000.0)); if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, " .. shard[%d]->queue_deadline_cap --> %" PRIdPTR, (int)(shard - g_shards), shard->queue_deadline_cap); } for (timer = shard->list.next; timer != &shard->list; timer = next) { next = timer->next; if (timer->deadline < shard->queue_deadline_cap) { if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, " .. add timer with deadline %" PRIdPTR " to heap", timer->deadline); } list_remove(timer); grpc_timer_heap_add(&shard->heap, timer); } } return !grpc_timer_heap_is_empty(&shard->heap); } /* This pops the next non-cancelled timer with deadline <= now from the queue, or returns NULL if there isn't one. REQUIRES: shard->mu locked */ static grpc_timer *pop_one(timer_shard *shard, gpr_atm now) { grpc_timer *timer; for (;;) { if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, " .. shard[%d]: heap_empty=%s", (int)(shard - g_shards), grpc_timer_heap_is_empty(&shard->heap) ? "true" : "false"); } if (grpc_timer_heap_is_empty(&shard->heap)) { if (now < shard->queue_deadline_cap) return NULL; if (!refill_heap(shard, now)) return NULL; } timer = grpc_timer_heap_top(&shard->heap); if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, " .. check top timer deadline=%" PRIdPTR " now=%" PRIdPTR, timer->deadline, now); } if (timer->deadline > now) return NULL; if (GRPC_TRACER_ON(grpc_timer_trace)) { gpr_log(GPR_DEBUG, "TIMER %p: FIRE %" PRIdPTR "ms late", timer, now - timer->deadline); } timer->pending = false; grpc_timer_heap_pop(&shard->heap); return timer; } } /* REQUIRES: shard->mu unlocked */ static size_t pop_timers(grpc_exec_ctx *exec_ctx, timer_shard *shard, gpr_atm now, gpr_atm *new_min_deadline, grpc_error *error) { size_t n = 0; grpc_timer *timer; gpr_mu_lock(&shard->mu); while ((timer = pop_one(shard, now))) { GRPC_CLOSURE_SCHED(exec_ctx, timer->closure, GRPC_ERROR_REF(error)); n++; } *new_min_deadline = compute_min_deadline(shard); gpr_mu_unlock(&shard->mu); return n; } static grpc_timer_check_result run_some_expired_timers(grpc_exec_ctx *exec_ctx, gpr_atm now, gpr_atm *next, grpc_error *error) { grpc_timer_check_result result = GRPC_TIMERS_NOT_CHECKED; gpr_atm min_timer = gpr_atm_no_barrier_load(&g_shared_mutables.min_timer); gpr_tls_set(&g_last_seen_min_timer, min_timer); if (now < min_timer) { if (next != NULL) *next = GPR_MIN(*next, min_timer); return GRPC_TIMERS_CHECKED_AND_EMPTY; } if (gpr_spinlock_trylock(&g_shared_mutables.checker_mu)) { gpr_mu_lock(&g_shared_mutables.mu); result = GRPC_TIMERS_CHECKED_AND_EMPTY; if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, " .. shard[%d]->min_deadline = %" PRIdPTR, (int)(g_shard_queue[0] - g_shards), g_shard_queue[0]->min_deadline); } while (g_shard_queue[0]->min_deadline < now || (now != GPR_ATM_MAX && g_shard_queue[0]->min_deadline == now)) { gpr_atm new_min_deadline; /* For efficiency, we pop as many available timers as we can from the shard. This may violate perfect timer deadline ordering, but that shouldn't be a big deal because we don't make ordering guarantees. */ if (pop_timers(exec_ctx, g_shard_queue[0], now, &new_min_deadline, error) > 0) { result = GRPC_TIMERS_FIRED; } if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, " .. result --> %d" ", shard[%d]->min_deadline %" PRIdPTR " --> %" PRIdPTR ", now=%" PRIdPTR, result, (int)(g_shard_queue[0] - g_shards), g_shard_queue[0]->min_deadline, new_min_deadline, now); } /* An grpc_timer_init() on the shard could intervene here, adding a new timer that is earlier than new_min_deadline. However, grpc_timer_init() will block on the master_lock before it can call set_min_deadline, so this one will complete first and then the Addtimer will reduce the min_deadline (perhaps unnecessarily). */ g_shard_queue[0]->min_deadline = new_min_deadline; note_deadline_change(g_shard_queue[0]); } if (next) { *next = GPR_MIN(*next, g_shard_queue[0]->min_deadline); } gpr_atm_no_barrier_store(&g_shared_mutables.min_timer, g_shard_queue[0]->min_deadline); gpr_mu_unlock(&g_shared_mutables.mu); gpr_spinlock_unlock(&g_shared_mutables.checker_mu); } GRPC_ERROR_UNREF(error); return result; } grpc_timer_check_result grpc_timer_check(grpc_exec_ctx *exec_ctx, gpr_timespec now, gpr_timespec *next) { // prelude GPR_ASSERT(now.clock_type == g_clock_type); gpr_atm now_atm = timespec_to_atm_round_down(now); /* fetch from a thread-local first: this avoids contention on a globally mutable cacheline in the common case */ gpr_atm min_timer = gpr_tls_get(&g_last_seen_min_timer); if (now_atm < min_timer) { if (next != NULL) { *next = atm_to_timespec(GPR_MIN(timespec_to_atm_round_up(*next), min_timer)); } if (GRPC_TRACER_ON(grpc_timer_check_trace)) { gpr_log(GPR_DEBUG, "TIMER CHECK SKIP: now_atm=%" PRIdPTR " min_timer=%" PRIdPTR, now_atm, min_timer); } return GRPC_TIMERS_CHECKED_AND_EMPTY; } grpc_error *shutdown_error = gpr_time_cmp(now, gpr_inf_future(now.clock_type)) != 0 ? GRPC_ERROR_NONE : GRPC_ERROR_CREATE_FROM_STATIC_STRING("Shutting down timer system"); // tracing if (GRPC_TRACER_ON(grpc_timer_check_trace)) { char *next_str; if (next == NULL) { next_str = gpr_strdup("NULL"); } else { gpr_asprintf(&next_str, "%" PRId64 ".%09d [%" PRIdPTR "]", next->tv_sec, next->tv_nsec, timespec_to_atm_round_down(*next)); } gpr_log(GPR_DEBUG, "TIMER CHECK BEGIN: now=%" PRId64 ".%09d [%" PRIdPTR "] next=%s tls_min=%" PRIdPTR " glob_min=%" PRIdPTR, now.tv_sec, now.tv_nsec, now_atm, next_str, gpr_tls_get(&g_last_seen_min_timer), gpr_atm_no_barrier_load(&g_shared_mutables.min_timer)); gpr_free(next_str); } // actual code grpc_timer_check_result r; gpr_atm next_atm; if (next == NULL) { r = run_some_expired_timers(exec_ctx, now_atm, NULL, shutdown_error); } else { next_atm = timespec_to_atm_round_down(*next); r = run_some_expired_timers(exec_ctx, now_atm, &next_atm, shutdown_error); *next = atm_to_timespec(next_atm); } // tracing if (GRPC_TRACER_ON(grpc_timer_check_trace)) { char *next_str; if (next == NULL) { next_str = gpr_strdup("NULL"); } else { gpr_asprintf(&next_str, "%" PRId64 ".%09d [%" PRIdPTR "]", next->tv_sec, next->tv_nsec, next_atm); } gpr_log(GPR_DEBUG, "TIMER CHECK END: r=%d; next=%s", r, next_str); gpr_free(next_str); } return r; } #endif /* GRPC_TIMER_USE_GENERIC */