aboutsummaryrefslogtreecommitdiff
path: root/src/Util/FixedWordSizesEquality.v
blob: 797c7ee3b33c174a0b7b85626754a8bf6abcb1ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
Require Import Coq.ZArith.ZArith.
Require Import Coq.NArith.BinNat.
Require Import Coq.Arith.Arith.
Require Import bbv.WordScope.
Require Import Crypto.Util.FixedWordSizes.
Require Import Crypto.Util.WordUtil.
Require Import Crypto.Util.ZUtil.Log2.
Require Import Crypto.Util.ZUtil.Z2Nat.
Require Import Crypto.Util.Tactics.BreakMatch.

Definition wordT_beq_hetero {logsz1 logsz2} : wordT logsz1 -> wordT logsz2 -> bool
  := match logsz1 return wordT logsz1 -> wordT logsz2 -> bool with
     | 5 as logsz1' | 6 as logsz1' | 7 as logsz1'
     | _ as logsz1'
       => match logsz2 return wordT logsz1' -> wordT logsz2 -> bool with
          | 5 as logsz2' | 6 as logsz2' | 7 as logsz2'
          | _ as logsz2'
            => @Word.weqb_hetero (2^logsz1') (2^logsz2')
          end
     end.

(* transparent so the equality proof can compute away *)
Lemma pow2_inj_helper x y : 2^x = 2^y -> x = y.
Proof.
  destruct (NatUtil.nat_eq_dec x y) as [pf|pf]; [ intros; assumption | ].
  intro H; exfalso.
  let pf := pf in
  abstract (apply pf; eapply NPeano.Nat.pow_inj_r; [ | eassumption ]; omega).
Defined.
Lemma pow2_inj_helper_refl x p : pow2_inj_helper x x p = eq_refl.
Proof.
  induction x; simpl; [ reflexivity | ].
  etransitivity; [ | exact (f_equal (fun p => f_equal S p) (IHx eq_refl)) ]; clear IHx.
  unfold pow2_inj_helper in *; simpl.
  pose proof (NatUtil.nat_eq_dec_S x x).
  do 2 edestruct NatUtil.nat_eq_dec; try assumption; try (exfalso; assumption).
  match goal with
  | [ H : ?x <> ?x |- _ ] => exfalso; clear -H; exact (H eq_refl)
  end.
Defined.
Lemma pow2_inj_helper_eq_rect x y P v v'
  : (exists pf : 2^x = 2^y, eq_rect _ P v _ pf = v')
    -> (exists pf : x = y, eq_rect _ (fun e => P (2^e)) v _ pf = v').
Proof.
  intros [pf H]; exists (pow2_inj_helper x y pf); subst v'.
  destruct (NatUtil.nat_eq_dec x y) as [H|H];
    [ | exfalso; clear -pf H;
        let pf := pf in
        abstract (apply pow2_inj_helper in pf; omega) ].
  subst; rewrite pow2_inj_helper_refl; simpl.
  pose proof (NatUtil.UIP_nat_transparent _ _ pf eq_refl); subst pf.
  reflexivity.
Defined.

Definition wordT_beq_lb logsz1
  : forall x y : wordT logsz1, x = y -> wordT_beq_hetero x y = true
  := match logsz1 return forall x y : wordT logsz1, x = y -> wordT_beq_hetero x y = true with
     | 5 as logsz1' | 6 as logsz1' | 7 as logsz1'
     | _ as logsz1'
       => fun x y pf => proj2 (@Word.weqb_hetero_true_iff (2^logsz1') x (2^logsz1') y) (ex_intro _ eq_refl pf)
     end.
Definition wordT_beq_hetero_lb {logsz1 logsz2}
  : forall x y, (exists pf : logsz1 = logsz2, eq_rect _ wordT x _ pf = y) -> wordT_beq_hetero x y = true.
Proof.
  intros x y [pf H]; subst logsz2; revert x y H; simpl.
  apply wordT_beq_lb.
Defined.

Definition wordT_beq_bl logsz
  : forall x y : wordT logsz, wordT_beq_hetero x y = true -> x = y
  := match logsz return forall x y : wordT logsz, wordT_beq_hetero x y = true -> x = y with
     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
     | _
       => fun x y pf => proj1 (Word.weqb_hetero_homo_true_iff _ x y) pf
     end.

Lemma wordT_beq_hetero_type_lb_false logsz1 logsz2 x y : logsz1 <> logsz2 -> @wordT_beq_hetero logsz1 logsz2 x y = false.
Proof.
  destruct (wordT_beq_hetero x y) eqn:H; [ | reflexivity ].
  revert H.
  repeat (try destruct logsz1 as [|logsz1];
          try destruct logsz2 as [|logsz2];
          try (intros; omega);
          try (intro H'; apply Word.weqb_hetero_true_iff in H'; destruct H' as [pf H']; pose proof (pow2_inj_helper _ _ pf); try omega)).
Qed.

Definition wordT_beq_hetero_bl {logsz1 logsz2}
  : forall x y, wordT_beq_hetero x y = true -> (exists pf : logsz1 = logsz2, eq_rect _ wordT x _ pf = y).
Proof.
  refine match logsz1, logsz2 return forall x y, wordT_beq_hetero x y = true -> (exists pf : logsz1 = logsz2, eq_rect _ wordT x _ pf = y) with
         | 0, 0 | 1, 1 | 2, 2 | 3, 3 | 4, 4 | 5, 5 | 6, 6
         | 7, 7
           => fun x y pf => ex_intro _ eq_refl (@wordT_beq_bl _ x y pf)
         | S (S (S (S (S (S (S (S a))))))), S (S (S (S (S (S (S (S b)))))))
           => match NatUtil.nat_eq_dec a b with
              | left pf
                => match pf with
                   | eq_refl => fun x y pf => ex_intro _ eq_refl (@wordT_beq_bl _ x y pf)
                   end
              | right n => fun x y pf => match _ : False with end
              end
         | _, _
           => fun x y pf => match _ : False with end
         end;
    match goal with
    | [ pf : _ = _ |- _ ]
      => abstract (rewrite wordT_beq_hetero_type_lb_false in pf by omega; clear -pf; congruence)
    end.
Defined.

Lemma ZToWord_gen_wordToZ_gen : forall {sz} v, ZToWord_gen (@wordToZ_gen sz v) = v.
Proof.
  unfold ZToWord_gen, wordToZ_gen.
  intros.
  rewrite N2Z.id, NToWord_wordToN; reflexivity.
Qed.

Lemma wordToZ_gen_ZToWord_gen : forall {sz} v, (0 <= v < 2^(Z.of_nat sz))%Z -> @wordToZ_gen sz (ZToWord_gen v) = v.
Proof.
  unfold ZToWord_gen, wordToZ_gen.
  intros ?? [H0 H1].
  rewrite wordToN_NToWord_idempotent, Z2N.id; try omega.
  rewrite Npow2_N.
  apply Z2N.inj_lt in H1; [ | omega.. ].
  rewrite Z2N.inj_pow, <- nat_N_Z, N2Z.id in H1 by omega.
  assumption.
Qed.

Lemma wordToZ_gen_ZToWord_gen_mod : forall {sz} w, (0 <= w)%Z -> wordToZ_gen (@ZToWord_gen sz w) = (w mod (2^Z.of_nat sz))%Z.
Proof.
  unfold ZToWord_gen, wordToZ_gen.
  intros sz w H.
  rewrite wordToN_NToWord_mod.
  rewrite N2Z.inj_mod by (destruct sz; simpl; congruence).
  rewrite Z2N.id, N2Z.inj_pow, nat_N_Z by assumption.
  reflexivity.
Qed.

Lemma wordToZ_gen_ZToWord_gen_0 : forall {sz}, wordToZ_gen (@ZToWord_gen sz 0) = 0%Z.
Proof.
  intros; rewrite wordToZ_gen_ZToWord_gen_mod by reflexivity.
  rewrite Z.mod_0_l by auto with zarith.
  reflexivity.
Qed.

Lemma wordToZ_gen_ZToWord_gen_neg : forall {sz} w, (w <= 0)%Z -> wordToZ_gen (@ZToWord_gen sz w) = 0%Z.
Proof.
  unfold ZToWord_gen, wordToZ_gen.
  intros sz w H.
  destruct w.
  { apply wordToZ_gen_ZToWord_gen_0. }
  { compute in H; congruence. }
  { apply wordToZ_gen_ZToWord_gen_0. }
Qed.

Lemma wordToZ_gen_ZToWord_gen_mod_full : forall {sz} w, wordToZ_gen (@ZToWord_gen sz w) = (Z.max 0 w mod (2^Z.of_nat sz))%Z.
Proof.
  intros; apply Z.max_case_strong; intro.
  { apply wordToZ_gen_ZToWord_gen_neg; omega. }
  { apply wordToZ_gen_ZToWord_gen_mod; assumption. }
Qed.

Lemma ZToWord_gen_wordToZ_gen_ZToWord_gen : forall {sz1 sz2} v,
    (sz2 <= sz1)%nat -> @ZToWord_gen sz2 (wordToZ_gen (@ZToWord_gen sz1 v)) = ZToWord_gen v.
Proof.
  unfold ZToWord_gen, wordToZ_gen.
  intros sz1 sz2 v H.
  rewrite N2Z.id, NToWord_wordToN_NToWord by omega.
  reflexivity.
Qed.

Lemma ZToWord_gen_wordToZ_gen_ZToWord_gen_small : forall {sz1 sz2} v,
    (wordToZ_gen (@ZToWord_gen sz2 v) < 2^(Z.of_nat sz1))%Z
    -> @ZToWord_gen sz2 (wordToZ_gen (@ZToWord_gen sz1 v)) = ZToWord_gen v.
Proof.
  unfold ZToWord_gen, wordToZ_gen.
  intros sz1 sz2 v H.
  change 2%Z with (Z.of_nat 2) in H.
  rewrite <- !nat_N_Z, <- N2Z.inj_pow, <- N2Z.inj_lt in H.
  rewrite N2Z.id, NToWord_wordToN_NToWord_small by assumption.
  reflexivity.
Qed.

Lemma wordToZ_gen_ZToWord_gen_wordToZ_gen sz1 sz2 w
  : (sz1 <= sz2)%nat -> wordToZ_gen (@ZToWord_gen sz2 (@wordToZ_gen sz1 w)) = wordToZ_gen w.
Proof.
  unfold ZToWord_gen, wordToZ_gen; intro H.
  rewrite N2Z.id, wordToN_NToWord_wordToN by omega.
  reflexivity.
Qed.

Lemma eq_ZToWord_gen : forall {sz} v1 v2, (Z.max 0 v1 mod 2^Z.of_nat sz = Z.max 0 v2 mod 2^Z.of_nat sz)%Z
                                          <-> @ZToWord_gen sz v1 = @ZToWord_gen sz v2.
Proof.
  intros; split; intro H.
  { rewrite <- (ZToWord_gen_wordToZ_gen (ZToWord_gen v1)), <- (ZToWord_gen_wordToZ_gen (ZToWord_gen v2)).
    rewrite !wordToZ_gen_ZToWord_gen_mod_full.
    congruence. }
  { apply (f_equal wordToZ_gen) in H; revert H.
    rewrite !wordToZ_gen_ZToWord_gen_mod_full.
    trivial. }
Qed.

Lemma ZToWord_wordToZ : forall {sz} v, ZToWord (@wordToZ sz v) = v.
Proof.
  unfold wordT, word_case in *.
  intro sz; break_match; simpl; apply ZToWord_gen_wordToZ_gen.
Qed.

Lemma wordToZ_ZToWord : forall {sz} v, (0 <= v < 2^(Z.of_nat (2^sz)))%Z -> @wordToZ sz (ZToWord v) = v.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros; break_match; apply wordToZ_gen_ZToWord_gen;
    assumption.
Qed.

Lemma wordToZ_ZToWord_mod : forall {sz} v, (0 <= v)%Z -> wordToZ (@ZToWord sz v) = (v mod (2^Z.of_nat (2^sz)))%Z.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros; break_match; apply wordToZ_gen_ZToWord_gen_mod;
    assumption.
Qed.

Local Ltac handle_le :=
  repeat match goal with
         | [ |- (S ?a <= 2^?b)%nat ]
           => change (2^(Nat.log2 (S a)) <= 2^b)%nat
         | [ |- (2^_ <= 2^_)%nat ]
           => apply Nat.pow_le_mono_r
         | [ |- _ <> _ ] => intro; omega
         | _ => assumption
         | [ |- (_ <= S _)%nat ]
           => apply Nat.leb_le; vm_compute; reflexivity
         | _ => exfalso; omega
         end.

Lemma ZToWord_wordToZ_ZToWord : forall {sz1 sz2} v,
    (sz2 <= sz1)%nat -> @ZToWord sz2 (wordToZ (@ZToWord sz1 v)) = ZToWord v.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros sz1 sz2; break_match; intros; apply ZToWord_gen_wordToZ_gen_ZToWord_gen;
    handle_le.
Qed.

Lemma ZToWord_wordToZ_ZToWord_small : forall {sz1 sz2} v,
    (wordToZ (@ZToWord sz2 v) < 2^Z.of_nat (2^sz1))%Z -> @ZToWord sz2 (wordToZ (@ZToWord sz1 v)) = ZToWord v.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros sz1 sz2; break_match; intros; apply ZToWord_gen_wordToZ_gen_ZToWord_gen_small;
    handle_le; try omega.
Qed.

Lemma wordToZ_ZToWord_wordToZ : forall sz1 sz2 w, (sz1 <= sz2)%nat -> wordToZ (@ZToWord sz2 (@wordToZ sz1 w)) = wordToZ w.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros sz1 sz2; break_match; intros; apply wordToZ_gen_ZToWord_gen_wordToZ_gen;
    handle_le.
Qed.

Lemma wordToZ_ZToWord_0 : forall {sz}, wordToZ (@ZToWord sz 0) = 0%Z.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros sz; break_match; intros; apply wordToZ_gen_ZToWord_gen_0.
Qed.

Lemma wordToZ_ZToWord_neg : forall {sz} w, (w <= 0)%Z -> wordToZ (@ZToWord sz w) = 0%Z.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros sz w; break_match; apply wordToZ_gen_ZToWord_gen_neg.
Qed.

Lemma wordToZ_ZToWord_mod_full : forall {sz} w, wordToZ (@ZToWord sz w) = ((Z.max 0 w) mod (2^Z.of_nat (2^sz)))%Z.
Proof.
  unfold wordToZ, ZToWord, word_case_dep.
  intros sz w; break_match; apply wordToZ_gen_ZToWord_gen_mod_full.
Qed.

Lemma eq_ZToWord : forall {sz} v1 v2, (Z.max 0 v1 mod 2^Z.of_nat (2^sz) = Z.max 0 v2 mod 2^Z.of_nat (2^sz))%Z
                                      <-> @ZToWord sz v1 = @ZToWord sz v2.
Proof.
  unfold ZToWord, word_case_dep.
  intros sz v1 v2; break_innermost_match; apply eq_ZToWord_gen.
Qed.

Local Ltac wordToZ_word_case_dep_t :=
  let H := fresh in
  intro H;
  intros; unfold wordToZ, word_case_dep, wordT, word_case, word32, word64, word128, word32ToZ, word64ToZ, word128ToZ in *;
  break_innermost_match;
  change 128%nat with (2^7)%nat in *;
  change 64%nat with (2^6)%nat in *;
  change 32%nat with (2^5)%nat in *;
  apply H.

Lemma wordToZ_word_case_dep_unop (wop : forall sz, word sz -> word sz)
      (P : nat -> Z -> Z -> Type)
  : (forall logsz (x : word (2^logsz)), P logsz (wordToZ_gen x) (wordToZ_gen (wop (2^logsz) x)))
    -> forall logsz (x : wordT logsz), P logsz (wordToZ x) (wordToZ (word_case_dep (T:=fun _ W => W -> W) logsz (wop 32) (wop 64) (wop 128) (fun _ => wop _) x)).
Proof. wordToZ_word_case_dep_t. Qed.

Lemma wordToZ_word_case_dep_11op {T} (wop : forall sz, T -> word sz -> word sz)
      (P : nat -> Z -> Z -> Type)
      {v}
  : (forall logsz (x : word (2^logsz)), P logsz (wordToZ_gen x) (wordToZ_gen (wop (2^logsz) v x)))
    -> forall logsz (x : wordT logsz), P logsz (wordToZ x) (wordToZ (word_case_dep (T:=fun _ W => T -> W -> W) logsz (wop 32) (wop 64) (wop 128) (fun _ => wop _) v x)).
Proof. wordToZ_word_case_dep_t. Qed.

Lemma wordToZ_word_case_dep_binop (wop : forall sz, word sz -> word sz -> word sz)
      (P : nat -> Z -> Z -> Z -> Type)
  : (forall logsz (x y : word (2^logsz)), P logsz (wordToZ_gen x) (wordToZ_gen y) (wordToZ_gen (wop (2^logsz) x y)))
    -> forall logsz (x y : wordT logsz), P logsz (wordToZ x) (wordToZ y) (wordToZ (word_case_dep (T:=fun _ W => W -> W -> W) logsz (wop 32) (wop 64) (wop 128) (fun _ => wop _) x y)).
Proof. wordToZ_word_case_dep_t. Qed.

Lemma wordToZ_word_case_dep_quadop (wop : forall sz, word sz -> word sz -> word sz -> word sz -> word sz)
      (P : nat -> Z -> Z -> Z -> Z -> Z -> Type)
  : (forall logsz (x y z w : word (2^logsz)), P logsz (wordToZ_gen x) (wordToZ_gen y) (wordToZ_gen z) (wordToZ_gen w) (wordToZ_gen (wop (2^logsz) x y z w)))
    -> forall logsz (x y z w : wordT logsz), P logsz (wordToZ x) (wordToZ y) (wordToZ z) (wordToZ w) (wordToZ (word_case_dep (T:=fun _ W => W -> W -> W -> W -> W) logsz (wop 32) (wop 64) (wop 128) (fun _ => wop _) x y z w)).
Proof. wordToZ_word_case_dep_t. Qed.

(** This converts goals involving (currently only binary) [wordT]
    operations to the corresponding goals involving [word]
    operations. *)
Ltac syntactic_fixed_size_op_to_word :=
  lazymatch goal with
  | [ |- context[wordToZ (word_case_dep (T:=?T) ?logsz (?wop 32) (?wop 64) (?wop 128) ?f ?x)] ]
    => move x at top;
       revert dependent logsz; intros logsz x;
       pattern (wordToZ x), (wordToZ (word_case_dep (T:=T) logsz (wop 32) (wop 64) (wop 128) f x));
       let P := lazymatch goal with |- ?P _ _ => P end in
       let P := lazymatch (eval pattern logsz in P) with ?P _ => P end in
       revert logsz x;
       refine (@wordToZ_word_case_dep_unop wop P _);
       intros logsz x; intros
  | [ |- context[wordToZ (word_case_dep (T:=?T) ?logsz (?wop 32) (?wop 64) (?wop 128) ?f ?x ?y)] ]
    => lazymatch type of x with
       | context[logsz]
         => move y at top; move x at top;
            revert dependent logsz; intros logsz x y;
            pattern (wordToZ x), (wordToZ y), (wordToZ (word_case_dep (T:=T) logsz (wop 32) (wop 64) (wop 128) f x y));
            let P := lazymatch goal with |- ?P _ _ _ => P end in
            let P := lazymatch (eval pattern logsz in P) with ?P _ => P end in
            revert logsz x y;
            refine (@wordToZ_word_case_dep_binop wop P _);
            intros logsz x y; intros
       | _
         => move y at top;
            revert dependent logsz; intros logsz y;
            pattern (wordToZ y), (wordToZ (word_case_dep (T:=T) logsz (wop 32) (wop 64) (wop 128) f x y));
            let P := lazymatch goal with |- ?P _ _ => P end in
            let P := lazymatch (eval pattern logsz in P) with ?P _ => P end in
            revert logsz y;
            refine (@wordToZ_word_case_dep_11op _ wop P x _);
            intros logsz y; intros
       end
  | [ |- context[wordToZ (word_case_dep (T:=?T) ?logsz (?wop 32) (?wop 64) (?wop 128) ?f ?x ?y ?z ?w)] ]
    => move w at top; move z at top; move y at top; move x at top;
       revert dependent logsz; intros logsz x y z w;
       pattern (wordToZ x), (wordToZ y), (wordToZ z), (wordToZ w), (wordToZ (word_case_dep (T:=T) logsz (wop 32) (wop 64) (wop 128) f x y z w));
       let P := lazymatch goal with |- ?P _ _ _ _ _ => P end in
       let P := lazymatch (eval pattern logsz in P) with ?P _ => P end in
       revert logsz x y z w;
       refine (@wordToZ_word_case_dep_quadop wop P _);
       intros logsz x y z w; intros
  end.
Ltac fixed_size_op_to_word :=
  repeat autounfold with fixed_size_constants in *;
  syntactic_fixed_size_op_to_word.

Lemma wordToZ_gen_range {sz} w : (0 <= @wordToZ_gen sz w < 2^Z.of_nat sz)%Z.
Proof. apply WordNZ_range; reflexivity. Qed.

Lemma wordToZ_range {logsz} w : (0 <= @wordToZ logsz w < 2^Z.of_nat (2^logsz))%Z.
Proof.
  generalize (@wordToZ_gen_range (2^logsz)); wordToZ_word_case_dep_t.
Qed.

Section log_Updates.
  Local Notation bound n lower value upper := (
       (0 <= lower)%Z
    /\ (lower <= @wordToZ n value)%Z
    /\ (@wordToZ n value <= upper)%Z
    /\ (Z.log2 upper < Z.of_nat (2^n))%Z).

  Definition valid_log_update n lowerF valueF upperF : Prop :=
    forall lower0 value0 upper0
          lower1 value1 upper1,

       bound n lower0 value0 upper0
    -> bound n lower1 value1 upper1
    -> (0 <= lowerF lower0 upper0 lower1 upper1)%Z
    -> (Z.log2 (upperF lower0 upper0 lower1 upper1) < Z.of_nat (2^n))%Z
    -> bound n (lowerF lower0 upper0 lower1 upper1)
                (valueF value0 value1)
                (upperF lower0 upper0 lower1 upper1).

  Lemma word_case_dep_valid_log_update f g wop
    : (forall n,
          WordUtil.valid_update
            n
            f
            (wop n)
            g)
      -> forall n,
          valid_log_update
            n
            f
            (word_case_dep
               (T:=fun _ W => W -> W -> W)
               n (wop 32) (wop 64) (wop 128)
               (fun k : nat => wop (2 ^ k)))
            g.
  Proof.
    intros H n; specialize (H (2^n)%nat).
    unfold valid_log_update; intros; fixed_size_op_to_word; unfold wordToZ_gen; auto.
  Qed.

  Lemma wadd_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => l0 + l1)%Z
        (@wadd n)
        (fun l0 u0 l1 u1 => u0 + u1)%Z.
  Proof. apply word_case_dep_valid_log_update, add_valid_update. Qed.

  Lemma wsub_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => l0 - u1)%Z
        (@wsub n)
        (fun l0 u0 l1 u1 => u0 - l1)%Z.
  Proof. apply word_case_dep_valid_log_update, sub_valid_update. Qed.

  Lemma wmul_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => l0 * l1)%Z
        (@wmul n)
        (fun l0 u0 l1 u1 => u0 * u1)%Z.
  Proof. apply word_case_dep_valid_log_update, mul_valid_update. Qed.

  Lemma wland_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => 0)%Z
        (@wland n)
        (fun l0 u0 l1 u1 => Z.min u0 u1)%Z.
  Proof. apply word_case_dep_valid_log_update, land_valid_update. Qed.

  Lemma wlor_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => Z.max l0 l1)%Z
        (@wlor n)
        (fun l0 u0 l1 u1 => 2^(Z.max (Z.log2_up (u0+1)) (Z.log2_up (u1+1))) - 1)%Z.
  Proof. apply word_case_dep_valid_log_update, lor_valid_update. Qed.

  Lemma wshr_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => Z.shiftr l0 u1)%Z
        (@wshr n)
        (fun l0 u0 l1 u1 => Z.shiftr u0 l1)%Z.
  Proof. apply word_case_dep_valid_log_update, shr_valid_update. Qed.

  Lemma wshl_valid_log_update: forall n,
    valid_log_update n
        (fun l0 u0 l1 u1 => Z.shiftl l0 l1)%Z
        (@wshl n)
        (fun l0 u0 l1 u1 => Z.shiftl u0 u1)%Z.
  Proof. apply word_case_dep_valid_log_update, shl_valid_update. Qed.
End log_Updates.

Lemma lt_log_helper (v : Z) (n : nat)
  : (v < 2^2^Z.of_nat n)%Z <-> (Z.log2 v < Z.of_nat (2^n))%Z.
Proof.
  rewrite Z.log2_lt_pow2_alt, Z.pow_Zpow by auto with zarith.
  reflexivity.
Qed.

Section Updates.
  Local Notation bound n lower value upper := (
       (0 <= lower)%Z
    /\ (lower <= @wordToZ n value)%Z
    /\ (@wordToZ n value <= upper)%Z
    /\ (upper < 2^2^Z.of_nat n)%Z).

  Definition valid_update n lowerF valueF upperF : Prop :=
    forall lower0 value0 upper0
           lower1 value1 upper1,
      bound n lower0 value0 upper0
      -> bound n lower1 value1 upper1
      -> (0 <= lowerF lower0 upper0 lower1 upper1)%Z
      -> (upperF lower0 upper0 lower1 upper1 < 2^2^Z.of_nat n)%Z
      -> bound n (lowerF lower0 upper0 lower1 upper1)
               (valueF value0 value1)
               (upperF lower0 upper0 lower1 upper1).

  Local Ltac t lem :=
    let H := fresh in
    pose proof lem as H;
    repeat (let x := fresh in intro x; specialize (H x));
    rewrite !lt_log_helper; assumption.

  Lemma word_case_dep_valid_update f g wop
    : (forall n,
          WordUtil.valid_update
            n
            f
            (wop n)
            g)
      -> forall n,
          valid_update
            n
            f
            (word_case_dep
               (T:=fun _ W => W -> W -> W)
               n (wop 32) (wop 64) (wop 128)
               (fun k : nat => wop (2 ^ k)))
            g.
  Proof. t (@word_case_dep_valid_log_update f g wop). Qed.

  Lemma wadd_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => l0 + l1)%Z
        (@wadd n)
        (fun l0 u0 l1 u1 => u0 + u1)%Z.
  Proof. t (@wadd_valid_log_update). Qed.

  Lemma wsub_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => l0 - u1)%Z
        (@wsub n)
        (fun l0 u0 l1 u1 => u0 - l1)%Z.
  Proof. t (@wsub_valid_log_update). Qed.

  Lemma wmul_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => l0 * l1)%Z
        (@wmul n)
        (fun l0 u0 l1 u1 => u0 * u1)%Z.
  Proof. t (@wmul_valid_log_update). Qed.

  Lemma wland_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => 0)%Z
        (@wland n)
        (fun l0 u0 l1 u1 => Z.min u0 u1)%Z.
  Proof. t (@wland_valid_log_update). Qed.

  Lemma wlor_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => Z.max l0 l1)%Z
        (@wlor n)
        (fun l0 u0 l1 u1 => 2^(Z.max (Z.log2_up (u0+1)) (Z.log2_up (u1+1))) - 1)%Z.
  Proof. t (@wlor_valid_log_update). Qed.

  Lemma wshr_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => Z.shiftr l0 u1)%Z
        (@wshr n)
        (fun l0 u0 l1 u1 => Z.shiftr u0 l1)%Z.
  Proof. t (@wshr_valid_log_update). Qed.

  Lemma wshl_valid_update: forall n,
    valid_update n
        (fun l0 u0 l1 u1 => Z.shiftl l0 l1)%Z
        (@wshl n)
        (fun l0 u0 l1 u1 => Z.shiftl u0 u1)%Z.
  Proof. t (@wshl_valid_log_update). Qed.
End Updates.

Section pull_ZToWord.
  Local Ltac t0 :=
    intros;
    etransitivity; [ symmetry; apply ZToWord_wordToZ | ]; fixed_size_op_to_word; unfold wordToZ_gen, wordBin;
    apply f_equal.
  Local Ltac t1 lem :=
    let solver := solve [ apply Npow2_Zlog2; autorewrite with push_Zof_N; assumption
                        | apply N2Z.inj_ge; unfold wordToZ_gen in *; omega
                        | apply N2Z.inj_lt; rewrite Npow2_N; autorewrite with push_Zof_N push_Zof_nat; assumption ] in
    first [ rewrite <- lem by solver | rewrite -> lem by solver ].
  Local Ltac t2 :=
    autorewrite with push_Zof_N; unfold wordToZ_gen in *;
    try first [ reflexivity
              | apply Z.max_case_strong; omega ].

  Local Ltac t lem :=
    t0; t1 lem; solve [ t2 ].

  Local Notation pull_ZToWordT_2op wop zop
    := (forall {logsz} (x y : wordT logsz),
           (zop (wordToZ x) (wordToZ y) < 2^2^Z.of_nat logsz)%Z
           -> wop logsz x y = ZToWord (zop (wordToZ x) (wordToZ y)))
         (only parsing).
  Local Notation pull_ZToWordT_2op' wop zop
    := (forall {logsz} (x y : wordT logsz),
           (0 <= zop (wordToZ x) (wordToZ y))%Z
           -> wop logsz x y = ZToWord (zop (wordToZ x) (wordToZ y)))
         (only parsing).

  Lemma wadd_def_ZToWord : pull_ZToWordT_2op (@wadd) (@Z.add).
  Proof. t (@wordize_plus). Qed.
  Lemma wsub_def_ZToWord : pull_ZToWordT_2op' (@wsub) (@Z.sub).
  Proof. t (@wordize_minus). Qed.
  Lemma wmul_def_ZToWord : pull_ZToWordT_2op (@wmul) (@Z.mul).
  Proof. t (@wordize_mult). Qed.
  Lemma wland_def_ZToWord : pull_ZToWordT_2op (@wland) (@Z.land).
  Proof. t (@wordize_and). Qed.
  Lemma wlor_def_ZToWord : pull_ZToWordT_2op (@wlor) (@Z.lor).
  Proof. t (@wordize_or). Qed.
  Lemma wshl_def_ZToWord : pull_ZToWordT_2op (@wshl) (@Z.shiftl).
  Proof. t (@wordToN_NToWord_idempotent). Qed.
  Lemma wshr_def_ZToWord : pull_ZToWordT_2op (@wshr) (@Z.shiftr).
  Proof. t (@wordToN_NToWord_idempotent). Qed.
End pull_ZToWord.
Section pull_ZToWord_log.
  Local Ltac t lem :=
    let H := fresh in
    pose proof lem as H;
    repeat (let x := fresh in intro x; specialize (H x));
    rewrite <- !lt_log_helper; assumption.

  Local Notation pull_ZToWordT_log_2op wop zop
    := (forall {logsz} (x y : wordT logsz),
           (Z.log2 (zop (wordToZ x) (wordToZ y)) < Z.of_nat (2^logsz))%Z
           -> wop logsz x y = ZToWord (zop (wordToZ x) (wordToZ y)))
         (only parsing).
  Lemma wadd_def_ZToWord_log : pull_ZToWordT_log_2op (@wadd) (@Z.add).
  Proof. t (@wadd_def_ZToWord). Qed.
  Lemma wmul_def_ZToWord_log : pull_ZToWordT_log_2op (@wmul) (@Z.mul).
  Proof. t (@wmul_def_ZToWord). Qed.
  Lemma wland_def_ZToWord_log : pull_ZToWordT_log_2op (@wland) (@Z.land).
  Proof. t (@wland_def_ZToWord). Qed.
  Lemma wlor_def_ZToWord_log : pull_ZToWordT_log_2op (@wlor) (@Z.lor).
  Proof. t (@wlor_def_ZToWord). Qed.
  Lemma wshl_def_ZToWord_log : pull_ZToWordT_log_2op (@wshl) (@Z.shiftl).
  Proof. t (@wshl_def_ZToWord). Qed.
  Lemma wshr_def_ZToWord_log : pull_ZToWordT_log_2op (@wshr) (@Z.shiftr).
  Proof. t (@wshr_def_ZToWord). Qed.
End pull_ZToWord_log.
Hint Rewrite wadd_def_ZToWord wsub_def_ZToWord wmul_def_ZToWord wland_def_ZToWord wlor_def_ZToWord wshl_def_ZToWord wshr_def_ZToWord : pull_ZToWord.
Hint Rewrite <- wadd_def_ZToWord wsub_def_ZToWord wmul_def_ZToWord wland_def_ZToWord wlor_def_ZToWord wshl_def_ZToWord wshr_def_ZToWord : push_ZToWord.
Hint Rewrite wadd_def_ZToWord_log wsub_def_ZToWord wmul_def_ZToWord_log wland_def_ZToWord_log wlor_def_ZToWord_log wshl_def_ZToWord_log wshr_def_ZToWord_log : pull_ZToWord_log.
Hint Rewrite <- wadd_def_ZToWord_log wsub_def_ZToWord wmul_def_ZToWord_log wland_def_ZToWord_log wlor_def_ZToWord_log wshl_def_ZToWord_log wshr_def_ZToWord_log : push_ZToWord_log.