diff options
Diffstat (limited to 'absl/container/internal/hashtablez_sampler.cc')
-rw-r--r-- | absl/container/internal/hashtablez_sampler.cc | 83 |
1 files changed, 12 insertions, 71 deletions
diff --git a/absl/container/internal/hashtablez_sampler.cc b/absl/container/internal/hashtablez_sampler.cc index 054e898..0a7ef61 100644 --- a/absl/container/internal/hashtablez_sampler.cc +++ b/absl/container/internal/hashtablez_sampler.cc @@ -21,6 +21,7 @@ #include <limits> #include "absl/base/attributes.h" +#include "absl/base/internal/exponential_biased.h" #include "absl/container/internal/have_sse.h" #include "absl/debugging/stacktrace.h" #include "absl/memory/memory.h" @@ -37,77 +38,13 @@ ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{ ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10}; ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_max_samples{1 << 20}; -// Returns the next pseudo-random value. -// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 -// This is the lrand64 generator. -uint64_t NextRandom(uint64_t rnd) { - const uint64_t prng_mult = uint64_t{0x5DEECE66D}; - const uint64_t prng_add = 0xB; - const uint64_t prng_mod_power = 48; - const uint64_t prng_mod_mask = ~(~uint64_t{0} << prng_mod_power); - return (prng_mult * rnd + prng_add) & prng_mod_mask; -} - -// Generates a geometric variable with the specified mean. -// This is done by generating a random number between 0 and 1 and applying -// the inverse cumulative distribution function for an exponential. -// Specifically: Let m be the inverse of the sample period, then -// the probability distribution function is m*exp(-mx) so the CDF is -// p = 1 - exp(-mx), so -// q = 1 - p = exp(-mx) -// log_e(q) = -mx -// -log_e(q)/m = x -// log_2(q) * (-log_e(2) * 1/m) = x -// In the code, q is actually in the range 1 to 2**26, hence the -26 below -// -int64_t GetGeometricVariable(int64_t mean) { #if ABSL_HAVE_THREAD_LOCAL - thread_local -#else // ABSL_HAVE_THREAD_LOCAL - // SampleSlow and hence GetGeometricVariable is guarded by a single mutex when - // there are not thread locals. Thus, a single global rng is acceptable for - // that case. - static -#endif // ABSL_HAVE_THREAD_LOCAL - uint64_t rng = []() { - // We don't get well distributed numbers from this so we call - // NextRandom() a bunch to mush the bits around. We use a global_rand - // to handle the case where the same thread (by memory address) gets - // created and destroyed repeatedly. - ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0); - uint64_t r = reinterpret_cast<uint64_t>(&rng) + - global_rand.fetch_add(1, std::memory_order_relaxed); - for (int i = 0; i < 20; ++i) { - r = NextRandom(r); - } - return r; - }(); - - rng = NextRandom(rng); - - // Take the top 26 bits as the random number - // (This plus the 1<<58 sampling bound give a max possible step of - // 5194297183973780480 bytes.) - const uint64_t prng_mod_power = 48; // Number of bits in prng - // The uint32_t cast is to prevent a (hard-to-reproduce) NAN - // under piii debug for some binaries. - double q = static_cast<uint32_t>(rng >> (prng_mod_power - 26)) + 1.0; - // Put the computed p-value through the CDF of a geometric. - double interval = (log2(q) - 26) * (-std::log(2.0) * mean); - - // Very large values of interval overflow int64_t. If we happen to - // hit such improbable condition, we simply cheat and clamp interval - // to largest supported value. - if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) { - return std::numeric_limits<int64_t>::max() / 2; - } - - // Small values of interval are equivalent to just sampling next time. - if (interval < 1) { - return 1; - } - return static_cast<int64_t>(interval); -} +thread_local absl::base_internal::ExponentialBiased + g_exponential_biased_generator; +#else +ABSL_CONST_INIT static absl::base_internal::ExponentialBiased + g_exponential_biased_generator; +#endif } // namespace @@ -253,8 +190,12 @@ HashtablezInfo* SampleSlow(int64_t* next_sample) { } bool first = *next_sample < 0; - *next_sample = GetGeometricVariable( + *next_sample = g_exponential_biased_generator.Get( g_hashtablez_sample_parameter.load(std::memory_order_relaxed)); + // Small values of interval are equivalent to just sampling next time. + if (*next_sample < 1) { + *next_sample = 1; + } // g_hashtablez_enabled can be dynamically flipped, we need to set a threshold // low enough that we will start sampling in a reasonable time, so we just use |