/* * * Copyright 2016 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include "src/core/lib/iomgr/combiner.h" #include #include #include #include #include #include "src/core/lib/debug/stats.h" #include "src/core/lib/iomgr/executor.h" #include "src/core/lib/profiling/timers.h" grpc_core::Tracer grpc_combiner_trace(false, "combiner"); #define GRPC_COMBINER_TRACE(fn) \ do { \ if (grpc_combiner_trace.enabled()) { \ fn; \ } \ } while (0) #define STATE_UNORPHANED 1 #define STATE_ELEM_COUNT_LOW_BIT 2 struct grpc_combiner { grpc_combiner *next_combiner_on_this_exec_ctx; grpc_closure_scheduler scheduler; grpc_closure_scheduler finally_scheduler; gpr_mpscq queue; // either: // a pointer to the initiating exec ctx if that is the only exec_ctx that has // ever queued to this combiner, or NULL. If this is non-null, it's not // dereferencable (since the initiating exec_ctx may have gone out of scope) gpr_atm initiating_exec_ctx_or_null; // state is: // lower bit - zero if orphaned (STATE_UNORPHANED) // other bits - number of items queued on the lock (STATE_ELEM_COUNT_LOW_BIT) gpr_atm state; bool time_to_execute_final_list; grpc_closure_list final_list; grpc_closure offload; gpr_refcount refs; }; static void combiner_exec(grpc_exec_ctx *exec_ctx, grpc_closure *closure, grpc_error *error); static void combiner_finally_exec(grpc_exec_ctx *exec_ctx, grpc_closure *closure, grpc_error *error); static const grpc_closure_scheduler_vtable scheduler = { combiner_exec, combiner_exec, "combiner:immediately"}; static const grpc_closure_scheduler_vtable finally_scheduler = { combiner_finally_exec, combiner_finally_exec, "combiner:finally"}; static void offload(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error); grpc_combiner *grpc_combiner_create(void) { grpc_combiner *lock = (grpc_combiner *)gpr_zalloc(sizeof(*lock)); gpr_ref_init(&lock->refs, 1); lock->scheduler.vtable = &scheduler; lock->finally_scheduler.vtable = &finally_scheduler; gpr_atm_no_barrier_store(&lock->state, STATE_UNORPHANED); gpr_mpscq_init(&lock->queue); grpc_closure_list_init(&lock->final_list); GRPC_CLOSURE_INIT(&lock->offload, offload, lock, grpc_executor_scheduler(GRPC_EXECUTOR_SHORT)); GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p create", lock)); return lock; } static void really_destroy(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) { GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p really_destroy", lock)); GPR_ASSERT(gpr_atm_no_barrier_load(&lock->state) == 0); gpr_mpscq_destroy(&lock->queue); gpr_free(lock); } static void start_destroy(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) { gpr_atm old_state = gpr_atm_full_fetch_add(&lock->state, -STATE_UNORPHANED); GRPC_COMBINER_TRACE(gpr_log( GPR_DEBUG, "C:%p really_destroy old_state=%" PRIdPTR, lock, old_state)); if (old_state == 1) { really_destroy(exec_ctx, lock); } } #ifndef NDEBUG #define GRPC_COMBINER_DEBUG_SPAM(op, delta) \ if (grpc_combiner_trace.enabled()) { \ gpr_log(file, line, GPR_LOG_SEVERITY_DEBUG, \ "C:%p %s %" PRIdPTR " --> %" PRIdPTR " %s", lock, (op), \ gpr_atm_no_barrier_load(&lock->refs.count), \ gpr_atm_no_barrier_load(&lock->refs.count) + (delta), reason); \ } #else #define GRPC_COMBINER_DEBUG_SPAM(op, delta) #endif void grpc_combiner_unref(grpc_exec_ctx *exec_ctx, grpc_combiner *lock GRPC_COMBINER_DEBUG_ARGS) { GRPC_COMBINER_DEBUG_SPAM("UNREF", -1); if (gpr_unref(&lock->refs)) { start_destroy(exec_ctx, lock); } } grpc_combiner *grpc_combiner_ref(grpc_combiner *lock GRPC_COMBINER_DEBUG_ARGS) { GRPC_COMBINER_DEBUG_SPAM(" REF", 1); gpr_ref(&lock->refs); return lock; } static void push_last_on_exec_ctx(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) { lock->next_combiner_on_this_exec_ctx = NULL; if (exec_ctx->active_combiner == NULL) { exec_ctx->active_combiner = exec_ctx->last_combiner = lock; } else { exec_ctx->last_combiner->next_combiner_on_this_exec_ctx = lock; exec_ctx->last_combiner = lock; } } static void push_first_on_exec_ctx(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) { lock->next_combiner_on_this_exec_ctx = exec_ctx->active_combiner; exec_ctx->active_combiner = lock; if (lock->next_combiner_on_this_exec_ctx == NULL) { exec_ctx->last_combiner = lock; } } #define COMBINER_FROM_CLOSURE_SCHEDULER(closure, scheduler_name) \ ((grpc_combiner *)(((char *)((closure)->scheduler)) - \ offsetof(grpc_combiner, scheduler_name))) static void combiner_exec(grpc_exec_ctx *exec_ctx, grpc_closure *cl, grpc_error *error) { GRPC_STATS_INC_COMBINER_LOCKS_SCHEDULED_ITEMS(exec_ctx); GPR_TIMER_BEGIN("combiner.execute", 0); grpc_combiner *lock = COMBINER_FROM_CLOSURE_SCHEDULER(cl, scheduler); gpr_atm last = gpr_atm_full_fetch_add(&lock->state, STATE_ELEM_COUNT_LOW_BIT); GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p grpc_combiner_execute c=%p last=%" PRIdPTR, lock, cl, last)); if (last == 1) { GRPC_STATS_INC_COMBINER_LOCKS_INITIATED(exec_ctx); GPR_TIMER_MARK("combiner.initiated", 0); gpr_atm_no_barrier_store(&lock->initiating_exec_ctx_or_null, (gpr_atm)exec_ctx); // first element on this list: add it to the list of combiner locks // executing within this exec_ctx push_last_on_exec_ctx(exec_ctx, lock); } else { // there may be a race with setting here: if that happens, we may delay // offload for one or two actions, and that's fine gpr_atm initiator = gpr_atm_no_barrier_load(&lock->initiating_exec_ctx_or_null); if (initiator != 0 && initiator != (gpr_atm)exec_ctx) { gpr_atm_no_barrier_store(&lock->initiating_exec_ctx_or_null, 0); } } GPR_ASSERT(last & STATE_UNORPHANED); // ensure lock has not been destroyed assert(cl->cb); cl->error_data.error = error; gpr_mpscq_push(&lock->queue, &cl->next_data.atm_next); GPR_TIMER_END("combiner.execute", 0); } static void move_next(grpc_exec_ctx *exec_ctx) { exec_ctx->active_combiner = exec_ctx->active_combiner->next_combiner_on_this_exec_ctx; if (exec_ctx->active_combiner == NULL) { exec_ctx->last_combiner = NULL; } } static void offload(grpc_exec_ctx *exec_ctx, void *arg, grpc_error *error) { grpc_combiner *lock = (grpc_combiner *)arg; push_last_on_exec_ctx(exec_ctx, lock); } static void queue_offload(grpc_exec_ctx *exec_ctx, grpc_combiner *lock) { GRPC_STATS_INC_COMBINER_LOCKS_OFFLOADED(exec_ctx); move_next(exec_ctx); GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p queue_offload", lock)); GRPC_CLOSURE_SCHED(exec_ctx, &lock->offload, GRPC_ERROR_NONE); } bool grpc_combiner_continue_exec_ctx(grpc_exec_ctx *exec_ctx) { GPR_TIMER_BEGIN("combiner.continue_exec_ctx", 0); grpc_combiner *lock = exec_ctx->active_combiner; if (lock == NULL) { GPR_TIMER_END("combiner.continue_exec_ctx", 0); return false; } bool contended = gpr_atm_no_barrier_load(&lock->initiating_exec_ctx_or_null) == 0; GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p grpc_combiner_continue_exec_ctx " "contended=%d " "exec_ctx_ready_to_finish=%d " "time_to_execute_final_list=%d", lock, contended, grpc_exec_ctx_ready_to_finish(exec_ctx), lock->time_to_execute_final_list)); if (contended && grpc_exec_ctx_ready_to_finish(exec_ctx) && grpc_executor_is_threaded()) { GPR_TIMER_MARK("offload_from_finished_exec_ctx", 0); // this execution context wants to move on: schedule remaining work to be // picked up on the executor queue_offload(exec_ctx, lock); GPR_TIMER_END("combiner.continue_exec_ctx", 0); return true; } if (!lock->time_to_execute_final_list || // peek to see if something new has shown up, and execute that with // priority (gpr_atm_acq_load(&lock->state) >> 1) > 1) { gpr_mpscq_node *n = gpr_mpscq_pop(&lock->queue); GRPC_COMBINER_TRACE( gpr_log(GPR_DEBUG, "C:%p maybe_finish_one n=%p", lock, n)); if (n == NULL) { // queue is in an inconsistent state: use this as a cue that we should // go off and do something else for a while (and come back later) GPR_TIMER_MARK("delay_busy", 0); queue_offload(exec_ctx, lock); GPR_TIMER_END("combiner.continue_exec_ctx", 0); return true; } GPR_TIMER_BEGIN("combiner.exec1", 0); grpc_closure *cl = (grpc_closure *)n; grpc_error *cl_err = cl->error_data.error; #ifndef NDEBUG cl->scheduled = false; #endif cl->cb(exec_ctx, cl->cb_arg, cl_err); GRPC_ERROR_UNREF(cl_err); GPR_TIMER_END("combiner.exec1", 0); } else { grpc_closure *c = lock->final_list.head; GPR_ASSERT(c != NULL); grpc_closure_list_init(&lock->final_list); int loops = 0; while (c != NULL) { GPR_TIMER_BEGIN("combiner.exec_1final", 0); GRPC_COMBINER_TRACE( gpr_log(GPR_DEBUG, "C:%p execute_final[%d] c=%p", lock, loops, c)); grpc_closure *next = c->next_data.next; grpc_error *error = c->error_data.error; #ifndef NDEBUG c->scheduled = false; #endif c->cb(exec_ctx, c->cb_arg, error); GRPC_ERROR_UNREF(error); c = next; GPR_TIMER_END("combiner.exec_1final", 0); } } GPR_TIMER_MARK("unref", 0); move_next(exec_ctx); lock->time_to_execute_final_list = false; gpr_atm old_state = gpr_atm_full_fetch_add(&lock->state, -STATE_ELEM_COUNT_LOW_BIT); GRPC_COMBINER_TRACE( gpr_log(GPR_DEBUG, "C:%p finish old_state=%" PRIdPTR, lock, old_state)); // Define a macro to ease readability of the following switch statement. #define OLD_STATE_WAS(orphaned, elem_count) \ (((orphaned) ? 0 : STATE_UNORPHANED) | \ ((elem_count)*STATE_ELEM_COUNT_LOW_BIT)) // Depending on what the previous state was, we need to perform different // actions. switch (old_state) { default: // we have multiple queued work items: just continue executing them break; case OLD_STATE_WAS(false, 2): case OLD_STATE_WAS(true, 2): // we're down to one queued item: if it's the final list we should do that if (!grpc_closure_list_empty(lock->final_list)) { lock->time_to_execute_final_list = true; } break; case OLD_STATE_WAS(false, 1): // had one count, one unorphaned --> unlocked unorphaned GPR_TIMER_END("combiner.continue_exec_ctx", 0); return true; case OLD_STATE_WAS(true, 1): // and one count, one orphaned --> unlocked and orphaned really_destroy(exec_ctx, lock); GPR_TIMER_END("combiner.continue_exec_ctx", 0); return true; case OLD_STATE_WAS(false, 0): case OLD_STATE_WAS(true, 0): // these values are illegal - representing an already unlocked or // deleted lock GPR_TIMER_END("combiner.continue_exec_ctx", 0); GPR_UNREACHABLE_CODE(return true); } push_first_on_exec_ctx(exec_ctx, lock); GPR_TIMER_END("combiner.continue_exec_ctx", 0); return true; } static void enqueue_finally(grpc_exec_ctx *exec_ctx, void *closure, grpc_error *error); static void combiner_finally_exec(grpc_exec_ctx *exec_ctx, grpc_closure *closure, grpc_error *error) { GRPC_STATS_INC_COMBINER_LOCKS_SCHEDULED_FINAL_ITEMS(exec_ctx); grpc_combiner *lock = COMBINER_FROM_CLOSURE_SCHEDULER(closure, finally_scheduler); GRPC_COMBINER_TRACE(gpr_log(GPR_DEBUG, "C:%p grpc_combiner_execute_finally c=%p; ac=%p", lock, closure, exec_ctx->active_combiner)); GPR_TIMER_BEGIN("combiner.execute_finally", 0); if (exec_ctx->active_combiner != lock) { GPR_TIMER_MARK("slowpath", 0); GRPC_CLOSURE_SCHED(exec_ctx, GRPC_CLOSURE_CREATE(enqueue_finally, closure, grpc_combiner_scheduler(lock)), error); GPR_TIMER_END("combiner.execute_finally", 0); return; } if (grpc_closure_list_empty(lock->final_list)) { gpr_atm_full_fetch_add(&lock->state, STATE_ELEM_COUNT_LOW_BIT); } grpc_closure_list_append(&lock->final_list, closure, error); GPR_TIMER_END("combiner.execute_finally", 0); } static void enqueue_finally(grpc_exec_ctx *exec_ctx, void *closure, grpc_error *error) { combiner_finally_exec(exec_ctx, (grpc_closure *)closure, GRPC_ERROR_REF(error)); } grpc_closure_scheduler *grpc_combiner_scheduler(grpc_combiner *combiner) { return &combiner->scheduler; } grpc_closure_scheduler *grpc_combiner_finally_scheduler( grpc_combiner *combiner) { return &combiner->finally_scheduler; }