aboutsummaryrefslogtreecommitdiff
path: root/absl/container/btree_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'absl/container/btree_test.cc')
-rw-r--r--absl/container/btree_test.cc2243
1 files changed, 2243 insertions, 0 deletions
diff --git a/absl/container/btree_test.cc b/absl/container/btree_test.cc
new file mode 100644
index 0000000..a330cca
--- /dev/null
+++ b/absl/container/btree_test.cc
@@ -0,0 +1,2243 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "absl/container/btree_test.h"
+
+#include <cstdint>
+#include <map>
+#include <memory>
+#include <stdexcept>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+#include "absl/base/internal/raw_logging.h"
+#include "absl/container/btree_map.h"
+#include "absl/container/btree_set.h"
+#include "absl/container/internal/counting_allocator.h"
+#include "absl/container/internal/test_instance_tracker.h"
+#include "absl/flags/flag.h"
+#include "absl/hash/hash_testing.h"
+#include "absl/memory/memory.h"
+#include "absl/meta/type_traits.h"
+#include "absl/strings/str_cat.h"
+#include "absl/strings/str_split.h"
+#include "absl/strings/string_view.h"
+#include "absl/types/compare.h"
+
+ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests");
+
+namespace absl {
+namespace container_internal {
+namespace {
+
+using ::absl::test_internal::InstanceTracker;
+using ::absl::test_internal::MovableOnlyInstance;
+using ::testing::ElementsAre;
+using ::testing::ElementsAreArray;
+using ::testing::IsEmpty;
+using ::testing::Pair;
+
+template <typename T, typename U>
+void CheckPairEquals(const T &x, const U &y) {
+ ABSL_INTERNAL_CHECK(x == y, "Values are unequal.");
+}
+
+template <typename T, typename U, typename V, typename W>
+void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) {
+ CheckPairEquals(x.first, y.first);
+ CheckPairEquals(x.second, y.second);
+}
+} // namespace
+
+// The base class for a sorted associative container checker. TreeType is the
+// container type to check and CheckerType is the container type to check
+// against. TreeType is expected to be btree_{set,map,multiset,multimap} and
+// CheckerType is expected to be {set,map,multiset,multimap}.
+template <typename TreeType, typename CheckerType>
+class base_checker {
+ public:
+ using key_type = typename TreeType::key_type;
+ using value_type = typename TreeType::value_type;
+ using key_compare = typename TreeType::key_compare;
+ using pointer = typename TreeType::pointer;
+ using const_pointer = typename TreeType::const_pointer;
+ using reference = typename TreeType::reference;
+ using const_reference = typename TreeType::const_reference;
+ using size_type = typename TreeType::size_type;
+ using difference_type = typename TreeType::difference_type;
+ using iterator = typename TreeType::iterator;
+ using const_iterator = typename TreeType::const_iterator;
+ using reverse_iterator = typename TreeType::reverse_iterator;
+ using const_reverse_iterator = typename TreeType::const_reverse_iterator;
+
+ public:
+ base_checker() : const_tree_(tree_) {}
+ base_checker(const base_checker &x)
+ : tree_(x.tree_), const_tree_(tree_), checker_(x.checker_) {}
+ template <typename InputIterator>
+ base_checker(InputIterator b, InputIterator e)
+ : tree_(b, e), const_tree_(tree_), checker_(b, e) {}
+
+ iterator begin() { return tree_.begin(); }
+ const_iterator begin() const { return tree_.begin(); }
+ iterator end() { return tree_.end(); }
+ const_iterator end() const { return tree_.end(); }
+ reverse_iterator rbegin() { return tree_.rbegin(); }
+ const_reverse_iterator rbegin() const { return tree_.rbegin(); }
+ reverse_iterator rend() { return tree_.rend(); }
+ const_reverse_iterator rend() const { return tree_.rend(); }
+
+ template <typename IterType, typename CheckerIterType>
+ IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const {
+ if (tree_iter == tree_.end()) {
+ ABSL_INTERNAL_CHECK(checker_iter == checker_.end(),
+ "Checker iterator not at end.");
+ } else {
+ CheckPairEquals(*tree_iter, *checker_iter);
+ }
+ return tree_iter;
+ }
+ template <typename IterType, typename CheckerIterType>
+ IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const {
+ if (tree_iter == tree_.rend()) {
+ ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(),
+ "Checker iterator not at rend.");
+ } else {
+ CheckPairEquals(*tree_iter, *checker_iter);
+ }
+ return tree_iter;
+ }
+ void value_check(const value_type &x) {
+ typename KeyOfValue<typename TreeType::key_type,
+ typename TreeType::value_type>::type key_of_value;
+ const key_type &key = key_of_value(x);
+ CheckPairEquals(*find(key), x);
+ lower_bound(key);
+ upper_bound(key);
+ equal_range(key);
+ contains(key);
+ count(key);
+ }
+ void erase_check(const key_type &key) {
+ EXPECT_FALSE(tree_.contains(key));
+ EXPECT_EQ(tree_.find(key), const_tree_.end());
+ EXPECT_FALSE(const_tree_.contains(key));
+ EXPECT_EQ(const_tree_.find(key), tree_.end());
+ EXPECT_EQ(tree_.equal_range(key).first,
+ const_tree_.equal_range(key).second);
+ }
+
+ iterator lower_bound(const key_type &key) {
+ return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
+ }
+ const_iterator lower_bound(const key_type &key) const {
+ return iter_check(tree_.lower_bound(key), checker_.lower_bound(key));
+ }
+ iterator upper_bound(const key_type &key) {
+ return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
+ }
+ const_iterator upper_bound(const key_type &key) const {
+ return iter_check(tree_.upper_bound(key), checker_.upper_bound(key));
+ }
+ std::pair<iterator, iterator> equal_range(const key_type &key) {
+ std::pair<typename CheckerType::iterator, typename CheckerType::iterator>
+ checker_res = checker_.equal_range(key);
+ std::pair<iterator, iterator> tree_res = tree_.equal_range(key);
+ iter_check(tree_res.first, checker_res.first);
+ iter_check(tree_res.second, checker_res.second);
+ return tree_res;
+ }
+ std::pair<const_iterator, const_iterator> equal_range(
+ const key_type &key) const {
+ std::pair<typename CheckerType::const_iterator,
+ typename CheckerType::const_iterator>
+ checker_res = checker_.equal_range(key);
+ std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key);
+ iter_check(tree_res.first, checker_res.first);
+ iter_check(tree_res.second, checker_res.second);
+ return tree_res;
+ }
+ iterator find(const key_type &key) {
+ return iter_check(tree_.find(key), checker_.find(key));
+ }
+ const_iterator find(const key_type &key) const {
+ return iter_check(tree_.find(key), checker_.find(key));
+ }
+ bool contains(const key_type &key) const {
+ return find(key) != end();
+ }
+ size_type count(const key_type &key) const {
+ size_type res = checker_.count(key);
+ EXPECT_EQ(res, tree_.count(key));
+ return res;
+ }
+
+ base_checker &operator=(const base_checker &x) {
+ tree_ = x.tree_;
+ checker_ = x.checker_;
+ return *this;
+ }
+
+ int erase(const key_type &key) {
+ int size = tree_.size();
+ int res = checker_.erase(key);
+ EXPECT_EQ(res, tree_.count(key));
+ EXPECT_EQ(res, tree_.erase(key));
+ EXPECT_EQ(tree_.count(key), 0);
+ EXPECT_EQ(tree_.size(), size - res);
+ erase_check(key);
+ return res;
+ }
+ iterator erase(iterator iter) {
+ key_type key = iter.key();
+ int size = tree_.size();
+ int count = tree_.count(key);
+ auto checker_iter = checker_.lower_bound(key);
+ for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) {
+ ++checker_iter;
+ }
+ auto checker_next = checker_iter;
+ ++checker_next;
+ checker_.erase(checker_iter);
+ iter = tree_.erase(iter);
+ EXPECT_EQ(tree_.size(), checker_.size());
+ EXPECT_EQ(tree_.size(), size - 1);
+ EXPECT_EQ(tree_.count(key), count - 1);
+ if (count == 1) {
+ erase_check(key);
+ }
+ return iter_check(iter, checker_next);
+ }
+
+ void erase(iterator begin, iterator end) {
+ int size = tree_.size();
+ int count = std::distance(begin, end);
+ auto checker_begin = checker_.lower_bound(begin.key());
+ for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) {
+ ++checker_begin;
+ }
+ auto checker_end =
+ end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key());
+ if (end != tree_.end()) {
+ for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) {
+ ++checker_end;
+ }
+ }
+ checker_.erase(checker_begin, checker_end);
+ tree_.erase(begin, end);
+ EXPECT_EQ(tree_.size(), checker_.size());
+ EXPECT_EQ(tree_.size(), size - count);
+ }
+
+ void clear() {
+ tree_.clear();
+ checker_.clear();
+ }
+ void swap(base_checker &x) {
+ tree_.swap(x.tree_);
+ checker_.swap(x.checker_);
+ }
+
+ void verify() const {
+ tree_.verify();
+ EXPECT_EQ(tree_.size(), checker_.size());
+
+ // Move through the forward iterators using increment.
+ auto checker_iter = checker_.begin();
+ const_iterator tree_iter(tree_.begin());
+ for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) {
+ CheckPairEquals(*tree_iter, *checker_iter);
+ }
+
+ // Move through the forward iterators using decrement.
+ for (int n = tree_.size() - 1; n >= 0; --n) {
+ iter_check(tree_iter, checker_iter);
+ --tree_iter;
+ --checker_iter;
+ }
+ EXPECT_EQ(tree_iter, tree_.begin());
+ EXPECT_EQ(checker_iter, checker_.begin());
+
+ // Move through the reverse iterators using increment.
+ auto checker_riter = checker_.rbegin();
+ const_reverse_iterator tree_riter(tree_.rbegin());
+ for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) {
+ CheckPairEquals(*tree_riter, *checker_riter);
+ }
+
+ // Move through the reverse iterators using decrement.
+ for (int n = tree_.size() - 1; n >= 0; --n) {
+ riter_check(tree_riter, checker_riter);
+ --tree_riter;
+ --checker_riter;
+ }
+ EXPECT_EQ(tree_riter, tree_.rbegin());
+ EXPECT_EQ(checker_riter, checker_.rbegin());
+ }
+
+ const TreeType &tree() const { return tree_; }
+
+ size_type size() const {
+ EXPECT_EQ(tree_.size(), checker_.size());
+ return tree_.size();
+ }
+ size_type max_size() const { return tree_.max_size(); }
+ bool empty() const {
+ EXPECT_EQ(tree_.empty(), checker_.empty());
+ return tree_.empty();
+ }
+
+ protected:
+ TreeType tree_;
+ const TreeType &const_tree_;
+ CheckerType checker_;
+};
+
+namespace {
+// A checker for unique sorted associative containers. TreeType is expected to
+// be btree_{set,map} and CheckerType is expected to be {set,map}.
+template <typename TreeType, typename CheckerType>
+class unique_checker : public base_checker<TreeType, CheckerType> {
+ using super_type = base_checker<TreeType, CheckerType>;
+
+ public:
+ using iterator = typename super_type::iterator;
+ using value_type = typename super_type::value_type;
+
+ public:
+ unique_checker() : super_type() {}
+ unique_checker(const unique_checker &x) : super_type(x) {}
+ template <class InputIterator>
+ unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
+
+ // Insertion routines.
+ std::pair<iterator, bool> insert(const value_type &x) {
+ int size = this->tree_.size();
+ std::pair<typename CheckerType::iterator, bool> checker_res =
+ this->checker_.insert(x);
+ std::pair<iterator, bool> tree_res = this->tree_.insert(x);
+ CheckPairEquals(*tree_res.first, *checker_res.first);
+ EXPECT_EQ(tree_res.second, checker_res.second);
+ EXPECT_EQ(this->tree_.size(), this->checker_.size());
+ EXPECT_EQ(this->tree_.size(), size + tree_res.second);
+ return tree_res;
+ }
+ iterator insert(iterator position, const value_type &x) {
+ int size = this->tree_.size();
+ std::pair<typename CheckerType::iterator, bool> checker_res =
+ this->checker_.insert(x);
+ iterator tree_res = this->tree_.insert(position, x);
+ CheckPairEquals(*tree_res, *checker_res.first);
+ EXPECT_EQ(this->tree_.size(), this->checker_.size());
+ EXPECT_EQ(this->tree_.size(), size + checker_res.second);
+ return tree_res;
+ }
+ template <typename InputIterator>
+ void insert(InputIterator b, InputIterator e) {
+ for (; b != e; ++b) {
+ insert(*b);
+ }
+ }
+};
+
+// A checker for multiple sorted associative containers. TreeType is expected
+// to be btree_{multiset,multimap} and CheckerType is expected to be
+// {multiset,multimap}.
+template <typename TreeType, typename CheckerType>
+class multi_checker : public base_checker<TreeType, CheckerType> {
+ using super_type = base_checker<TreeType, CheckerType>;
+
+ public:
+ using iterator = typename super_type::iterator;
+ using value_type = typename super_type::value_type;
+
+ public:
+ multi_checker() : super_type() {}
+ multi_checker(const multi_checker &x) : super_type(x) {}
+ template <class InputIterator>
+ multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {}
+
+ // Insertion routines.
+ iterator insert(const value_type &x) {
+ int size = this->tree_.size();
+ auto checker_res = this->checker_.insert(x);
+ iterator tree_res = this->tree_.insert(x);
+ CheckPairEquals(*tree_res, *checker_res);
+ EXPECT_EQ(this->tree_.size(), this->checker_.size());
+ EXPECT_EQ(this->tree_.size(), size + 1);
+ return tree_res;
+ }
+ iterator insert(iterator position, const value_type &x) {
+ int size = this->tree_.size();
+ auto checker_res = this->checker_.insert(x);
+ iterator tree_res = this->tree_.insert(position, x);
+ CheckPairEquals(*tree_res, *checker_res);
+ EXPECT_EQ(this->tree_.size(), this->checker_.size());
+ EXPECT_EQ(this->tree_.size(), size + 1);
+ return tree_res;
+ }
+ template <typename InputIterator>
+ void insert(InputIterator b, InputIterator e) {
+ for (; b != e; ++b) {
+ insert(*b);
+ }
+ }
+};
+
+template <typename T, typename V>
+void DoTest(const char *name, T *b, const std::vector<V> &values) {
+ typename KeyOfValue<typename T::key_type, V>::type key_of_value;
+
+ T &mutable_b = *b;
+ const T &const_b = *b;
+
+ // Test insert.
+ for (int i = 0; i < values.size(); ++i) {
+ mutable_b.insert(values[i]);
+ mutable_b.value_check(values[i]);
+ }
+ ASSERT_EQ(mutable_b.size(), values.size());
+
+ const_b.verify();
+
+ // Test copy constructor.
+ T b_copy(const_b);
+ EXPECT_EQ(b_copy.size(), const_b.size());
+ for (int i = 0; i < values.size(); ++i) {
+ CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]);
+ }
+
+ // Test range constructor.
+ T b_range(const_b.begin(), const_b.end());
+ EXPECT_EQ(b_range.size(), const_b.size());
+ for (int i = 0; i < values.size(); ++i) {
+ CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
+ }
+
+ // Test range insertion for values that already exist.
+ b_range.insert(b_copy.begin(), b_copy.end());
+ b_range.verify();
+
+ // Test range insertion for new values.
+ b_range.clear();
+ b_range.insert(b_copy.begin(), b_copy.end());
+ EXPECT_EQ(b_range.size(), b_copy.size());
+ for (int i = 0; i < values.size(); ++i) {
+ CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
+ }
+
+ // Test assignment to self. Nothing should change.
+ b_range.operator=(b_range);
+ EXPECT_EQ(b_range.size(), b_copy.size());
+
+ // Test assignment of new values.
+ b_range.clear();
+ b_range = b_copy;
+ EXPECT_EQ(b_range.size(), b_copy.size());
+
+ // Test swap.
+ b_range.clear();
+ b_range.swap(b_copy);
+ EXPECT_EQ(b_copy.size(), 0);
+ EXPECT_EQ(b_range.size(), const_b.size());
+ for (int i = 0; i < values.size(); ++i) {
+ CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
+ }
+ b_range.swap(b_copy);
+
+ // Test non-member function swap.
+ swap(b_range, b_copy);
+ EXPECT_EQ(b_copy.size(), 0);
+ EXPECT_EQ(b_range.size(), const_b.size());
+ for (int i = 0; i < values.size(); ++i) {
+ CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]);
+ }
+ swap(b_range, b_copy);
+
+ // Test erase via values.
+ for (int i = 0; i < values.size(); ++i) {
+ mutable_b.erase(key_of_value(values[i]));
+ // Erasing a non-existent key should have no effect.
+ ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0);
+ }
+
+ const_b.verify();
+ EXPECT_EQ(const_b.size(), 0);
+
+ // Test erase via iterators.
+ mutable_b = b_copy;
+ for (int i = 0; i < values.size(); ++i) {
+ mutable_b.erase(mutable_b.find(key_of_value(values[i])));
+ }
+
+ const_b.verify();
+ EXPECT_EQ(const_b.size(), 0);
+
+ // Test insert with hint.
+ for (int i = 0; i < values.size(); i++) {
+ mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]);
+ }
+
+ const_b.verify();
+
+ // Test range erase.
+ mutable_b.erase(mutable_b.begin(), mutable_b.end());
+ EXPECT_EQ(mutable_b.size(), 0);
+ const_b.verify();
+
+ // First half.
+ mutable_b = b_copy;
+ typename T::iterator mutable_iter_end = mutable_b.begin();
+ for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end;
+ mutable_b.erase(mutable_b.begin(), mutable_iter_end);
+ EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2);
+ const_b.verify();
+
+ // Second half.
+ mutable_b = b_copy;
+ typename T::iterator mutable_iter_begin = mutable_b.begin();
+ for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin;
+ mutable_b.erase(mutable_iter_begin, mutable_b.end());
+ EXPECT_EQ(mutable_b.size(), values.size() / 2);
+ const_b.verify();
+
+ // Second quarter.
+ mutable_b = b_copy;
+ mutable_iter_begin = mutable_b.begin();
+ for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin;
+ mutable_iter_end = mutable_iter_begin;
+ for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end;
+ mutable_b.erase(mutable_iter_begin, mutable_iter_end);
+ EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4);
+ const_b.verify();
+
+ mutable_b.clear();
+}
+
+template <typename T>
+void ConstTest() {
+ using value_type = typename T::value_type;
+ typename KeyOfValue<typename T::key_type, value_type>::type key_of_value;
+
+ T mutable_b;
+ const T &const_b = mutable_b;
+
+ // Insert a single value into the container and test looking it up.
+ value_type value = Generator<value_type>(2)(2);
+ mutable_b.insert(value);
+ EXPECT_TRUE(mutable_b.contains(key_of_value(value)));
+ EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end());
+ EXPECT_TRUE(const_b.contains(key_of_value(value)));
+ EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end());
+ EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value);
+ EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end());
+ EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value);
+
+ // We can only create a non-const iterator from a non-const container.
+ typename T::iterator mutable_iter(mutable_b.begin());
+ EXPECT_EQ(mutable_iter, const_b.begin());
+ EXPECT_NE(mutable_iter, const_b.end());
+ EXPECT_EQ(const_b.begin(), mutable_iter);
+ EXPECT_NE(const_b.end(), mutable_iter);
+ typename T::reverse_iterator mutable_riter(mutable_b.rbegin());
+ EXPECT_EQ(mutable_riter, const_b.rbegin());
+ EXPECT_NE(mutable_riter, const_b.rend());
+ EXPECT_EQ(const_b.rbegin(), mutable_riter);
+ EXPECT_NE(const_b.rend(), mutable_riter);
+
+ // We can create a const iterator from a non-const iterator.
+ typename T::const_iterator const_iter(mutable_iter);
+ EXPECT_EQ(const_iter, mutable_b.begin());
+ EXPECT_NE(const_iter, mutable_b.end());
+ EXPECT_EQ(mutable_b.begin(), const_iter);
+ EXPECT_NE(mutable_b.end(), const_iter);
+ typename T::const_reverse_iterator const_riter(mutable_riter);
+ EXPECT_EQ(const_riter, mutable_b.rbegin());
+ EXPECT_NE(const_riter, mutable_b.rend());
+ EXPECT_EQ(mutable_b.rbegin(), const_riter);
+ EXPECT_NE(mutable_b.rend(), const_riter);
+
+ // Make sure various methods can be invoked on a const container.
+ const_b.verify();
+ ASSERT_TRUE(!const_b.empty());
+ EXPECT_EQ(const_b.size(), 1);
+ EXPECT_GT(const_b.max_size(), 0);
+ EXPECT_TRUE(const_b.contains(key_of_value(value)));
+ EXPECT_EQ(const_b.count(key_of_value(value)), 1);
+}
+
+template <typename T, typename C>
+void BtreeTest() {
+ ConstTest<T>();
+
+ using V = typename remove_pair_const<typename T::value_type>::type;
+ const std::vector<V> random_values = GenerateValuesWithSeed<V>(
+ absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
+ testing::GTEST_FLAG(random_seed));
+
+ unique_checker<T, C> container;
+
+ // Test key insertion/deletion in sorted order.
+ std::vector<V> sorted_values(random_values);
+ std::sort(sorted_values.begin(), sorted_values.end());
+ DoTest("sorted: ", &container, sorted_values);
+
+ // Test key insertion/deletion in reverse sorted order.
+ std::reverse(sorted_values.begin(), sorted_values.end());
+ DoTest("rsorted: ", &container, sorted_values);
+
+ // Test key insertion/deletion in random order.
+ DoTest("random: ", &container, random_values);
+}
+
+template <typename T, typename C>
+void BtreeMultiTest() {
+ ConstTest<T>();
+
+ using V = typename remove_pair_const<typename T::value_type>::type;
+ const std::vector<V> random_values = GenerateValuesWithSeed<V>(
+ absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values),
+ testing::GTEST_FLAG(random_seed));
+
+ multi_checker<T, C> container;
+
+ // Test keys in sorted order.
+ std::vector<V> sorted_values(random_values);
+ std::sort(sorted_values.begin(), sorted_values.end());
+ DoTest("sorted: ", &container, sorted_values);
+
+ // Test keys in reverse sorted order.
+ std::reverse(sorted_values.begin(), sorted_values.end());
+ DoTest("rsorted: ", &container, sorted_values);
+
+ // Test keys in random order.
+ DoTest("random: ", &container, random_values);
+
+ // Test keys in random order w/ duplicates.
+ std::vector<V> duplicate_values(random_values);
+ duplicate_values.insert(duplicate_values.end(), random_values.begin(),
+ random_values.end());
+ DoTest("duplicates:", &container, duplicate_values);
+
+ // Test all identical keys.
+ std::vector<V> identical_values(100);
+ std::fill(identical_values.begin(), identical_values.end(),
+ Generator<V>(2)(2));
+ DoTest("identical: ", &container, identical_values);
+}
+
+template <typename T>
+struct PropagatingCountingAlloc : public CountingAllocator<T> {
+ using propagate_on_container_copy_assignment = std::true_type;
+ using propagate_on_container_move_assignment = std::true_type;
+ using propagate_on_container_swap = std::true_type;
+
+ using Base = CountingAllocator<T>;
+ using Base::Base;
+
+ template <typename U>
+ explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other)
+ : Base(other.bytes_used_) {}
+
+ template <typename U>
+ struct rebind {
+ using other = PropagatingCountingAlloc<U>;
+ };
+};
+
+template <typename T>
+void BtreeAllocatorTest() {
+ using value_type = typename T::value_type;
+
+ int64_t bytes1 = 0, bytes2 = 0;
+ PropagatingCountingAlloc<T> allocator1(&bytes1);
+ PropagatingCountingAlloc<T> allocator2(&bytes2);
+ Generator<value_type> generator(1000);
+
+ // Test that we allocate properly aligned memory. If we don't, then Layout
+ // will assert fail.
+ auto unused1 = allocator1.allocate(1);
+ auto unused2 = allocator2.allocate(1);
+
+ // Test copy assignment
+ {
+ T b1(typename T::key_compare(), allocator1);
+ T b2(typename T::key_compare(), allocator2);
+
+ int64_t original_bytes1 = bytes1;
+ b1.insert(generator(0));
+ EXPECT_GT(bytes1, original_bytes1);
+
+ // This should propagate the allocator.
+ b1 = b2;
+ EXPECT_EQ(b1.size(), 0);
+ EXPECT_EQ(b2.size(), 0);
+ EXPECT_EQ(bytes1, original_bytes1);
+
+ for (int i = 1; i < 1000; i++) {
+ b1.insert(generator(i));
+ }
+
+ // We should have allocated out of allocator2.
+ EXPECT_GT(bytes2, bytes1);
+ }
+
+ // Test move assignment
+ {
+ T b1(typename T::key_compare(), allocator1);
+ T b2(typename T::key_compare(), allocator2);
+
+ int64_t original_bytes1 = bytes1;
+ b1.insert(generator(0));
+ EXPECT_GT(bytes1, original_bytes1);
+
+ // This should propagate the allocator.
+ b1 = std::move(b2);
+ EXPECT_EQ(b1.size(), 0);
+ EXPECT_EQ(bytes1, original_bytes1);
+
+ for (int i = 1; i < 1000; i++) {
+ b1.insert(generator(i));
+ }
+
+ // We should have allocated out of allocator2.
+ EXPECT_GT(bytes2, bytes1);
+ }
+
+ // Test swap
+ {
+ T b1(typename T::key_compare(), allocator1);
+ T b2(typename T::key_compare(), allocator2);
+
+ int64_t original_bytes1 = bytes1;
+ b1.insert(generator(0));
+ EXPECT_GT(bytes1, original_bytes1);
+
+ // This should swap the allocators.
+ swap(b1, b2);
+ EXPECT_EQ(b1.size(), 0);
+ EXPECT_EQ(b2.size(), 1);
+ EXPECT_GT(bytes1, original_bytes1);
+
+ for (int i = 1; i < 1000; i++) {
+ b1.insert(generator(i));
+ }
+
+ // We should have allocated out of allocator2.
+ EXPECT_GT(bytes2, bytes1);
+ }
+
+ allocator1.deallocate(unused1, 1);
+ allocator2.deallocate(unused2, 1);
+}
+
+template <typename T>
+void BtreeMapTest() {
+ using value_type = typename T::value_type;
+ using mapped_type = typename T::mapped_type;
+
+ mapped_type m = Generator<mapped_type>(0)(0);
+ (void)m;
+
+ T b;
+
+ // Verify we can insert using operator[].
+ for (int i = 0; i < 1000; i++) {
+ value_type v = Generator<value_type>(1000)(i);
+ b[v.first] = v.second;
+ }
+ EXPECT_EQ(b.size(), 1000);
+
+ // Test whether we can use the "->" operator on iterators and
+ // reverse_iterators. This stresses the btree_map_params::pair_pointer
+ // mechanism.
+ EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first);
+ EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second);
+ EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first);
+ EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second);
+}
+
+template <typename T>
+void BtreeMultiMapTest() {
+ using mapped_type = typename T::mapped_type;
+ mapped_type m = Generator<mapped_type>(0)(0);
+ (void)m;
+}
+
+template <typename K, int N = 256>
+void SetTest() {
+ EXPECT_EQ(
+ sizeof(absl::btree_set<K>),
+ 2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type));
+ using BtreeSet = absl::btree_set<K>;
+ using CountingBtreeSet =
+ absl::btree_set<K, std::less<K>, PropagatingCountingAlloc<K>>;
+ BtreeTest<BtreeSet, std::set<K>>();
+ BtreeAllocatorTest<CountingBtreeSet>();
+}
+
+template <typename K, int N = 256>
+void MapTest() {
+ EXPECT_EQ(
+ sizeof(absl::btree_map<K, K>),
+ 2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type));
+ using BtreeMap = absl::btree_map<K, K>;
+ using CountingBtreeMap =
+ absl::btree_map<K, K, std::less<K>,
+ PropagatingCountingAlloc<std::pair<const K, K>>>;
+ BtreeTest<BtreeMap, std::map<K, K>>();
+ BtreeAllocatorTest<CountingBtreeMap>();
+ BtreeMapTest<BtreeMap>();
+}
+
+TEST(Btree, set_int32) { SetTest<int32_t>(); }
+TEST(Btree, set_int64) { SetTest<int64_t>(); }
+TEST(Btree, set_string) { SetTest<std::string>(); }
+TEST(Btree, set_pair) { SetTest<std::pair<int, int>>(); }
+TEST(Btree, map_int32) { MapTest<int32_t>(); }
+TEST(Btree, map_int64) { MapTest<int64_t>(); }
+TEST(Btree, map_string) { MapTest<std::string>(); }
+TEST(Btree, map_pair) { MapTest<std::pair<int, int>>(); }
+
+template <typename K, int N = 256>
+void MultiSetTest() {
+ EXPECT_EQ(
+ sizeof(absl::btree_multiset<K>),
+ 2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type));
+ using BtreeMSet = absl::btree_multiset<K>;
+ using CountingBtreeMSet =
+ absl::btree_multiset<K, std::less<K>, PropagatingCountingAlloc<K>>;
+ BtreeMultiTest<BtreeMSet, std::multiset<K>>();
+ BtreeAllocatorTest<CountingBtreeMSet>();
+}
+
+template <typename K, int N = 256>
+void MultiMapTest() {
+ EXPECT_EQ(sizeof(absl::btree_multimap<K, K>),
+ 2 * sizeof(void *) +
+ sizeof(typename absl::btree_multimap<K, K>::size_type));
+ using BtreeMMap = absl::btree_multimap<K, K>;
+ using CountingBtreeMMap =
+ absl::btree_multimap<K, K, std::less<K>,
+ PropagatingCountingAlloc<std::pair<const K, K>>>;
+ BtreeMultiTest<BtreeMMap, std::multimap<K, K>>();
+ BtreeMultiMapTest<BtreeMMap>();
+ BtreeAllocatorTest<CountingBtreeMMap>();
+}
+
+TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); }
+TEST(Btree, multiset_int64) { MultiSetTest<int64_t>(); }
+TEST(Btree, multiset_string) { MultiSetTest<std::string>(); }
+TEST(Btree, multiset_pair) { MultiSetTest<std::pair<int, int>>(); }
+TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); }
+TEST(Btree, multimap_int64) { MultiMapTest<int64_t>(); }
+TEST(Btree, multimap_string) { MultiMapTest<std::string>(); }
+TEST(Btree, multimap_pair) { MultiMapTest<std::pair<int, int>>(); }
+
+struct CompareIntToString {
+ bool operator()(const std::string &a, const std::string &b) const {
+ return a < b;
+ }
+ bool operator()(const std::string &a, int b) const {
+ return a < absl::StrCat(b);
+ }
+ bool operator()(int a, const std::string &b) const {
+ return absl::StrCat(a) < b;
+ }
+ using is_transparent = void;
+};
+
+struct NonTransparentCompare {
+ template <typename T, typename U>
+ bool operator()(const T& t, const U& u) const {
+ // Treating all comparators as transparent can cause inefficiencies (see
+ // N3657 C++ proposal). Test that for comparators without 'is_transparent'
+ // alias (like this one), we do not attempt heterogeneous lookup.
+ EXPECT_TRUE((std::is_same<T, U>()));
+ return t < u;
+ }
+};
+
+template <typename T>
+bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) {
+ return true;
+}
+
+template <typename T>
+bool CanEraseWithEmptyBrace(T, ...) {
+ return false;
+}
+
+template <typename T>
+void TestHeterogeneous(T table) {
+ auto lb = table.lower_bound("3");
+ EXPECT_EQ(lb, table.lower_bound(3));
+ EXPECT_NE(lb, table.lower_bound(4));
+ EXPECT_EQ(lb, table.lower_bound({"3"}));
+ EXPECT_NE(lb, table.lower_bound({}));
+
+ auto ub = table.upper_bound("3");
+ EXPECT_EQ(ub, table.upper_bound(3));
+ EXPECT_NE(ub, table.upper_bound(5));
+ EXPECT_EQ(ub, table.upper_bound({"3"}));
+ EXPECT_NE(ub, table.upper_bound({}));
+
+ auto er = table.equal_range("3");
+ EXPECT_EQ(er, table.equal_range(3));
+ EXPECT_NE(er, table.equal_range(4));
+ EXPECT_EQ(er, table.equal_range({"3"}));
+ EXPECT_NE(er, table.equal_range({}));
+
+ auto it = table.find("3");
+ EXPECT_EQ(it, table.find(3));
+ EXPECT_NE(it, table.find(4));
+ EXPECT_EQ(it, table.find({"3"}));
+ EXPECT_NE(it, table.find({}));
+
+ EXPECT_TRUE(table.contains(3));
+ EXPECT_FALSE(table.contains(4));
+ EXPECT_TRUE(table.count({"3"}));
+ EXPECT_FALSE(table.contains({}));
+
+ EXPECT_EQ(1, table.count(3));
+ EXPECT_EQ(0, table.count(4));
+ EXPECT_EQ(1, table.count({"3"}));
+ EXPECT_EQ(0, table.count({}));
+
+ auto copy = table;
+ copy.erase(3);
+ EXPECT_EQ(table.size() - 1, copy.size());
+ copy.erase(4);
+ EXPECT_EQ(table.size() - 1, copy.size());
+ copy.erase({"5"});
+ EXPECT_EQ(table.size() - 2, copy.size());
+ EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr));
+
+ // Also run it with const T&.
+ if (std::is_class<T>()) TestHeterogeneous<const T &>(table);
+}
+
+TEST(Btree, HeterogeneousLookup) {
+ TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"});
+ TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{
+ {"1", 1}, {"3", 3}, {"5", 5}});
+ TestHeterogeneous(
+ btree_multiset<std::string, CompareIntToString>{"1", "3", "5"});
+ TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{
+ {"1", 1}, {"3", 3}, {"5", 5}});
+
+ // Only maps have .at()
+ btree_map<std::string, int, CompareIntToString> map{
+ {"", -1}, {"1", 1}, {"3", 3}, {"5", 5}};
+ EXPECT_EQ(1, map.at(1));
+ EXPECT_EQ(3, map.at({"3"}));
+ EXPECT_EQ(-1, map.at({}));
+ const auto &cmap = map;
+ EXPECT_EQ(1, cmap.at(1));
+ EXPECT_EQ(3, cmap.at({"3"}));
+ EXPECT_EQ(-1, cmap.at({}));
+}
+
+TEST(Btree, NoHeterogeneousLookupWithoutAlias) {
+ using StringSet = absl::btree_set<std::string, NonTransparentCompare>;
+ StringSet s;
+ ASSERT_TRUE(s.insert("hello").second);
+ ASSERT_TRUE(s.insert("world").second);
+ EXPECT_TRUE(s.end() == s.find("blah"));
+ EXPECT_TRUE(s.begin() == s.lower_bound("hello"));
+ EXPECT_EQ(1, s.count("world"));
+ EXPECT_TRUE(s.contains("hello"));
+ EXPECT_TRUE(s.contains("world"));
+ EXPECT_FALSE(s.contains("blah"));
+
+ using StringMultiSet =
+ absl::btree_multiset<std::string, NonTransparentCompare>;
+ StringMultiSet ms;
+ ms.insert("hello");
+ ms.insert("world");
+ ms.insert("world");
+ EXPECT_TRUE(ms.end() == ms.find("blah"));
+ EXPECT_TRUE(ms.begin() == ms.lower_bound("hello"));
+ EXPECT_EQ(2, ms.count("world"));
+ EXPECT_TRUE(ms.contains("hello"));
+ EXPECT_TRUE(ms.contains("world"));
+ EXPECT_FALSE(ms.contains("blah"));
+}
+
+TEST(Btree, DefaultTransparent) {
+ {
+ // `int` does not have a default transparent comparator.
+ // The input value is converted to key_type.
+ btree_set<int> s = {1};
+ double d = 1.1;
+ EXPECT_EQ(s.begin(), s.find(d));
+ EXPECT_TRUE(s.contains(d));
+ }
+
+ {
+ // `std::string` has heterogeneous support.
+ btree_set<std::string> s = {"A"};
+ EXPECT_EQ(s.begin(), s.find(absl::string_view("A")));
+ EXPECT_TRUE(s.contains(absl::string_view("A")));
+ }
+}
+
+class StringLike {
+ public:
+ StringLike() = default;
+
+ StringLike(const char* s) : s_(s) { // NOLINT
+ ++constructor_calls_;
+ }
+
+ bool operator<(const StringLike& a) const {
+ return s_ < a.s_;
+ }
+
+ static void clear_constructor_call_count() {
+ constructor_calls_ = 0;
+ }
+
+ static int constructor_calls() {
+ return constructor_calls_;
+ }
+
+ private:
+ static int constructor_calls_;
+ std::string s_;
+};
+
+int StringLike::constructor_calls_ = 0;
+
+TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) {
+ using StringSet = absl::btree_set<StringLike>;
+ StringSet s;
+ for (int i = 0; i < 100; ++i) {
+ ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second);
+ }
+ StringLike::clear_constructor_call_count();
+ s.find("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+
+ StringLike::clear_constructor_call_count();
+ s.contains("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+
+ StringLike::clear_constructor_call_count();
+ s.count("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+
+ StringLike::clear_constructor_call_count();
+ s.lower_bound("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+
+ StringLike::clear_constructor_call_count();
+ s.upper_bound("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+
+ StringLike::clear_constructor_call_count();
+ s.equal_range("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+
+ StringLike::clear_constructor_call_count();
+ s.erase("50");
+ ASSERT_EQ(1, StringLike::constructor_calls());
+}
+
+// Verify that swapping btrees swaps the key comparison functors and that we can
+// use non-default constructible comparators.
+struct SubstringLess {
+ SubstringLess() = delete;
+ explicit SubstringLess(int length) : n(length) {}
+ bool operator()(const std::string &a, const std::string &b) const {
+ return absl::string_view(a).substr(0, n) <
+ absl::string_view(b).substr(0, n);
+ }
+ int n;
+};
+
+TEST(Btree, SwapKeyCompare) {
+ using SubstringSet = absl::btree_set<std::string, SubstringLess>;
+ SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type());
+ SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type());
+
+ ASSERT_TRUE(s1.insert("a").second);
+ ASSERT_FALSE(s1.insert("aa").second);
+
+ ASSERT_TRUE(s2.insert("a").second);
+ ASSERT_TRUE(s2.insert("aa").second);
+ ASSERT_FALSE(s2.insert("aaa").second);
+
+ swap(s1, s2);
+
+ ASSERT_TRUE(s1.insert("b").second);
+ ASSERT_TRUE(s1.insert("bb").second);
+ ASSERT_FALSE(s1.insert("bbb").second);
+
+ ASSERT_TRUE(s2.insert("b").second);
+ ASSERT_FALSE(s2.insert("bb").second);
+}
+
+TEST(Btree, UpperBoundRegression) {
+ // Regress a bug where upper_bound would default-construct a new key_compare
+ // instead of copying the existing one.
+ using SubstringSet = absl::btree_set<std::string, SubstringLess>;
+ SubstringSet my_set(SubstringLess(3));
+ my_set.insert("aab");
+ my_set.insert("abb");
+ // We call upper_bound("aaa"). If this correctly uses the length 3
+ // comparator, aaa < aab < abb, so we should get aab as the result.
+ // If it instead uses the default-constructed length 2 comparator,
+ // aa == aa < ab, so we'll get abb as our result.
+ SubstringSet::iterator it = my_set.upper_bound("aaa");
+ ASSERT_TRUE(it != my_set.end());
+ EXPECT_EQ("aab", *it);
+}
+
+TEST(Btree, Comparison) {
+ const int kSetSize = 1201;
+ absl::btree_set<int64_t> my_set;
+ for (int i = 0; i < kSetSize; ++i) {
+ my_set.insert(i);
+ }
+ absl::btree_set<int64_t> my_set_copy(my_set);
+ EXPECT_TRUE(my_set_copy == my_set);
+ EXPECT_TRUE(my_set == my_set_copy);
+ EXPECT_FALSE(my_set_copy != my_set);
+ EXPECT_FALSE(my_set != my_set_copy);
+
+ my_set.insert(kSetSize);
+ EXPECT_FALSE(my_set_copy == my_set);
+ EXPECT_FALSE(my_set == my_set_copy);
+ EXPECT_TRUE(my_set_copy != my_set);
+ EXPECT_TRUE(my_set != my_set_copy);
+
+ my_set.erase(kSetSize - 1);
+ EXPECT_FALSE(my_set_copy == my_set);
+ EXPECT_FALSE(my_set == my_set_copy);
+ EXPECT_TRUE(my_set_copy != my_set);
+ EXPECT_TRUE(my_set != my_set_copy);
+
+ absl::btree_map<std::string, int64_t> my_map;
+ for (int i = 0; i < kSetSize; ++i) {
+ my_map[std::string(i, 'a')] = i;
+ }
+ absl::btree_map<std::string, int64_t> my_map_copy(my_map);
+ EXPECT_TRUE(my_map_copy == my_map);
+ EXPECT_TRUE(my_map == my_map_copy);
+ EXPECT_FALSE(my_map_copy != my_map);
+ EXPECT_FALSE(my_map != my_map_copy);
+
+ ++my_map_copy[std::string(7, 'a')];
+ EXPECT_FALSE(my_map_copy == my_map);
+ EXPECT_FALSE(my_map == my_map_copy);
+ EXPECT_TRUE(my_map_copy != my_map);
+ EXPECT_TRUE(my_map != my_map_copy);
+
+ my_map_copy = my_map;
+ my_map["hello"] = kSetSize;
+ EXPECT_FALSE(my_map_copy == my_map);
+ EXPECT_FALSE(my_map == my_map_copy);
+ EXPECT_TRUE(my_map_copy != my_map);
+ EXPECT_TRUE(my_map != my_map_copy);
+
+ my_map.erase(std::string(kSetSize - 1, 'a'));
+ EXPECT_FALSE(my_map_copy == my_map);
+ EXPECT_FALSE(my_map == my_map_copy);
+ EXPECT_TRUE(my_map_copy != my_map);
+ EXPECT_TRUE(my_map != my_map_copy);
+}
+
+TEST(Btree, RangeCtorSanity) {
+ std::vector<int> ivec;
+ ivec.push_back(1);
+ std::map<int, int> imap;
+ imap.insert(std::make_pair(1, 2));
+ absl::btree_multiset<int> tmset(ivec.begin(), ivec.end());
+ absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end());
+ absl::btree_set<int> tset(ivec.begin(), ivec.end());
+ absl::btree_map<int, int> tmap(imap.begin(), imap.end());
+ EXPECT_EQ(1, tmset.size());
+ EXPECT_EQ(1, tmmap.size());
+ EXPECT_EQ(1, tset.size());
+ EXPECT_EQ(1, tmap.size());
+}
+
+TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) {
+ absl::btree_map<std::string, std::unique_ptr<std::string>> m;
+
+ std::unique_ptr<std::string> &v = m["A"];
+ EXPECT_TRUE(v == nullptr);
+ v.reset(new std::string("X"));
+
+ auto iter = m.find("A");
+ EXPECT_EQ("X", *iter->second);
+}
+
+TEST(Btree, InitializerListConstructor) {
+ absl::btree_set<std::string> set({"a", "b"});
+ EXPECT_EQ(set.count("a"), 1);
+ EXPECT_EQ(set.count("b"), 1);
+
+ absl::btree_multiset<int> mset({1, 1, 4});
+ EXPECT_EQ(mset.count(1), 2);
+ EXPECT_EQ(mset.count(4), 1);
+
+ absl::btree_map<int, int> map({{1, 5}, {2, 10}});
+ EXPECT_EQ(map[1], 5);
+ EXPECT_EQ(map[2], 10);
+
+ absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}});
+ auto range = mmap.equal_range(1);
+ auto it = range.first;
+ ASSERT_NE(it, range.second);
+ EXPECT_EQ(it->second, 5);
+ ASSERT_NE(++it, range.second);
+ EXPECT_EQ(it->second, 10);
+ EXPECT_EQ(++it, range.second);
+}
+
+TEST(Btree, InitializerListInsert) {
+ absl::btree_set<std::string> set;
+ set.insert({"a", "b"});
+ EXPECT_EQ(set.count("a"), 1);
+ EXPECT_EQ(set.count("b"), 1);
+
+ absl::btree_multiset<int> mset;
+ mset.insert({1, 1, 4});
+ EXPECT_EQ(mset.count(1), 2);
+ EXPECT_EQ(mset.count(4), 1);
+
+ absl::btree_map<int, int> map;
+ map.insert({{1, 5}, {2, 10}});
+ // Test that inserting one element using an initializer list also works.
+ map.insert({3, 15});
+ EXPECT_EQ(map[1], 5);
+ EXPECT_EQ(map[2], 10);
+ EXPECT_EQ(map[3], 15);
+
+ absl::btree_multimap<int, int> mmap;
+ mmap.insert({{1, 5}, {1, 10}});
+ auto range = mmap.equal_range(1);
+ auto it = range.first;
+ ASSERT_NE(it, range.second);
+ EXPECT_EQ(it->second, 5);
+ ASSERT_NE(++it, range.second);
+ EXPECT_EQ(it->second, 10);
+ EXPECT_EQ(++it, range.second);
+}
+
+template <typename Compare, typename K>
+void AssertKeyCompareToAdapted() {
+ using Adapted = typename key_compare_to_adapter<Compare>::type;
+ static_assert(!std::is_same<Adapted, Compare>::value,
+ "key_compare_to_adapter should have adapted this comparator.");
+ static_assert(
+ std::is_same<absl::weak_ordering,
+ absl::result_of_t<Adapted(const K &, const K &)>>::value,
+ "Adapted comparator should be a key-compare-to comparator.");
+}
+template <typename Compare, typename K>
+void AssertKeyCompareToNotAdapted() {
+ using Unadapted = typename key_compare_to_adapter<Compare>::type;
+ static_assert(
+ std::is_same<Unadapted, Compare>::value,
+ "key_compare_to_adapter shouldn't have adapted this comparator.");
+ static_assert(
+ std::is_same<bool,
+ absl::result_of_t<Unadapted(const K &, const K &)>>::value,
+ "Un-adapted comparator should return bool.");
+}
+
+TEST(Btree, KeyCompareToAdapter) {
+ AssertKeyCompareToAdapted<std::less<std::string>, std::string>();
+ AssertKeyCompareToAdapted<std::greater<std::string>, std::string>();
+ AssertKeyCompareToAdapted<std::less<absl::string_view>, absl::string_view>();
+ AssertKeyCompareToAdapted<std::greater<absl::string_view>,
+ absl::string_view>();
+ AssertKeyCompareToNotAdapted<std::less<int>, int>();
+ AssertKeyCompareToNotAdapted<std::greater<int>, int>();
+}
+
+TEST(Btree, RValueInsert) {
+ InstanceTracker tracker;
+
+ absl::btree_set<MovableOnlyInstance> set;
+ set.insert(MovableOnlyInstance(1));
+ set.insert(MovableOnlyInstance(3));
+ MovableOnlyInstance two(2);
+ set.insert(set.find(MovableOnlyInstance(3)), std::move(two));
+ auto it = set.find(MovableOnlyInstance(2));
+ ASSERT_NE(it, set.end());
+ ASSERT_NE(++it, set.end());
+ EXPECT_EQ(it->value(), 3);
+
+ absl::btree_multiset<MovableOnlyInstance> mset;
+ MovableOnlyInstance zero(0);
+ MovableOnlyInstance zero2(0);
+ mset.insert(std::move(zero));
+ mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2));
+ EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2);
+
+ absl::btree_map<int, MovableOnlyInstance> map;
+ std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)};
+ std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)};
+ std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)};
+ map.insert(std::move(p1));
+ map.insert(std::move(p3));
+ map.insert(map.find(3), std::move(p2));
+ ASSERT_NE(map.find(2), map.end());
+ EXPECT_EQ(map.find(2)->second.value(), 10);
+
+ absl::btree_multimap<int, MovableOnlyInstance> mmap;
+ std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)};
+ std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)};
+ mmap.insert(std::move(p4));
+ mmap.insert(mmap.find(1), std::move(p5));
+ auto range = mmap.equal_range(1);
+ auto it1 = range.first;
+ ASSERT_NE(it1, range.second);
+ EXPECT_EQ(it1->second.value(), 10);
+ ASSERT_NE(++it1, range.second);
+ EXPECT_EQ(it1->second.value(), 5);
+ EXPECT_EQ(++it1, range.second);
+
+ EXPECT_EQ(tracker.copies(), 0);
+ EXPECT_EQ(tracker.swaps(), 0);
+}
+
+} // namespace
+
+class BtreeNodePeer {
+ public:
+ // Yields the size of a leaf node with a specific number of values.
+ template <typename ValueType>
+ constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) {
+ return btree_node<
+ set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>,
+ /*TargetNodeSize=*/256, // This parameter isn't used here.
+ /*Multi=*/false>>::SizeWithNValues(target_values_per_node);
+ }
+
+ // Yields the number of values in a (non-root) leaf node for this set.
+ template <typename Set>
+ constexpr static size_t GetNumValuesPerNode() {
+ return btree_node<typename Set::params_type>::kNodeValues;
+ }
+};
+
+namespace {
+
+// A btree set with a specific number of values per node.
+template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>>
+class SizedBtreeSet
+ : public btree_set_container<btree<
+ set_params<Key, Cmp, std::allocator<Key>,
+ BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode),
+ /*Multi=*/false>>> {
+ using Base = typename SizedBtreeSet::btree_set_container;
+
+ public:
+ SizedBtreeSet() {}
+ using Base::Base;
+};
+
+template <typename Set>
+void ExpectOperationCounts(const int expected_moves,
+ const int expected_comparisons,
+ const std::vector<int> &values,
+ InstanceTracker *tracker, Set *set) {
+ for (const int v : values) set->insert(MovableOnlyInstance(v));
+ set->clear();
+ EXPECT_EQ(tracker->moves(), expected_moves);
+ EXPECT_EQ(tracker->comparisons(), expected_comparisons);
+ EXPECT_EQ(tracker->copies(), 0);
+ EXPECT_EQ(tracker->swaps(), 0);
+ tracker->ResetCopiesMovesSwaps();
+}
+
+// Note: when the values in this test change, it is expected to have an impact
+// on performance.
+TEST(Btree, MovesComparisonsCopiesSwapsTracking) {
+ InstanceTracker tracker;
+ // Note: this is minimum number of values per node.
+ SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3> set3;
+ // Note: this is the default number of values per node for a set of int32s
+ // (with 64-bit pointers).
+ SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61;
+ SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100;
+
+ // Don't depend on flags for random values because then the expectations will
+ // fail if the flags change.
+ std::vector<int> values =
+ GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
+
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
+ if (sizeof(void *) == 8) {
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(),
+ BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
+ }
+
+ // Test key insertion/deletion in random order.
+ ExpectOperationCounts(45281, 132551, values, &tracker, &set3);
+ ExpectOperationCounts(386718, 129807, values, &tracker, &set61);
+ ExpectOperationCounts(586761, 130310, values, &tracker, &set100);
+
+ // Test key insertion/deletion in sorted order.
+ std::sort(values.begin(), values.end());
+ ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
+ ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
+ ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
+
+ // Test key insertion/deletion in reverse sorted order.
+ std::reverse(values.begin(), values.end());
+ ExpectOperationCounts(49951, 119325, values, &tracker, &set3);
+ ExpectOperationCounts(338813, 118266, values, &tracker, &set61);
+ ExpectOperationCounts(534529, 125279, values, &tracker, &set100);
+}
+
+struct MovableOnlyInstanceThreeWayCompare {
+ absl::weak_ordering operator()(const MovableOnlyInstance &a,
+ const MovableOnlyInstance &b) const {
+ return a.compare(b);
+ }
+};
+
+// Note: when the values in this test change, it is expected to have an impact
+// on performance.
+TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) {
+ InstanceTracker tracker;
+ // Note: this is minimum number of values per node.
+ SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3,
+ MovableOnlyInstanceThreeWayCompare>
+ set3;
+ // Note: this is the default number of values per node for a set of int32s
+ // (with 64-bit pointers).
+ SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61,
+ MovableOnlyInstanceThreeWayCompare>
+ set61;
+ SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100,
+ MovableOnlyInstanceThreeWayCompare>
+ set100;
+
+ // Don't depend on flags for random values because then the expectations will
+ // fail if the flags change.
+ std::vector<int> values =
+ GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23);
+
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3);
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61);
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100);
+ if (sizeof(void *) == 8) {
+ EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(),
+ BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>());
+ }
+
+ // Test key insertion/deletion in random order.
+ ExpectOperationCounts(45281, 122560, values, &tracker, &set3);
+ ExpectOperationCounts(386718, 119816, values, &tracker, &set61);
+ ExpectOperationCounts(586761, 120319, values, &tracker, &set100);
+
+ // Test key insertion/deletion in sorted order.
+ std::sort(values.begin(), values.end());
+ ExpectOperationCounts(26638, 92134, values, &tracker, &set3);
+ ExpectOperationCounts(20208, 87757, values, &tracker, &set61);
+ ExpectOperationCounts(20124, 96583, values, &tracker, &set100);
+
+ // Test key insertion/deletion in reverse sorted order.
+ std::reverse(values.begin(), values.end());
+ ExpectOperationCounts(49951, 109326, values, &tracker, &set3);
+ ExpectOperationCounts(338813, 108267, values, &tracker, &set61);
+ ExpectOperationCounts(534529, 115280, values, &tracker, &set100);
+}
+
+struct NoDefaultCtor {
+ int num;
+ explicit NoDefaultCtor(int i) : num(i) {}
+
+ friend bool operator<(const NoDefaultCtor& a, const NoDefaultCtor& b) {
+ return a.num < b.num;
+ }
+};
+
+TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) {
+ absl::btree_map<NoDefaultCtor, NoDefaultCtor> m;
+
+ for (int i = 1; i <= 99; ++i) {
+ SCOPED_TRACE(i);
+ EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second);
+ }
+ EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second);
+
+ auto iter99 = m.find(NoDefaultCtor(99));
+ ASSERT_NE(iter99, m.end());
+ EXPECT_EQ(iter99->second.num, 1);
+
+ auto iter1 = m.find(NoDefaultCtor(1));
+ ASSERT_NE(iter1, m.end());
+ EXPECT_EQ(iter1->second.num, 99);
+
+ auto iter50 = m.find(NoDefaultCtor(50));
+ ASSERT_NE(iter50, m.end());
+ EXPECT_EQ(iter50->second.num, 50);
+
+ auto iter25 = m.find(NoDefaultCtor(25));
+ ASSERT_NE(iter25, m.end());
+ EXPECT_EQ(iter25->second.num, 75);
+}
+
+TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) {
+ absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m;
+
+ for (int i = 1; i <= 99; ++i) {
+ SCOPED_TRACE(i);
+ m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i));
+ }
+
+ auto iter99 = m.find(NoDefaultCtor(99));
+ ASSERT_NE(iter99, m.end());
+ EXPECT_EQ(iter99->second.num, 1);
+
+ auto iter1 = m.find(NoDefaultCtor(1));
+ ASSERT_NE(iter1, m.end());
+ EXPECT_EQ(iter1->second.num, 99);
+
+ auto iter50 = m.find(NoDefaultCtor(50));
+ ASSERT_NE(iter50, m.end());
+ EXPECT_EQ(iter50->second.num, 50);
+
+ auto iter25 = m.find(NoDefaultCtor(25));
+ ASSERT_NE(iter25, m.end());
+ EXPECT_EQ(iter25->second.num, 75);
+}
+
+TEST(Btree, MapAt) {
+ absl::btree_map<int, int> map = {{1, 2}, {2, 4}};
+ EXPECT_EQ(map.at(1), 2);
+ EXPECT_EQ(map.at(2), 4);
+ map.at(2) = 8;
+ const absl::btree_map<int, int> &const_map = map;
+ EXPECT_EQ(const_map.at(1), 2);
+ EXPECT_EQ(const_map.at(2), 8);
+ try {
+ map.at(3);
+ FAIL() << "Exception not thrown";
+ } catch (const std::out_of_range& e) {
+ EXPECT_STREQ(e.what(), "absl::btree_map::at");
+ }
+}
+
+TEST(Btree, BtreeMultisetEmplace) {
+ const int value_to_insert = 123456;
+ absl::btree_multiset<int> s;
+ auto iter = s.emplace(value_to_insert);
+ ASSERT_NE(iter, s.end());
+ EXPECT_EQ(*iter, value_to_insert);
+ auto iter2 = s.emplace(value_to_insert);
+ EXPECT_NE(iter2, iter);
+ ASSERT_NE(iter2, s.end());
+ EXPECT_EQ(*iter2, value_to_insert);
+ auto result = s.equal_range(value_to_insert);
+ EXPECT_EQ(std::distance(result.first, result.second), 2);
+}
+
+TEST(Btree, BtreeMultisetEmplaceHint) {
+ const int value_to_insert = 123456;
+ absl::btree_multiset<int> s;
+ auto iter = s.emplace(value_to_insert);
+ ASSERT_NE(iter, s.end());
+ EXPECT_EQ(*iter, value_to_insert);
+ auto emplace_iter = s.emplace_hint(iter, value_to_insert);
+ EXPECT_NE(emplace_iter, iter);
+ ASSERT_NE(emplace_iter, s.end());
+ EXPECT_EQ(*emplace_iter, value_to_insert);
+}
+
+TEST(Btree, BtreeMultimapEmplace) {
+ const int key_to_insert = 123456;
+ const char value0[] = "a";
+ absl::btree_multimap<int, std::string> s;
+ auto iter = s.emplace(key_to_insert, value0);
+ ASSERT_NE(iter, s.end());
+ EXPECT_EQ(iter->first, key_to_insert);
+ EXPECT_EQ(iter->second, value0);
+ const char value1[] = "b";
+ auto iter2 = s.emplace(key_to_insert, value1);
+ EXPECT_NE(iter2, iter);
+ ASSERT_NE(iter2, s.end());
+ EXPECT_EQ(iter2->first, key_to_insert);
+ EXPECT_EQ(iter2->second, value1);
+ auto result = s.equal_range(key_to_insert);
+ EXPECT_EQ(std::distance(result.first, result.second), 2);
+}
+
+TEST(Btree, BtreeMultimapEmplaceHint) {
+ const int key_to_insert = 123456;
+ const char value0[] = "a";
+ absl::btree_multimap<int, std::string> s;
+ auto iter = s.emplace(key_to_insert, value0);
+ ASSERT_NE(iter, s.end());
+ EXPECT_EQ(iter->first, key_to_insert);
+ EXPECT_EQ(iter->second, value0);
+ const char value1[] = "b";
+ auto emplace_iter = s.emplace_hint(iter, key_to_insert, value1);
+ EXPECT_NE(emplace_iter, iter);
+ ASSERT_NE(emplace_iter, s.end());
+ EXPECT_EQ(emplace_iter->first, key_to_insert);
+ EXPECT_EQ(emplace_iter->second, value1);
+}
+
+TEST(Btree, ConstIteratorAccessors) {
+ absl::btree_set<int> set;
+ for (int i = 0; i < 100; ++i) {
+ set.insert(i);
+ }
+
+ auto it = set.cbegin();
+ auto r_it = set.crbegin();
+ for (int i = 0; i < 100; ++i, ++it, ++r_it) {
+ ASSERT_EQ(*it, i);
+ ASSERT_EQ(*r_it, 99 - i);
+ }
+ EXPECT_EQ(it, set.cend());
+ EXPECT_EQ(r_it, set.crend());
+}
+
+TEST(Btree, StrSplitCompatible) {
+ const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ',');
+ const absl::btree_set<std::string> expected_set = {"a", "b", "c"};
+
+ EXPECT_EQ(split_set, expected_set);
+}
+
+// We can't use EXPECT_EQ/etc. to compare absl::weak_ordering because they
+// convert literal 0 to int and absl::weak_ordering can only be compared with
+// literal 0. Defining this function allows for avoiding ClangTidy warnings.
+bool Identity(const bool b) { return b; }
+
+TEST(Btree, ValueComp) {
+ absl::btree_set<int> s;
+ EXPECT_TRUE(s.value_comp()(1, 2));
+ EXPECT_FALSE(s.value_comp()(2, 2));
+ EXPECT_FALSE(s.value_comp()(2, 1));
+
+ absl::btree_map<int, int> m1;
+ EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0)));
+ EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0)));
+ EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0)));
+
+ absl::btree_map<std::string, int> m2;
+ EXPECT_TRUE(Identity(
+ m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)) < 0));
+ EXPECT_TRUE(Identity(
+ m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)) == 0));
+ EXPECT_TRUE(Identity(
+ m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)) > 0));
+}
+
+TEST(Btree, DefaultConstruction) {
+ absl::btree_set<int> s;
+ absl::btree_map<int, int> m;
+ absl::btree_multiset<int> ms;
+ absl::btree_multimap<int, int> mm;
+
+ EXPECT_TRUE(s.empty());
+ EXPECT_TRUE(m.empty());
+ EXPECT_TRUE(ms.empty());
+ EXPECT_TRUE(mm.empty());
+}
+
+TEST(Btree, SwissTableHashable) {
+ static constexpr int kValues = 10000;
+ std::vector<int> values(kValues);
+ std::iota(values.begin(), values.end(), 0);
+ std::vector<std::pair<int, int>> map_values;
+ for (int v : values) map_values.emplace_back(v, -v);
+
+ using set = absl::btree_set<int>;
+ EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
+ set{},
+ set{1},
+ set{2},
+ set{1, 2},
+ set{2, 1},
+ set(values.begin(), values.end()),
+ set(values.rbegin(), values.rend()),
+ }));
+
+ using mset = absl::btree_multiset<int>;
+ EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
+ mset{},
+ mset{1},
+ mset{1, 1},
+ mset{2},
+ mset{2, 2},
+ mset{1, 2},
+ mset{1, 1, 2},
+ mset{1, 2, 2},
+ mset{1, 1, 2, 2},
+ mset(values.begin(), values.end()),
+ mset(values.rbegin(), values.rend()),
+ }));
+
+ using map = absl::btree_map<int, int>;
+ EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
+ map{},
+ map{{1, 0}},
+ map{{1, 1}},
+ map{{2, 0}},
+ map{{2, 2}},
+ map{{1, 0}, {2, 1}},
+ map(map_values.begin(), map_values.end()),
+ map(map_values.rbegin(), map_values.rend()),
+ }));
+
+ using mmap = absl::btree_multimap<int, int>;
+ EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
+ mmap{},
+ mmap{{1, 0}},
+ mmap{{1, 1}},
+ mmap{{1, 0}, {1, 1}},
+ mmap{{1, 1}, {1, 0}},
+ mmap{{2, 0}},
+ mmap{{2, 2}},
+ mmap{{1, 0}, {2, 1}},
+ mmap(map_values.begin(), map_values.end()),
+ mmap(map_values.rbegin(), map_values.rend()),
+ }));
+}
+
+TEST(Btree, ComparableSet) {
+ absl::btree_set<int> s1 = {1, 2};
+ absl::btree_set<int> s2 = {2, 3};
+ EXPECT_LT(s1, s2);
+ EXPECT_LE(s1, s2);
+ EXPECT_LE(s1, s1);
+ EXPECT_GT(s2, s1);
+ EXPECT_GE(s2, s1);
+ EXPECT_GE(s1, s1);
+}
+
+TEST(Btree, ComparableSetsDifferentLength) {
+ absl::btree_set<int> s1 = {1, 2};
+ absl::btree_set<int> s2 = {1, 2, 3};
+ EXPECT_LT(s1, s2);
+ EXPECT_LE(s1, s2);
+ EXPECT_GT(s2, s1);
+ EXPECT_GE(s2, s1);
+}
+
+TEST(Btree, ComparableMultiset) {
+ absl::btree_multiset<int> s1 = {1, 2};
+ absl::btree_multiset<int> s2 = {2, 3};
+ EXPECT_LT(s1, s2);
+ EXPECT_LE(s1, s2);
+ EXPECT_LE(s1, s1);
+ EXPECT_GT(s2, s1);
+ EXPECT_GE(s2, s1);
+ EXPECT_GE(s1, s1);
+}
+
+TEST(Btree, ComparableMap) {
+ absl::btree_map<int, int> s1 = {{1, 2}};
+ absl::btree_map<int, int> s2 = {{2, 3}};
+ EXPECT_LT(s1, s2);
+ EXPECT_LE(s1, s2);
+ EXPECT_LE(s1, s1);
+ EXPECT_GT(s2, s1);
+ EXPECT_GE(s2, s1);
+ EXPECT_GE(s1, s1);
+}
+
+TEST(Btree, ComparableMultimap) {
+ absl::btree_multimap<int, int> s1 = {{1, 2}};
+ absl::btree_multimap<int, int> s2 = {{2, 3}};
+ EXPECT_LT(s1, s2);
+ EXPECT_LE(s1, s2);
+ EXPECT_LE(s1, s1);
+ EXPECT_GT(s2, s1);
+ EXPECT_GE(s2, s1);
+ EXPECT_GE(s1, s1);
+}
+
+TEST(Btree, ComparableSetWithCustomComparator) {
+ // As specified by
+ // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section
+ // [container.requirements.general].12, ordering associative containers always
+ // uses default '<' operator
+ // - even if otherwise the container uses custom functor.
+ absl::btree_set<int, std::greater<int>> s1 = {1, 2};
+ absl::btree_set<int, std::greater<int>> s2 = {2, 3};
+ EXPECT_LT(s1, s2);
+ EXPECT_LE(s1, s2);
+ EXPECT_LE(s1, s1);
+ EXPECT_GT(s2, s1);
+ EXPECT_GE(s2, s1);
+ EXPECT_GE(s1, s1);
+}
+
+TEST(Btree, EraseReturnsIterator) {
+ absl::btree_set<int> set = {1, 2, 3, 4, 5};
+ auto result_it = set.erase(set.begin(), set.find(3));
+ EXPECT_EQ(result_it, set.find(3));
+ result_it = set.erase(set.find(5));
+ EXPECT_EQ(result_it, set.end());
+}
+
+TEST(Btree, ExtractAndInsertNodeHandleSet) {
+ absl::btree_set<int> src1 = {1, 2, 3, 4, 5};
+ auto nh = src1.extract(src1.find(3));
+ EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5));
+ absl::btree_set<int> other;
+ absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(3));
+ EXPECT_EQ(res.position, other.find(3));
+ EXPECT_TRUE(res.inserted);
+ EXPECT_TRUE(res.node.empty());
+
+ absl::btree_set<int> src2 = {3, 4};
+ nh = src2.extract(src2.find(3));
+ EXPECT_THAT(src2, ElementsAre(4));
+ res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(3));
+ EXPECT_EQ(res.position, other.find(3));
+ EXPECT_FALSE(res.inserted);
+ ASSERT_FALSE(res.node.empty());
+ EXPECT_EQ(res.node.value(), 3);
+}
+
+struct Deref {
+ bool operator()(const std::unique_ptr<int> &lhs,
+ const std::unique_ptr<int> &rhs) const {
+ return *lhs < *rhs;
+ }
+};
+
+TEST(Btree, ExtractWithUniquePtr) {
+ absl::btree_set<std::unique_ptr<int>, Deref> s;
+ s.insert(absl::make_unique<int>(1));
+ s.insert(absl::make_unique<int>(2));
+ s.insert(absl::make_unique<int>(3));
+ s.insert(absl::make_unique<int>(4));
+ s.insert(absl::make_unique<int>(5));
+ auto nh = s.extract(s.find(absl::make_unique<int>(3)));
+ EXPECT_EQ(s.size(), 4);
+ EXPECT_EQ(*nh.value(), 3);
+ s.insert(std::move(nh));
+ EXPECT_EQ(s.size(), 5);
+}
+
+TEST(Btree, ExtractAndInsertNodeHandleMultiSet) {
+ absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5};
+ auto nh = src1.extract(src1.find(3));
+ EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5));
+ absl::btree_multiset<int> other;
+ auto res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(3));
+ EXPECT_EQ(res, other.find(3));
+
+ absl::btree_multiset<int> src2 = {3, 4};
+ nh = src2.extract(src2.find(3));
+ EXPECT_THAT(src2, ElementsAre(4));
+ res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(3, 3));
+ EXPECT_EQ(res, ++other.find(3));
+}
+
+TEST(Btree, ExtractAndInsertNodeHandleMap) {
+ absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
+ auto nh = src1.extract(src1.find(3));
+ EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
+ absl::btree_map<int, int> other;
+ absl::btree_map<int, int>::insert_return_type res =
+ other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
+ EXPECT_EQ(res.position, other.find(3));
+ EXPECT_TRUE(res.inserted);
+ EXPECT_TRUE(res.node.empty());
+
+ absl::btree_map<int, int> src2 = {{3, 6}};
+ nh = src2.extract(src2.find(3));
+ EXPECT_TRUE(src2.empty());
+ res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
+ EXPECT_EQ(res.position, other.find(3));
+ EXPECT_FALSE(res.inserted);
+ ASSERT_FALSE(res.node.empty());
+ EXPECT_EQ(res.node.key(), 3);
+ EXPECT_EQ(res.node.mapped(), 6);
+}
+
+TEST(Btree, ExtractAndInsertNodeHandleMultiMap) {
+ absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}};
+ auto nh = src1.extract(src1.find(3));
+ EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6)));
+ absl::btree_multimap<int, int> other;
+ auto res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(Pair(3, 4)));
+ EXPECT_EQ(res, other.find(3));
+
+ absl::btree_multimap<int, int> src2 = {{3, 6}};
+ nh = src2.extract(src2.find(3));
+ EXPECT_TRUE(src2.empty());
+ res = other.insert(std::move(nh));
+ EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6)));
+ EXPECT_EQ(res, ++other.begin());
+}
+
+// For multisets, insert with hint also affects correctness because we need to
+// insert immediately before the hint if possible.
+struct InsertMultiHintData {
+ int key;
+ int not_key;
+ bool operator==(const InsertMultiHintData other) const {
+ return key == other.key && not_key == other.not_key;
+ }
+};
+
+struct InsertMultiHintDataKeyCompare {
+ using is_transparent = void;
+ bool operator()(const InsertMultiHintData a,
+ const InsertMultiHintData b) const {
+ return a.key < b.key;
+ }
+ bool operator()(const int a, const InsertMultiHintData b) const {
+ return a < b.key;
+ }
+ bool operator()(const InsertMultiHintData a, const int b) const {
+ return a.key < b;
+ }
+};
+
+TEST(Btree, InsertHintNodeHandle) {
+ // For unique sets, insert with hint is just a performance optimization.
+ // Test that insert works correctly when the hint is right or wrong.
+ {
+ absl::btree_set<int> src = {1, 2, 3, 4, 5};
+ auto nh = src.extract(src.find(3));
+ EXPECT_THAT(src, ElementsAre(1, 2, 4, 5));
+ absl::btree_set<int> other = {0, 100};
+ // Test a correct hint.
+ auto it = other.insert(other.lower_bound(3), std::move(nh));
+ EXPECT_THAT(other, ElementsAre(0, 3, 100));
+ EXPECT_EQ(it, other.find(3));
+
+ nh = src.extract(src.find(5));
+ // Test an incorrect hint.
+ it = other.insert(other.end(), std::move(nh));
+ EXPECT_THAT(other, ElementsAre(0, 3, 5, 100));
+ EXPECT_EQ(it, other.find(5));
+ }
+
+ absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src =
+ {{1, 2}, {3, 4}, {3, 5}};
+ auto nh = src.extract(src.lower_bound(3));
+ EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4}));
+ absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare>
+ other = {{3, 1}, {3, 2}, {3, 3}};
+ auto it = other.insert(--other.end(), std::move(nh));
+ EXPECT_THAT(
+ other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2},
+ InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3}));
+ EXPECT_EQ(it, --(--other.end()));
+
+ nh = src.extract(src.find(3));
+ EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5}));
+ it = other.insert(other.begin(), std::move(nh));
+ EXPECT_THAT(other,
+ ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1},
+ InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4},
+ InsertMultiHintData{3, 3}));
+ EXPECT_EQ(it, other.begin());
+}
+
+struct IntCompareToCmp {
+ absl::weak_ordering operator()(int a, int b) const {
+ if (a < b) return absl::weak_ordering::less;
+ if (a > b) return absl::weak_ordering::greater;
+ return absl::weak_ordering::equivalent;
+ }
+};
+
+TEST(Btree, MergeIntoUniqueContainers) {
+ absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
+ absl::btree_multiset<int> src2 = {3, 4, 4, 5};
+ absl::btree_set<int> dst;
+
+ dst.merge(src1);
+ EXPECT_TRUE(src1.empty());
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3));
+ dst.merge(src2);
+ EXPECT_THAT(src2, ElementsAre(3, 4));
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
+}
+
+TEST(Btree, MergeIntoUniqueContainersWithCompareTo) {
+ absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
+ absl::btree_multiset<int> src2 = {3, 4, 4, 5};
+ absl::btree_set<int, IntCompareToCmp> dst;
+
+ dst.merge(src1);
+ EXPECT_TRUE(src1.empty());
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3));
+ dst.merge(src2);
+ EXPECT_THAT(src2, ElementsAre(3, 4));
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5));
+}
+
+TEST(Btree, MergeIntoMultiContainers) {
+ absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
+ absl::btree_multiset<int> src2 = {3, 4, 4, 5};
+ absl::btree_multiset<int> dst;
+
+ dst.merge(src1);
+ EXPECT_TRUE(src1.empty());
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3));
+ dst.merge(src2);
+ EXPECT_TRUE(src2.empty());
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
+}
+
+TEST(Btree, MergeIntoMultiContainersWithCompareTo) {
+ absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3};
+ absl::btree_multiset<int> src2 = {3, 4, 4, 5};
+ absl::btree_multiset<int, IntCompareToCmp> dst;
+
+ dst.merge(src1);
+ EXPECT_TRUE(src1.empty());
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3));
+ dst.merge(src2);
+ EXPECT_TRUE(src2.empty());
+ EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5));
+}
+
+TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) {
+ absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}};
+ absl::btree_multimap<int, int, std::greater<int>> src2 = {
+ {5, 5}, {4, 1}, {4, 4}, {3, 2}};
+ absl::btree_multimap<int, int> dst;
+
+ dst.merge(src1);
+ EXPECT_TRUE(src1.empty());
+ EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3)));
+ dst.merge(src2);
+ EXPECT_TRUE(src2.empty());
+ EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2),
+ Pair(4, 1), Pair(4, 4), Pair(5, 5)));
+}
+
+struct KeyCompareToWeakOrdering {
+ template <typename T>
+ absl::weak_ordering operator()(const T &a, const T &b) const {
+ return a < b ? absl::weak_ordering::less
+ : a == b ? absl::weak_ordering::equivalent
+ : absl::weak_ordering::greater;
+ }
+};
+
+struct KeyCompareToStrongOrdering {
+ template <typename T>
+ absl::strong_ordering operator()(const T &a, const T &b) const {
+ return a < b ? absl::strong_ordering::less
+ : a == b ? absl::strong_ordering::equal
+ : absl::strong_ordering::greater;
+ }
+};
+
+TEST(Btree, UserProvidedKeyCompareToComparators) {
+ absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3};
+ EXPECT_TRUE(weak_set.contains(2));
+ EXPECT_FALSE(weak_set.contains(4));
+
+ absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3};
+ EXPECT_TRUE(strong_set.contains(2));
+ EXPECT_FALSE(strong_set.contains(4));
+}
+
+TEST(Btree, TryEmplaceBasicTest) {
+ absl::btree_map<int, std::string> m;
+
+ // Should construct a std::string from the literal.
+ m.try_emplace(1, "one");
+ EXPECT_EQ(1, m.size());
+
+ // Try other std::string constructors and const lvalue key.
+ const int key(42);
+ m.try_emplace(key, 3, 'a');
+ m.try_emplace(2, std::string("two"));
+
+ EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
+ EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{
+ {1, "one"}, {2, "two"}, {42, "aaa"}}));
+}
+
+TEST(Btree, TryEmplaceWithHintWorks) {
+ // Use a counting comparator here to verify that hint is used.
+ int calls = 0;
+ auto cmp = [&calls](int x, int y) {
+ ++calls;
+ return x < y;
+ };
+ using Cmp = decltype(cmp);
+
+ absl::btree_map<int, int, Cmp> m(cmp);
+ for (int i = 0; i < 128; ++i) {
+ m.emplace(i, i);
+ }
+
+ // Sanity check for the comparator
+ calls = 0;
+ m.emplace(127, 127);
+ EXPECT_GE(calls, 4);
+
+ // Try with begin hint:
+ calls = 0;
+ auto it = m.try_emplace(m.begin(), -1, -1);
+ EXPECT_EQ(129, m.size());
+ EXPECT_EQ(it, m.begin());
+ EXPECT_LE(calls, 2);
+
+ // Try with end hint:
+ calls = 0;
+ std::pair<int, int> pair1024 = {1024, 1024};
+ it = m.try_emplace(m.end(), pair1024.first, pair1024.second);
+ EXPECT_EQ(130, m.size());
+ EXPECT_EQ(it, --m.end());
+ EXPECT_LE(calls, 2);
+
+ // Try value already present, bad hint; ensure no duplicate added:
+ calls = 0;
+ it = m.try_emplace(m.end(), 16, 17);
+ EXPECT_EQ(130, m.size());
+ EXPECT_GE(calls, 4);
+ EXPECT_EQ(it, m.find(16));
+
+ // Try value already present, hint points directly to it:
+ calls = 0;
+ it = m.try_emplace(it, 16, 17);
+ EXPECT_EQ(130, m.size());
+ EXPECT_LE(calls, 2);
+ EXPECT_EQ(it, m.find(16));
+
+ m.erase(2);
+ EXPECT_EQ(129, m.size());
+ auto hint = m.find(3);
+ // Try emplace in the middle of two other elements.
+ calls = 0;
+ m.try_emplace(hint, 2, 2);
+ EXPECT_EQ(130, m.size());
+ EXPECT_LE(calls, 2);
+
+ EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
+}
+
+TEST(Btree, TryEmplaceWithBadHint) {
+ absl::btree_map<int, int> m = {{1, 1}, {9, 9}};
+
+ // Bad hint (too small), should still emplace:
+ auto it = m.try_emplace(m.begin(), 2, 2);
+ EXPECT_EQ(it, ++m.begin());
+ EXPECT_THAT(m, ElementsAreArray(
+ std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}}));
+
+ // Bad hint, too large this time:
+ it = m.try_emplace(++(++m.begin()), 0, 0);
+ EXPECT_EQ(it, m.begin());
+ EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{
+ {0, 0}, {1, 1}, {2, 2}, {9, 9}}));
+}
+
+TEST(Btree, TryEmplaceMaintainsSortedOrder) {
+ absl::btree_map<int, std::string> m;
+ std::pair<int, std::string> pair5 = {5, "five"};
+
+ // Test both lvalue & rvalue emplace.
+ m.try_emplace(10, "ten");
+ m.try_emplace(pair5.first, pair5.second);
+ EXPECT_EQ(2, m.size());
+ EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
+
+ int int100{100};
+ m.try_emplace(int100, "hundred");
+ m.try_emplace(1, "one");
+ EXPECT_EQ(4, m.size());
+ EXPECT_TRUE(std::is_sorted(m.begin(), m.end()));
+}
+
+TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) {
+ absl::btree_map<int, int> m;
+ m.try_emplace(m.end(), 1);
+ EXPECT_EQ(0, m[1]);
+}
+
+TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) {
+ absl::btree_map<int, std::string> m;
+ m.try_emplace(m.end(), 1, 10, 'a');
+ EXPECT_EQ(std::string(10, 'a'), m[1]);
+}
+
+TEST(Btree, MoveAssignmentAllocatorPropagation) {
+ InstanceTracker tracker;
+
+ int64_t bytes1 = 0, bytes2 = 0;
+ PropagatingCountingAlloc<MovableOnlyInstance> allocator1(&bytes1);
+ PropagatingCountingAlloc<MovableOnlyInstance> allocator2(&bytes2);
+ std::less<MovableOnlyInstance> cmp;
+
+ // Test propagating allocator_type.
+ {
+ absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
+ PropagatingCountingAlloc<MovableOnlyInstance>>
+ set1(cmp, allocator1), set2(cmp, allocator2);
+
+ for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
+
+ tracker.ResetCopiesMovesSwaps();
+ set2 = std::move(set1);
+ EXPECT_EQ(tracker.moves(), 0);
+ }
+ // Test non-propagating allocator_type with equal allocators.
+ {
+ absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
+ CountingAllocator<MovableOnlyInstance>>
+ set1(cmp, allocator1), set2(cmp, allocator1);
+
+ for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
+
+ tracker.ResetCopiesMovesSwaps();
+ set2 = std::move(set1);
+ EXPECT_EQ(tracker.moves(), 0);
+ }
+ // Test non-propagating allocator_type with different allocators.
+ {
+ absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>,
+ CountingAllocator<MovableOnlyInstance>>
+ set1(cmp, allocator1), set2(cmp, allocator2);
+
+ for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i));
+
+ tracker.ResetCopiesMovesSwaps();
+ set2 = std::move(set1);
+ EXPECT_GE(tracker.moves(), 100);
+ }
+}
+
+} // namespace
+} // namespace container_internal
+} // namespace absl