/* * * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include "src/core/lib/iomgr/port.h" #ifdef GRPC_POSIX_SOCKET_TCP #include "src/core/lib/iomgr/network_status_tracker.h" #include "src/core/lib/iomgr/tcp_posix.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/core/lib/channel/channel_args.h" #include "src/core/lib/debug/stats.h" #include "src/core/lib/debug/trace.h" #include "src/core/lib/gpr/string.h" #include "src/core/lib/gpr/useful.h" #include "src/core/lib/iomgr/buffer_list.h" #include "src/core/lib/iomgr/ev_posix.h" #include "src/core/lib/iomgr/executor.h" #include "src/core/lib/profiling/timers.h" #include "src/core/lib/slice/slice_internal.h" #include "src/core/lib/slice/slice_string_helpers.h" #ifdef GRPC_HAVE_MSG_NOSIGNAL #define SENDMSG_FLAGS MSG_NOSIGNAL #else #define SENDMSG_FLAGS 0 #endif #ifdef GRPC_MSG_IOVLEN_TYPE typedef GRPC_MSG_IOVLEN_TYPE msg_iovlen_type; #else typedef size_t msg_iovlen_type; #endif extern grpc_core::TraceFlag grpc_tcp_trace; namespace { struct grpc_tcp { grpc_endpoint base; grpc_fd* em_fd; int fd; /* Used by the endpoint read function to distinguish the very first read call * from the rest */ bool is_first_read; double target_length; double bytes_read_this_round; gpr_refcount refcount; gpr_atm shutdown_count; int min_read_chunk_size; int max_read_chunk_size; /* garbage after the last read */ grpc_slice_buffer last_read_buffer; grpc_slice_buffer* incoming_buffer; grpc_slice_buffer* outgoing_buffer; /** byte within outgoing_buffer->slices[0] to write next */ size_t outgoing_byte_idx; grpc_closure* read_cb; grpc_closure* write_cb; grpc_closure* release_fd_cb; int* release_fd; grpc_closure read_done_closure; grpc_closure write_done_closure; grpc_closure error_closure; char* peer_string; grpc_resource_user* resource_user; grpc_resource_user_slice_allocator slice_allocator; grpc_core::TracedBuffer* tb_head; /* List of traced buffers */ gpr_mu tb_mu; /* Lock for access to list of traced buffers */ /* grpc_endpoint_write takes an argument which if non-null means that the * transport layer wants the TCP layer to collect timestamps for this write. * This arg is forwarded to the timestamps callback function when the ACK * timestamp is received from the kernel. This arg is a (void *) which allows * users of this API to pass in a pointer to any kind of structure. This * structure could actually be a tag or any book-keeping object that the user * can use to distinguish between different traced writes. The only * requirement from the TCP endpoint layer is that this arg should be non-null * if the user wants timestamps for the write. */ void* outgoing_buffer_arg; /* A counter which starts at 0. It is initialized the first time the socket * options for collecting timestamps are set, and is incremented with each * byte sent. */ int bytes_counter; bool socket_ts_enabled; /* True if timestamping options are set on the socket */ bool ts_capable; /* Cache whether we can set timestamping options */ gpr_atm stop_error_notification; /* Set to 1 if we do not want to be notified on errors anymore */ }; struct backup_poller { gpr_mu* pollset_mu; grpc_closure run_poller; }; } // namespace #define BACKUP_POLLER_POLLSET(b) ((grpc_pollset*)((b) + 1)) static gpr_atm g_uncovered_notifications_pending; static gpr_atm g_backup_poller; /* backup_poller* */ static void tcp_handle_read(void* arg /* grpc_tcp */, grpc_error* error); static void tcp_handle_write(void* arg /* grpc_tcp */, grpc_error* error); static void tcp_drop_uncovered_then_handle_write(void* arg /* grpc_tcp */, grpc_error* error); static void done_poller(void* bp, grpc_error* error_ignored) { backup_poller* p = static_cast(bp); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p destroy", p); } grpc_pollset_destroy(BACKUP_POLLER_POLLSET(p)); gpr_free(p); } static void run_poller(void* bp, grpc_error* error_ignored) { backup_poller* p = static_cast(bp); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p run", p); } gpr_mu_lock(p->pollset_mu); grpc_millis deadline = grpc_core::ExecCtx::Get()->Now() + 10 * GPR_MS_PER_SEC; GRPC_STATS_INC_TCP_BACKUP_POLLER_POLLS(); GRPC_LOG_IF_ERROR( "backup_poller:pollset_work", grpc_pollset_work(BACKUP_POLLER_POLLSET(p), nullptr, deadline)); gpr_mu_unlock(p->pollset_mu); /* last "uncovered" notification is the ref that keeps us polling, if we get * there try a cas to release it */ if (gpr_atm_no_barrier_load(&g_uncovered_notifications_pending) == 1 && gpr_atm_full_cas(&g_uncovered_notifications_pending, 1, 0)) { gpr_mu_lock(p->pollset_mu); bool cas_ok = gpr_atm_full_cas(&g_backup_poller, (gpr_atm)p, 0); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p done cas_ok=%d", p, cas_ok); } gpr_mu_unlock(p->pollset_mu); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p shutdown", p); } grpc_pollset_shutdown(BACKUP_POLLER_POLLSET(p), GRPC_CLOSURE_INIT(&p->run_poller, done_poller, p, grpc_schedule_on_exec_ctx)); } else { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p reschedule", p); } GRPC_CLOSURE_SCHED(&p->run_poller, GRPC_ERROR_NONE); } } static void drop_uncovered(grpc_tcp* tcp) { backup_poller* p = (backup_poller*)gpr_atm_acq_load(&g_backup_poller); gpr_atm old_count = gpr_atm_no_barrier_fetch_add(&g_uncovered_notifications_pending, -1); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p uncover cnt %d->%d", p, static_cast(old_count), static_cast(old_count) - 1); } GPR_ASSERT(old_count != 1); } // gRPC API considers a Write operation to be done the moment it clears ‘flow // control’ i.e., not necessarily sent on the wire. This means that the // application MIGHT not call `grpc_completion_queue_next/pluck` in a timely // manner when its `Write()` API is acked. // // We need to ensure that the fd is 'covered' (i.e being monitored by some // polling thread and progress is made) and hence add it to a backup poller here static void cover_self(grpc_tcp* tcp) { backup_poller* p; gpr_atm old_count = gpr_atm_no_barrier_fetch_add(&g_uncovered_notifications_pending, 2); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER: cover cnt %d->%d", static_cast(old_count), 2 + static_cast(old_count)); } if (old_count == 0) { GRPC_STATS_INC_TCP_BACKUP_POLLERS_CREATED(); p = static_cast( gpr_zalloc(sizeof(*p) + grpc_pollset_size())); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p create", p); } grpc_pollset_init(BACKUP_POLLER_POLLSET(p), &p->pollset_mu); gpr_atm_rel_store(&g_backup_poller, (gpr_atm)p); GRPC_CLOSURE_SCHED( GRPC_CLOSURE_INIT(&p->run_poller, run_poller, p, grpc_executor_scheduler(GRPC_EXECUTOR_LONG)), GRPC_ERROR_NONE); } else { while ((p = (backup_poller*)gpr_atm_acq_load(&g_backup_poller)) == nullptr) { // spin waiting for backup poller } } if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "BACKUP_POLLER:%p add %p", p, tcp); } grpc_pollset_add_fd(BACKUP_POLLER_POLLSET(p), tcp->em_fd); if (old_count != 0) { drop_uncovered(tcp); } } static void notify_on_read(grpc_tcp* tcp) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p notify_on_read", tcp); } GRPC_CLOSURE_INIT(&tcp->read_done_closure, tcp_handle_read, tcp, grpc_schedule_on_exec_ctx); grpc_fd_notify_on_read(tcp->em_fd, &tcp->read_done_closure); } static void notify_on_write(grpc_tcp* tcp) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p notify_on_write", tcp); } if (grpc_event_engine_run_in_background()) { // If there is a polling engine always running in the background, there is // no need to run the backup poller. GRPC_CLOSURE_INIT(&tcp->write_done_closure, tcp_handle_write, tcp, grpc_schedule_on_exec_ctx); } else { cover_self(tcp); GRPC_CLOSURE_INIT(&tcp->write_done_closure, tcp_drop_uncovered_then_handle_write, tcp, grpc_schedule_on_exec_ctx); } grpc_fd_notify_on_write(tcp->em_fd, &tcp->write_done_closure); } static void tcp_drop_uncovered_then_handle_write(void* arg, grpc_error* error) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p got_write: %s", arg, grpc_error_string(error)); } drop_uncovered(static_cast(arg)); tcp_handle_write(arg, error); } static void add_to_estimate(grpc_tcp* tcp, size_t bytes) { tcp->bytes_read_this_round += static_cast(bytes); } static void finish_estimate(grpc_tcp* tcp) { /* If we read >80% of the target buffer in one read loop, increase the size of the target buffer to either the amount read, or twice its previous value */ if (tcp->bytes_read_this_round > tcp->target_length * 0.8) { tcp->target_length = GPR_MAX(2 * tcp->target_length, tcp->bytes_read_this_round); } else { tcp->target_length = 0.99 * tcp->target_length + 0.01 * tcp->bytes_read_this_round; } tcp->bytes_read_this_round = 0; } static size_t get_target_read_size(grpc_tcp* tcp) { grpc_resource_quota* rq = grpc_resource_user_quota(tcp->resource_user); double pressure = grpc_resource_quota_get_memory_pressure(rq); double target = tcp->target_length * (pressure > 0.8 ? (1.0 - pressure) / 0.2 : 1.0); size_t sz = ((static_cast GPR_CLAMP(target, tcp->min_read_chunk_size, tcp->max_read_chunk_size)) + 255) & ~static_cast(255); /* don't use more than 1/16th of the overall resource quota for a single read * alloc */ size_t rqmax = grpc_resource_quota_peek_size(rq); if (sz > rqmax / 16 && rqmax > 1024) { sz = rqmax / 16; } return sz; } static grpc_error* tcp_annotate_error(grpc_error* src_error, grpc_tcp* tcp) { return grpc_error_set_str( grpc_error_set_int( grpc_error_set_int(src_error, GRPC_ERROR_INT_FD, tcp->fd), /* All tcp errors are marked with UNAVAILABLE so that application may * choose to retry. */ GRPC_ERROR_INT_GRPC_STATUS, GRPC_STATUS_UNAVAILABLE), GRPC_ERROR_STR_TARGET_ADDRESS, grpc_slice_from_copied_string(tcp->peer_string)); } static void tcp_handle_read(void* arg /* grpc_tcp */, grpc_error* error); static void tcp_handle_write(void* arg /* grpc_tcp */, grpc_error* error); static void tcp_shutdown(grpc_endpoint* ep, grpc_error* why) { grpc_tcp* tcp = reinterpret_cast(ep); grpc_fd_shutdown(tcp->em_fd, why); grpc_resource_user_shutdown(tcp->resource_user); } static void tcp_free(grpc_tcp* tcp) { grpc_fd_orphan(tcp->em_fd, tcp->release_fd_cb, tcp->release_fd, "tcp_unref_orphan"); grpc_slice_buffer_destroy_internal(&tcp->last_read_buffer); grpc_resource_user_unref(tcp->resource_user); gpr_free(tcp->peer_string); gpr_mu_destroy(&tcp->tb_mu); gpr_free(tcp); } #ifndef NDEBUG #define TCP_UNREF(tcp, reason) tcp_unref((tcp), (reason), __FILE__, __LINE__) #define TCP_REF(tcp, reason) tcp_ref((tcp), (reason), __FILE__, __LINE__) static void tcp_unref(grpc_tcp* tcp, const char* reason, const char* file, int line) { if (grpc_tcp_trace.enabled()) { gpr_atm val = gpr_atm_no_barrier_load(&tcp->refcount.count); gpr_log(file, line, GPR_LOG_SEVERITY_DEBUG, "TCP unref %p : %s %" PRIdPTR " -> %" PRIdPTR, tcp, reason, val, val - 1); } if (gpr_unref(&tcp->refcount)) { tcp_free(tcp); } } static void tcp_ref(grpc_tcp* tcp, const char* reason, const char* file, int line) { if (grpc_tcp_trace.enabled()) { gpr_atm val = gpr_atm_no_barrier_load(&tcp->refcount.count); gpr_log(file, line, GPR_LOG_SEVERITY_DEBUG, "TCP ref %p : %s %" PRIdPTR " -> %" PRIdPTR, tcp, reason, val, val + 1); } gpr_ref(&tcp->refcount); } #else #define TCP_UNREF(tcp, reason) tcp_unref((tcp)) #define TCP_REF(tcp, reason) tcp_ref((tcp)) static void tcp_unref(grpc_tcp* tcp) { if (gpr_unref(&tcp->refcount)) { tcp_free(tcp); } } static void tcp_ref(grpc_tcp* tcp) { gpr_ref(&tcp->refcount); } #endif static void tcp_destroy(grpc_endpoint* ep) { grpc_network_status_unregister_endpoint(ep); grpc_tcp* tcp = reinterpret_cast(ep); grpc_slice_buffer_reset_and_unref_internal(&tcp->last_read_buffer); if (grpc_event_engine_can_track_errors()) { gpr_mu_lock(&tcp->tb_mu); grpc_core::TracedBuffer::Shutdown( &tcp->tb_head, tcp->outgoing_buffer_arg, GRPC_ERROR_CREATE_FROM_STATIC_STRING("endpoint destroyed")); gpr_mu_unlock(&tcp->tb_mu); tcp->outgoing_buffer_arg = nullptr; gpr_atm_no_barrier_store(&tcp->stop_error_notification, true); grpc_fd_set_error(tcp->em_fd); } TCP_UNREF(tcp, "destroy"); } static void call_read_cb(grpc_tcp* tcp, grpc_error* error) { grpc_closure* cb = tcp->read_cb; if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p call_cb %p %p:%p", tcp, cb, cb->cb, cb->cb_arg); size_t i; const char* str = grpc_error_string(error); gpr_log(GPR_INFO, "read: error=%s", str); for (i = 0; i < tcp->incoming_buffer->count; i++) { char* dump = grpc_dump_slice(tcp->incoming_buffer->slices[i], GPR_DUMP_HEX | GPR_DUMP_ASCII); gpr_log(GPR_INFO, "READ %p (peer=%s): %s", tcp, tcp->peer_string, dump); gpr_free(dump); } } tcp->read_cb = nullptr; tcp->incoming_buffer = nullptr; GRPC_CLOSURE_SCHED(cb, error); } #define MAX_READ_IOVEC 4 static void tcp_do_read(grpc_tcp* tcp) { GPR_TIMER_SCOPE("tcp_do_read", 0); struct msghdr msg; struct iovec iov[MAX_READ_IOVEC]; ssize_t read_bytes; size_t i; GPR_ASSERT(tcp->incoming_buffer->count <= MAX_READ_IOVEC); for (i = 0; i < tcp->incoming_buffer->count; i++) { iov[i].iov_base = GRPC_SLICE_START_PTR(tcp->incoming_buffer->slices[i]); iov[i].iov_len = GRPC_SLICE_LENGTH(tcp->incoming_buffer->slices[i]); } msg.msg_name = nullptr; msg.msg_namelen = 0; msg.msg_iov = iov; msg.msg_iovlen = static_cast(tcp->incoming_buffer->count); msg.msg_control = nullptr; msg.msg_controllen = 0; msg.msg_flags = 0; GRPC_STATS_INC_TCP_READ_OFFER(tcp->incoming_buffer->length); GRPC_STATS_INC_TCP_READ_OFFER_IOV_SIZE(tcp->incoming_buffer->count); do { GPR_TIMER_SCOPE("recvmsg", 0); GRPC_STATS_INC_SYSCALL_READ(); read_bytes = recvmsg(tcp->fd, &msg, 0); } while (read_bytes < 0 && errno == EINTR); if (read_bytes < 0) { /* NB: After calling call_read_cb a parallel call of the read handler may * be running. */ if (errno == EAGAIN) { finish_estimate(tcp); /* We've consumed the edge, request a new one */ notify_on_read(tcp); } else { grpc_slice_buffer_reset_and_unref_internal(tcp->incoming_buffer); call_read_cb(tcp, tcp_annotate_error(GRPC_OS_ERROR(errno, "recvmsg"), tcp)); TCP_UNREF(tcp, "read"); } } else if (read_bytes == 0) { /* 0 read size ==> end of stream */ grpc_slice_buffer_reset_and_unref_internal(tcp->incoming_buffer); call_read_cb( tcp, tcp_annotate_error( GRPC_ERROR_CREATE_FROM_STATIC_STRING("Socket closed"), tcp)); TCP_UNREF(tcp, "read"); } else { GRPC_STATS_INC_TCP_READ_SIZE(read_bytes); add_to_estimate(tcp, static_cast(read_bytes)); GPR_ASSERT((size_t)read_bytes <= tcp->incoming_buffer->length); if (static_cast(read_bytes) == tcp->incoming_buffer->length) { finish_estimate(tcp); } else if (static_cast(read_bytes) < tcp->incoming_buffer->length) { grpc_slice_buffer_trim_end( tcp->incoming_buffer, tcp->incoming_buffer->length - static_cast(read_bytes), &tcp->last_read_buffer); } GPR_ASSERT((size_t)read_bytes == tcp->incoming_buffer->length); call_read_cb(tcp, GRPC_ERROR_NONE); TCP_UNREF(tcp, "read"); } } static void tcp_read_allocation_done(void* tcpp, grpc_error* error) { grpc_tcp* tcp = static_cast(tcpp); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p read_allocation_done: %s", tcp, grpc_error_string(error)); } if (error != GRPC_ERROR_NONE) { grpc_slice_buffer_reset_and_unref_internal(tcp->incoming_buffer); grpc_slice_buffer_reset_and_unref_internal(&tcp->last_read_buffer); call_read_cb(tcp, GRPC_ERROR_REF(error)); TCP_UNREF(tcp, "read"); } else { tcp_do_read(tcp); } } static void tcp_continue_read(grpc_tcp* tcp) { size_t target_read_size = get_target_read_size(tcp); if (tcp->incoming_buffer->length < target_read_size / 2 && tcp->incoming_buffer->count < MAX_READ_IOVEC) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p alloc_slices", tcp); } grpc_resource_user_alloc_slices(&tcp->slice_allocator, target_read_size, 1, tcp->incoming_buffer); } else { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p do_read", tcp); } tcp_do_read(tcp); } } static void tcp_handle_read(void* arg /* grpc_tcp */, grpc_error* error) { grpc_tcp* tcp = static_cast(arg); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p got_read: %s", tcp, grpc_error_string(error)); } if (error != GRPC_ERROR_NONE) { grpc_slice_buffer_reset_and_unref_internal(tcp->incoming_buffer); grpc_slice_buffer_reset_and_unref_internal(&tcp->last_read_buffer); call_read_cb(tcp, GRPC_ERROR_REF(error)); TCP_UNREF(tcp, "read"); } else { tcp_continue_read(tcp); } } static void tcp_read(grpc_endpoint* ep, grpc_slice_buffer* incoming_buffer, grpc_closure* cb) { grpc_tcp* tcp = reinterpret_cast(ep); GPR_ASSERT(tcp->read_cb == nullptr); tcp->read_cb = cb; tcp->incoming_buffer = incoming_buffer; grpc_slice_buffer_reset_and_unref_internal(incoming_buffer); grpc_slice_buffer_swap(incoming_buffer, &tcp->last_read_buffer); TCP_REF(tcp, "read"); if (tcp->is_first_read) { /* Endpoint read called for the very first time. Register read callback with * the polling engine */ tcp->is_first_read = false; notify_on_read(tcp); } else { /* Not the first time. We may or may not have more bytes available. In any * case call tcp->read_done_closure (i.e tcp_handle_read()) which does the * right thing (i.e calls tcp_do_read() which either reads the available * bytes or calls notify_on_read() to be notified when new bytes become * available */ GRPC_CLOSURE_SCHED(&tcp->read_done_closure, GRPC_ERROR_NONE); } } /* A wrapper around sendmsg. It sends \a msg over \a fd and returns the number * of bytes sent. */ ssize_t tcp_send(int fd, const struct msghdr* msg) { GPR_TIMER_SCOPE("sendmsg", 1); ssize_t sent_length; do { /* TODO(klempner): Cork if this is a partial write */ GRPC_STATS_INC_SYSCALL_WRITE(); sent_length = sendmsg(fd, msg, SENDMSG_FLAGS); } while (sent_length < 0 && errno == EINTR); return sent_length; } /** This is to be called if outgoing_buffer_arg is not null. On linux platforms, * this will call sendmsg with socket options set to collect timestamps inside * the kernel. On return, sent_length is set to the return value of the sendmsg * call. Returns false if setting the socket options failed. This is not * implemented for non-linux platforms currently, and crashes out. */ static bool tcp_write_with_timestamps(grpc_tcp* tcp, struct msghdr* msg, size_t sending_length, ssize_t* sent_length); /** The callback function to be invoked when we get an error on the socket. */ static void tcp_handle_error(void* arg /* grpc_tcp */, grpc_error* error); #ifdef GRPC_LINUX_ERRQUEUE static bool tcp_write_with_timestamps(grpc_tcp* tcp, struct msghdr* msg, size_t sending_length, ssize_t* sent_length) { if (!tcp->socket_ts_enabled) { uint32_t opt = grpc_core::kTimestampingSocketOptions; if (setsockopt(tcp->fd, SOL_SOCKET, SO_TIMESTAMPING, static_cast(&opt), sizeof(opt)) != 0) { grpc_slice_buffer_reset_and_unref_internal(tcp->outgoing_buffer); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_ERROR, "Failed to set timestamping options on the socket."); } return false; } tcp->bytes_counter = -1; tcp->socket_ts_enabled = true; } /* Set control message to indicate that you want timestamps. */ union { char cmsg_buf[CMSG_SPACE(sizeof(uint32_t))]; struct cmsghdr align; } u; cmsghdr* cmsg = reinterpret_cast(u.cmsg_buf); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SO_TIMESTAMPING; cmsg->cmsg_len = CMSG_LEN(sizeof(uint32_t)); *reinterpret_cast(CMSG_DATA(cmsg)) = grpc_core::kTimestampingRecordingOptions; msg->msg_control = u.cmsg_buf; msg->msg_controllen = CMSG_SPACE(sizeof(uint32_t)); /* If there was an error on sendmsg the logic in tcp_flush will handle it. */ ssize_t length = tcp_send(tcp->fd, msg); *sent_length = length; /* Only save timestamps if all the bytes were taken by sendmsg. */ if (sending_length == static_cast(length)) { gpr_mu_lock(&tcp->tb_mu); grpc_core::TracedBuffer::AddNewEntry( &tcp->tb_head, static_cast(tcp->bytes_counter + length), tcp->outgoing_buffer_arg); gpr_mu_unlock(&tcp->tb_mu); tcp->outgoing_buffer_arg = nullptr; } return true; } /** Reads \a cmsg to derive timestamps from the control messages. If a valid * timestamp is found, the traced buffer list is updated with this timestamp. * The caller of this function should be looping on the control messages found * in \a msg. \a cmsg should point to the control message that the caller wants * processed. * On return, a pointer to a control message is returned. On the next iteration, * CMSG_NXTHDR(msg, ret_val) should be passed as \a cmsg. */ struct cmsghdr* process_timestamp(grpc_tcp* tcp, msghdr* msg, struct cmsghdr* cmsg) { auto next_cmsg = CMSG_NXTHDR(msg, cmsg); if (next_cmsg == nullptr) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_ERROR, "Received timestamp without extended error"); } return cmsg; } if (!(next_cmsg->cmsg_level == SOL_IP || next_cmsg->cmsg_level == SOL_IPV6) || !(next_cmsg->cmsg_type == IP_RECVERR || next_cmsg->cmsg_type == IPV6_RECVERR)) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_ERROR, "Unexpected control message"); } return cmsg; } auto tss = reinterpret_cast(CMSG_DATA(cmsg)); auto serr = reinterpret_cast(CMSG_DATA(next_cmsg)); if (serr->ee_errno != ENOMSG || serr->ee_origin != SO_EE_ORIGIN_TIMESTAMPING) { gpr_log(GPR_ERROR, "Unexpected control message"); return cmsg; } /* The error handling can potentially be done on another thread so we need * to protect the traced buffer list. A lock free list might be better. Using * a simple mutex for now. */ gpr_mu_lock(&tcp->tb_mu); grpc_core::TracedBuffer::ProcessTimestamp(&tcp->tb_head, serr, tss); gpr_mu_unlock(&tcp->tb_mu); return next_cmsg; } /** For linux platforms, reads the socket's error queue and processes error * messages from the queue. */ static void process_errors(grpc_tcp* tcp) { while (true) { struct iovec iov; iov.iov_base = nullptr; iov.iov_len = 0; struct msghdr msg; msg.msg_name = nullptr; msg.msg_namelen = 0; msg.msg_iov = &iov; msg.msg_iovlen = 0; msg.msg_flags = 0; union { char rbuf[1024 /*CMSG_SPACE(sizeof(scm_timestamping)) + CMSG_SPACE(sizeof(sock_extended_err) + sizeof(sockaddr_in))*/]; struct cmsghdr align; } aligned_buf; memset(&aligned_buf, 0, sizeof(aligned_buf)); msg.msg_control = aligned_buf.rbuf; msg.msg_controllen = sizeof(aligned_buf.rbuf); int r, saved_errno; do { r = recvmsg(tcp->fd, &msg, MSG_ERRQUEUE); saved_errno = errno; } while (r < 0 && saved_errno == EINTR); if (r == -1 && saved_errno == EAGAIN) { return; /* No more errors to process */ } if (r == -1) { return; } if (grpc_tcp_trace.enabled()) { if ((msg.msg_flags & MSG_CTRUNC) == 1) { gpr_log(GPR_INFO, "Error message was truncated."); } } if (msg.msg_controllen == 0) { /* There was no control message found. It was probably spurious. */ return; } bool seen = false; for (auto cmsg = CMSG_FIRSTHDR(&msg); cmsg && cmsg->cmsg_len; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_TIMESTAMPING) { /* Got a control message that is not a timestamp. Don't know how to * handle this. */ if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "unknown control message cmsg_level:%d cmsg_type:%d", cmsg->cmsg_level, cmsg->cmsg_type); } return; } cmsg = process_timestamp(tcp, &msg, cmsg); seen = true; } if (!seen) { return; } } } static void tcp_handle_error(void* arg /* grpc_tcp */, grpc_error* error) { grpc_tcp* tcp = static_cast(arg); if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "TCP:%p got_error: %s", tcp, grpc_error_string(error)); } if (error != GRPC_ERROR_NONE || static_cast(gpr_atm_acq_load(&tcp->stop_error_notification))) { /* We aren't going to register to hear on error anymore, so it is safe to * unref. */ TCP_UNREF(tcp, "error-tracking"); return; } /* We are still interested in collecting timestamps, so let's try reading * them. */ process_errors(tcp); /* This might not a timestamps error. Set the read and write closures to be * ready. */ grpc_fd_set_readable(tcp->em_fd); grpc_fd_set_writable(tcp->em_fd); GRPC_CLOSURE_INIT(&tcp->error_closure, tcp_handle_error, tcp, grpc_schedule_on_exec_ctx); grpc_fd_notify_on_error(tcp->em_fd, &tcp->error_closure); } #else /* GRPC_LINUX_ERRQUEUE */ static bool tcp_write_with_timestamps(grpc_tcp* tcp, struct msghdr* msg, size_t sending_length, ssize_t* sent_length) { gpr_log(GPR_ERROR, "Write with timestamps not supported for this platform"); GPR_ASSERT(0); return false; } static void tcp_handle_error(void* arg /* grpc_tcp */, grpc_error* error) { gpr_log(GPR_ERROR, "Error handling is not supported for this platform"); GPR_ASSERT(0); } #endif /* GRPC_LINUX_ERRQUEUE */ /* If outgoing_buffer_arg is filled, shuts down the list early, so that any * release operations needed can be performed on the arg */ void tcp_shutdown_buffer_list(grpc_tcp* tcp) { if (tcp->outgoing_buffer_arg) { gpr_mu_lock(&tcp->tb_mu); grpc_core::TracedBuffer::Shutdown( &tcp->tb_head, tcp->outgoing_buffer_arg, GRPC_ERROR_CREATE_FROM_STATIC_STRING("TracedBuffer list shutdown")); gpr_mu_unlock(&tcp->tb_mu); tcp->outgoing_buffer_arg = nullptr; } } /* returns true if done, false if pending; if returning true, *error is set */ #if defined(IOV_MAX) && IOV_MAX < 1000 #define MAX_WRITE_IOVEC IOV_MAX #else #define MAX_WRITE_IOVEC 1000 #endif static bool tcp_flush(grpc_tcp* tcp, grpc_error** error) { struct msghdr msg; struct iovec iov[MAX_WRITE_IOVEC]; msg_iovlen_type iov_size; ssize_t sent_length = 0; size_t sending_length; size_t trailing; size_t unwind_slice_idx; size_t unwind_byte_idx; // We always start at zero, because we eagerly unref and trim the slice // buffer as we write size_t outgoing_slice_idx = 0; for (;;) { sending_length = 0; unwind_slice_idx = outgoing_slice_idx; unwind_byte_idx = tcp->outgoing_byte_idx; for (iov_size = 0; outgoing_slice_idx != tcp->outgoing_buffer->count && iov_size != MAX_WRITE_IOVEC; iov_size++) { iov[iov_size].iov_base = GRPC_SLICE_START_PTR( tcp->outgoing_buffer->slices[outgoing_slice_idx]) + tcp->outgoing_byte_idx; iov[iov_size].iov_len = GRPC_SLICE_LENGTH(tcp->outgoing_buffer->slices[outgoing_slice_idx]) - tcp->outgoing_byte_idx; sending_length += iov[iov_size].iov_len; outgoing_slice_idx++; tcp->outgoing_byte_idx = 0; } GPR_ASSERT(iov_size > 0); msg.msg_name = nullptr; msg.msg_namelen = 0; msg.msg_iov = iov; msg.msg_iovlen = iov_size; msg.msg_flags = 0; bool tried_sending_message = false; if (tcp->outgoing_buffer_arg != nullptr) { if (!tcp->ts_capable || !tcp_write_with_timestamps(tcp, &msg, sending_length, &sent_length)) { /* We could not set socket options to collect Fathom timestamps. * Fallback on writing without timestamps. */ tcp->ts_capable = false; tcp_shutdown_buffer_list(tcp); } else { tried_sending_message = true; } } if (!tried_sending_message) { msg.msg_control = nullptr; msg.msg_controllen = 0; GRPC_STATS_INC_TCP_WRITE_SIZE(sending_length); GRPC_STATS_INC_TCP_WRITE_IOV_SIZE(iov_size); sent_length = tcp_send(tcp->fd, &msg); } if (sent_length < 0) { if (errno == EAGAIN) { tcp->outgoing_byte_idx = unwind_byte_idx; // unref all and forget about all slices that have been written to this // point for (size_t idx = 0; idx < unwind_slice_idx; ++idx) { grpc_slice_unref_internal( grpc_slice_buffer_take_first(tcp->outgoing_buffer)); } return false; } else if (errno == EPIPE) { *error = tcp_annotate_error(GRPC_OS_ERROR(errno, "sendmsg"), tcp); grpc_slice_buffer_reset_and_unref_internal(tcp->outgoing_buffer); tcp_shutdown_buffer_list(tcp); return true; } else { *error = tcp_annotate_error(GRPC_OS_ERROR(errno, "sendmsg"), tcp); grpc_slice_buffer_reset_and_unref_internal(tcp->outgoing_buffer); tcp_shutdown_buffer_list(tcp); return true; } } GPR_ASSERT(tcp->outgoing_byte_idx == 0); tcp->bytes_counter += sent_length; trailing = sending_length - static_cast(sent_length); while (trailing > 0) { size_t slice_length; outgoing_slice_idx--; slice_length = GRPC_SLICE_LENGTH(tcp->outgoing_buffer->slices[outgoing_slice_idx]); if (slice_length > trailing) { tcp->outgoing_byte_idx = slice_length - trailing; break; } else { trailing -= slice_length; } } if (outgoing_slice_idx == tcp->outgoing_buffer->count) { *error = GRPC_ERROR_NONE; grpc_slice_buffer_reset_and_unref_internal(tcp->outgoing_buffer); return true; } } } static void tcp_handle_write(void* arg /* grpc_tcp */, grpc_error* error) { grpc_tcp* tcp = static_cast(arg); grpc_closure* cb; if (error != GRPC_ERROR_NONE) { cb = tcp->write_cb; tcp->write_cb = nullptr; cb->cb(cb->cb_arg, error); TCP_UNREF(tcp, "write"); return; } if (!tcp_flush(tcp, &error)) { if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "write: delayed"); } notify_on_write(tcp); } else { cb = tcp->write_cb; tcp->write_cb = nullptr; if (grpc_tcp_trace.enabled()) { const char* str = grpc_error_string(error); gpr_log(GPR_INFO, "write: %s", str); } GRPC_CLOSURE_SCHED(cb, error); TCP_UNREF(tcp, "write"); } } static void tcp_write(grpc_endpoint* ep, grpc_slice_buffer* buf, grpc_closure* cb, void* arg) { GPR_TIMER_SCOPE("tcp_write", 0); grpc_tcp* tcp = reinterpret_cast(ep); grpc_error* error = GRPC_ERROR_NONE; if (grpc_tcp_trace.enabled()) { size_t i; for (i = 0; i < buf->count; i++) { char* data = grpc_dump_slice(buf->slices[i], GPR_DUMP_HEX | GPR_DUMP_ASCII); gpr_log(GPR_INFO, "WRITE %p (peer=%s): %s", tcp, tcp->peer_string, data); gpr_free(data); } } GPR_ASSERT(tcp->write_cb == nullptr); tcp->outgoing_buffer_arg = arg; if (buf->length == 0) { GRPC_CLOSURE_SCHED( cb, grpc_fd_is_shutdown(tcp->em_fd) ? tcp_annotate_error( GRPC_ERROR_CREATE_FROM_STATIC_STRING("EOF"), tcp) : GRPC_ERROR_NONE); tcp_shutdown_buffer_list(tcp); return; } tcp->outgoing_buffer = buf; tcp->outgoing_byte_idx = 0; if (arg) { GPR_ASSERT(grpc_event_engine_can_track_errors()); } if (!tcp_flush(tcp, &error)) { TCP_REF(tcp, "write"); tcp->write_cb = cb; if (grpc_tcp_trace.enabled()) { gpr_log(GPR_INFO, "write: delayed"); } notify_on_write(tcp); } else { if (grpc_tcp_trace.enabled()) { const char* str = grpc_error_string(error); gpr_log(GPR_INFO, "write: %s", str); } GRPC_CLOSURE_SCHED(cb, error); } } static void tcp_add_to_pollset(grpc_endpoint* ep, grpc_pollset* pollset) { grpc_tcp* tcp = reinterpret_cast(ep); grpc_pollset_add_fd(pollset, tcp->em_fd); } static void tcp_add_to_pollset_set(grpc_endpoint* ep, grpc_pollset_set* pollset_set) { grpc_tcp* tcp = reinterpret_cast(ep); grpc_pollset_set_add_fd(pollset_set, tcp->em_fd); } static void tcp_delete_from_pollset_set(grpc_endpoint* ep, grpc_pollset_set* pollset_set) { grpc_tcp* tcp = reinterpret_cast(ep); grpc_pollset_set_del_fd(pollset_set, tcp->em_fd); } static char* tcp_get_peer(grpc_endpoint* ep) { grpc_tcp* tcp = reinterpret_cast(ep); return gpr_strdup(tcp->peer_string); } static int tcp_get_fd(grpc_endpoint* ep) { grpc_tcp* tcp = reinterpret_cast(ep); return tcp->fd; } static grpc_resource_user* tcp_get_resource_user(grpc_endpoint* ep) { grpc_tcp* tcp = reinterpret_cast(ep); return tcp->resource_user; } static bool tcp_can_track_err(grpc_endpoint* ep) { grpc_tcp* tcp = reinterpret_cast(ep); if (!grpc_event_engine_can_track_errors()) { return false; } struct sockaddr addr; socklen_t len = sizeof(addr); if (getsockname(tcp->fd, &addr, &len) < 0) { return false; } if (addr.sa_family == AF_INET || addr.sa_family == AF_INET6) { return true; } return false; } static const grpc_endpoint_vtable vtable = {tcp_read, tcp_write, tcp_add_to_pollset, tcp_add_to_pollset_set, tcp_delete_from_pollset_set, tcp_shutdown, tcp_destroy, tcp_get_resource_user, tcp_get_peer, tcp_get_fd, tcp_can_track_err}; #define MAX_CHUNK_SIZE 32 * 1024 * 1024 grpc_endpoint* grpc_tcp_create(grpc_fd* em_fd, const grpc_channel_args* channel_args, const char* peer_string) { int tcp_read_chunk_size = GRPC_TCP_DEFAULT_READ_SLICE_SIZE; int tcp_max_read_chunk_size = 4 * 1024 * 1024; int tcp_min_read_chunk_size = 256; grpc_resource_quota* resource_quota = grpc_resource_quota_create(nullptr); if (channel_args != nullptr) { for (size_t i = 0; i < channel_args->num_args; i++) { if (0 == strcmp(channel_args->args[i].key, GRPC_ARG_TCP_READ_CHUNK_SIZE)) { grpc_integer_options options = {tcp_read_chunk_size, 1, MAX_CHUNK_SIZE}; tcp_read_chunk_size = grpc_channel_arg_get_integer(&channel_args->args[i], options); } else if (0 == strcmp(channel_args->args[i].key, GRPC_ARG_TCP_MIN_READ_CHUNK_SIZE)) { grpc_integer_options options = {tcp_read_chunk_size, 1, MAX_CHUNK_SIZE}; tcp_min_read_chunk_size = grpc_channel_arg_get_integer(&channel_args->args[i], options); } else if (0 == strcmp(channel_args->args[i].key, GRPC_ARG_TCP_MAX_READ_CHUNK_SIZE)) { grpc_integer_options options = {tcp_read_chunk_size, 1, MAX_CHUNK_SIZE}; tcp_max_read_chunk_size = grpc_channel_arg_get_integer(&channel_args->args[i], options); } else if (0 == strcmp(channel_args->args[i].key, GRPC_ARG_RESOURCE_QUOTA)) { grpc_resource_quota_unref_internal(resource_quota); resource_quota = grpc_resource_quota_ref_internal(static_cast( channel_args->args[i].value.pointer.p)); } } } if (tcp_min_read_chunk_size > tcp_max_read_chunk_size) { tcp_min_read_chunk_size = tcp_max_read_chunk_size; } tcp_read_chunk_size = GPR_CLAMP(tcp_read_chunk_size, tcp_min_read_chunk_size, tcp_max_read_chunk_size); grpc_tcp* tcp = static_cast(gpr_malloc(sizeof(grpc_tcp))); tcp->base.vtable = &vtable; tcp->peer_string = gpr_strdup(peer_string); tcp->fd = grpc_fd_wrapped_fd(em_fd); tcp->read_cb = nullptr; tcp->write_cb = nullptr; tcp->release_fd_cb = nullptr; tcp->release_fd = nullptr; tcp->incoming_buffer = nullptr; tcp->target_length = static_cast(tcp_read_chunk_size); tcp->min_read_chunk_size = tcp_min_read_chunk_size; tcp->max_read_chunk_size = tcp_max_read_chunk_size; tcp->bytes_read_this_round = 0; /* Will be set to false by the very first endpoint read function */ tcp->is_first_read = true; tcp->bytes_counter = -1; tcp->socket_ts_enabled = false; tcp->ts_capable = true; tcp->outgoing_buffer_arg = nullptr; /* paired with unref in grpc_tcp_destroy */ gpr_ref_init(&tcp->refcount, 1); gpr_atm_no_barrier_store(&tcp->shutdown_count, 0); tcp->em_fd = em_fd; grpc_slice_buffer_init(&tcp->last_read_buffer); tcp->resource_user = grpc_resource_user_create(resource_quota, peer_string); grpc_resource_user_slice_allocator_init( &tcp->slice_allocator, tcp->resource_user, tcp_read_allocation_done, tcp); /* Tell network status tracker about new endpoint */ grpc_network_status_register_endpoint(&tcp->base); grpc_resource_quota_unref_internal(resource_quota); gpr_mu_init(&tcp->tb_mu); tcp->tb_head = nullptr; /* Start being notified on errors if event engine can track errors. */ if (grpc_event_engine_can_track_errors()) { /* Grab a ref to tcp so that we can safely access the tcp struct when * processing errors. We unref when we no longer want to track errors * separately. */ TCP_REF(tcp, "error-tracking"); gpr_atm_rel_store(&tcp->stop_error_notification, 0); GRPC_CLOSURE_INIT(&tcp->error_closure, tcp_handle_error, tcp, grpc_schedule_on_exec_ctx); grpc_fd_notify_on_error(tcp->em_fd, &tcp->error_closure); } return &tcp->base; } int grpc_tcp_fd(grpc_endpoint* ep) { grpc_tcp* tcp = reinterpret_cast(ep); GPR_ASSERT(ep->vtable == &vtable); return grpc_fd_wrapped_fd(tcp->em_fd); } void grpc_tcp_destroy_and_release_fd(grpc_endpoint* ep, int* fd, grpc_closure* done) { grpc_network_status_unregister_endpoint(ep); grpc_tcp* tcp = reinterpret_cast(ep); GPR_ASSERT(ep->vtable == &vtable); tcp->release_fd = fd; tcp->release_fd_cb = done; grpc_slice_buffer_reset_and_unref_internal(&tcp->last_read_buffer); if (grpc_event_engine_can_track_errors()) { /* Stop errors notification. */ gpr_mu_lock(&tcp->tb_mu); grpc_core::TracedBuffer::Shutdown( &tcp->tb_head, tcp->outgoing_buffer_arg, GRPC_ERROR_CREATE_FROM_STATIC_STRING("endpoint destroyed")); gpr_mu_unlock(&tcp->tb_mu); tcp->outgoing_buffer_arg = nullptr; gpr_atm_no_barrier_store(&tcp->stop_error_notification, true); grpc_fd_set_error(tcp->em_fd); } TCP_UNREF(tcp, "destroy"); } #endif /* GRPC_POSIX_SOCKET_TCP */