From 0cfdb30120976290068f4bcbebbf236b960afbb6 Mon Sep 17 00:00:00 2001 From: dummy Date: Thu, 26 Dec 2013 20:01:30 -0400 Subject: [PATCH] hack to build --- Crypto/Number/Basic.hs | 14 -------------- Crypto/Number/ModArithmetic.hs | 29 ----------------------------- Crypto/Number/Prime.hs | 18 ------------------ crypto-numbers.cabal | 2 +- 4 files changed, 1 insertion(+), 62 deletions(-) diff --git a/Crypto/Number/Basic.hs b/Crypto/Number/Basic.hs index 65c14b3..eaee853 100644 --- a/Crypto/Number/Basic.hs +++ b/Crypto/Number/Basic.hs @@ -20,11 +20,7 @@ module Crypto.Number.Basic , areEven ) where -#if MIN_VERSION_integer_gmp(0,5,1) -import GHC.Integer.GMP.Internals -#else import Data.Bits -#endif -- | sqrti returns two integer (l,b) so that l <= sqrt i <= b -- the implementation is quite naive, use an approximation for the first number @@ -63,25 +59,16 @@ sqrti i -- gcde 'a' 'b' find (x,y,gcd(a,b)) where ax + by = d -- gcde :: Integer -> Integer -> (Integer, Integer, Integer) -#if MIN_VERSION_integer_gmp(0,5,1) -gcde a b = (s, t, g) - where (# g, s #) = gcdExtInteger a b - t = (g - s * a) `div` b -#else gcde a b = if d < 0 then (-x,-y,-d) else (x,y,d) where (d, x, y) = f (a,1,0) (b,0,1) f t (0, _, _) = t f (a', sa, ta) t@(b', sb, tb) = let (q, r) = a' `divMod` b' in f t (r, sa - (q * sb), ta - (q * tb)) -#endif -- | get the extended GCD of two integer using the extended binary algorithm (HAC 14.61) -- get (x,y,d) where d = gcd(a,b) and x,y satisfying ax + by = d gcde_binary :: Integer -> Integer -> (Integer, Integer, Integer) -#if MIN_VERSION_integer_gmp(0,5,1) -gcde_binary = gcde -#else gcde_binary a' b' | b' == 0 = (1,0,a') | a' >= b' = compute a' b' @@ -105,7 +92,6 @@ gcde_binary a' b' in if u2 >= v2 then loop g x y (u2 - v2) v2 (a2 - c2) (b2 - d2) c2 d2 else loop g x y u2 (v2 - u2) a2 b2 (c2 - a2) (d2 - b2) -#endif -- | check if a list of integer are all even areEven :: [Integer] -> Bool diff --git a/Crypto/Number/ModArithmetic.hs b/Crypto/Number/ModArithmetic.hs index 942c12f..f8cfc32 100644 --- a/Crypto/Number/ModArithmetic.hs +++ b/Crypto/Number/ModArithmetic.hs @@ -29,12 +29,8 @@ module Crypto.Number.ModArithmetic import Control.Exception (throw, Exception) import Data.Typeable -#if MIN_VERSION_integer_gmp(0,5,1) -import GHC.Integer.GMP.Internals -#else import Crypto.Number.Basic (gcde_binary) import Data.Bits -#endif -- | Raised when two numbers are supposed to be coprimes but are not. data CoprimesAssertionError = CoprimesAssertionError @@ -55,13 +51,7 @@ expSafe :: Integer -- ^ base -> Integer -- ^ exponant -> Integer -- ^ modulo -> Integer -- ^ result -#if MIN_VERSION_integer_gmp(0,5,1) -expSafe b e m - | odd m = powModSecInteger b e m - | otherwise = powModInteger b e m -#else expSafe = exponentiation -#endif -- | Compute the modular exponentiation of base^exponant using -- the fastest algorithm without any consideration for @@ -74,11 +64,7 @@ expFast :: Integer -- ^ base -> Integer -- ^ modulo -> Integer -- ^ result expFast = -#if MIN_VERSION_integer_gmp(0,5,1) - powModInteger -#else exponentiation -#endif -- note on exponentiation: 0^0 is treated as 1 for mimicking the standard library; -- the mathematic debate is still open on whether or not this is true, but pratically @@ -87,22 +73,15 @@ expFast = -- | exponentiation_rtl_binary computes modular exponentiation as b^e mod m -- using the right-to-left binary exponentiation algorithm (HAC 14.79) exponentiation_rtl_binary :: Integer -> Integer -> Integer -> Integer -#if MIN_VERSION_integer_gmp(0,5,1) -exponentiation_rtl_binary = expSafe -#else exponentiation_rtl_binary 0 0 m = 1 `mod` m exponentiation_rtl_binary b e m = loop e b 1 where sq x = (x * x) `mod` m loop !0 _ !a = a `mod` m loop !i !s !a = loop (i `shiftR` 1) (sq s) (if odd i then a * s else a) -#endif -- | exponentiation computes modular exponentiation as b^e mod m -- using repetitive squaring. exponentiation :: Integer -> Integer -> Integer -> Integer -#if MIN_VERSION_integer_gmp(0,5,1) -exponentiation = expSafe -#else exponentiation b e m | b == 1 = b | e == 0 = 1 @@ -110,7 +89,6 @@ exponentiation b e m | even e = let p = (exponentiation b (e `div` 2) m) `mod` m in (p^(2::Integer)) `mod` m | otherwise = (b * exponentiation b (e-1) m) `mod` m -#endif --{-# DEPRECATED exponantiation_rtl_binary "typo in API name it's called exponentiation_rtl_binary #-} exponantiation_rtl_binary :: Integer -> Integer -> Integer -> Integer @@ -122,17 +100,10 @@ exponantiation = exponentiation -- | inverse computes the modular inverse as in g^(-1) mod m inverse :: Integer -> Integer -> Maybe Integer -#if MIN_VERSION_integer_gmp(0,5,1) -inverse g m - | r == 0 = Nothing - | otherwise = Just r - where r = recipModInteger g m -#else inverse g m | d > 1 = Nothing | otherwise = Just (x `mod` m) where (x,_,d) = gcde_binary g m -#endif -- | Compute the modular inverse of 2 coprime numbers. -- This is equivalent to inverse except that the result diff --git a/Crypto/Number/Prime.hs b/Crypto/Number/Prime.hs index 0cea9da..458c94d 100644 --- a/Crypto/Number/Prime.hs +++ b/Crypto/Number/Prime.hs @@ -3,9 +3,7 @@ #ifndef MIN_VERSION_integer_gmp #define MIN_VERSION_integer_gmp(a,b,c) 0 #endif -#if MIN_VERSION_integer_gmp(0,5,1) {-# LANGUAGE MagicHash #-} -#endif -- | -- Module : Crypto.Number.Prime -- License : BSD-style @@ -30,12 +28,7 @@ import Crypto.Number.Generate import Crypto.Number.Basic (sqrti, gcde_binary) import Crypto.Number.ModArithmetic (exponantiation) -#if MIN_VERSION_integer_gmp(0,5,1) -import GHC.Integer.GMP.Internals -import GHC.Base -#else import Data.Bits -#endif -- | returns if the number is probably prime. -- first a list of small primes are implicitely tested for divisibility, @@ -78,21 +71,11 @@ findPrimeFromWith rng prop !n -- | find a prime from a starting point with no specific property. findPrimeFrom :: CPRG g => g -> Integer -> (Integer, g) findPrimeFrom rng n = -#if MIN_VERSION_integer_gmp(0,5,1) - (nextPrimeInteger n, rng) -#else findPrimeFromWith rng (\g _ -> (True, g)) n -#endif -- | Miller Rabin algorithm return if the number is probably prime or composite. -- the tries parameter is the number of recursion, that determines the accuracy of the test. primalityTestMillerRabin :: CPRG g => g -> Int -> Integer -> (Bool, g) -#if MIN_VERSION_integer_gmp(0,5,1) -primalityTestMillerRabin rng (I# tries) !n = - case testPrimeInteger n tries of - 0# -> (False, rng) - _ -> (True, rng) -#else primalityTestMillerRabin rng tries !n | n <= 3 = error "Miller-Rabin requires tested value to be > 3" | even n = (False, rng) @@ -129,7 +112,6 @@ primalityTestMillerRabin rng tries !n | x2 == 1 = False | x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1) | otherwise = loop ws -#endif {- n < z -> witness to test diff --git a/crypto-numbers.cabal b/crypto-numbers.cabal index 9610e34..6669d78 100644 --- a/crypto-numbers.cabal +++ b/crypto-numbers.cabal @@ -15,7 +15,7 @@ Extra-Source-Files: Tests/*.hs Flag integer-gmp Description: Are we using integer-gmp? - Default: True + Default: False Library Build-Depends: base >= 4 && < 5 -- 1.7.10.4