/* * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* Copyright 2011 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication * * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 * work which got its smarts from Daniel J. Bernstein's work on the same. */ # include # include # include # include "ecp_nistp256.h" /* * These are the parameters of P256, taken from FIPS 186-3, page 86. These * values are big-endian. */ static const felem_bytearray nistp256_curve_params[5] = { {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, /* b */ {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} }; /*- /* This is the value of the prime as four 64-bit words, little-endian. */ static const u64 kPrime[4] = { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul }; static const u64 bottom63bits = 0x7ffffffffffffffful; /* * bin32_to_felem takes a little-endian byte array and converts it into felem * form. This assumes that the CPU is little-endian. */ static void bin32_to_felem(felem out, const u8 in[32]) { out[0] = *((u64 *)&in[0]); out[1] = *((u64 *)&in[8]); out[2] = *((u64 *)&in[16]); out[3] = *((u64 *)&in[24]); } /* * smallfelem_to_bin32 takes a smallfelem and serialises into a little * endian, 32 byte array. This assumes that the CPU is little-endian. */ static void smallfelem_to_bin32(u8 out[32], const smallfelem in) { *((u64 *)&out[0]) = in[0]; *((u64 *)&out[8]) = in[1]; *((u64 *)&out[16]) = in[2]; *((u64 *)&out[24]) = in[3]; } /*- * Field operations * ---------------- */ static void smallfelem_one(smallfelem out) { out[0] = 1; out[1] = 0; out[2] = 0; out[3] = 0; } static void smallfelem_assign(smallfelem out, const smallfelem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } static void felem_assign(felem out, const felem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } /* felem_sum sets out = out + in. */ static void felem_sum(felem out, const felem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } /* felem_small_sum sets out = out + in. */ static void felem_small_sum(felem out, const smallfelem in) { out[0] += in[0]; out[1] += in[1]; out[2] += in[2]; out[3] += in[3]; } /* felem_scalar sets out = out * scalar */ static void felem_scalar(felem out, const u64 scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; } /* longfelem_scalar sets out = out * scalar */ static void longfelem_scalar(longfelem out, const u64 scalar) { out[0] *= scalar; out[1] *= scalar; out[2] *= scalar; out[3] *= scalar; out[4] *= scalar; out[5] *= scalar; out[6] *= scalar; out[7] *= scalar; } # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) # define two105 (((limb)1) << 105) # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) /* zero105 is 0 mod p */ static const felem zero105 = { two105m41m9, two105, two105m41p9, two105m41p9 }; /*- * smallfelem_neg sets |out| to |-small| * On exit: * out[i] < out[i] + 2^105 */ static void smallfelem_neg(felem out, const smallfelem small) { /* In order to prevent underflow, we subtract from 0 mod p. */ out[0] = zero105[0] - small[0]; out[1] = zero105[1] - small[1]; out[2] = zero105[2] - small[2]; out[3] = zero105[3] - small[3]; } /*- * felem_diff subtracts |in| from |out| * On entry: * in[i] < 2^104 * On exit: * out[i] < out[i] + 2^105 */ static void felem_diff(felem out, const felem in) { /* * In order to prevent underflow, we add 0 mod p before subtracting. */ out[0] += zero105[0]; out[1] += zero105[1]; out[2] += zero105[2]; out[3] += zero105[3]; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) # define two107 (((limb)1) << 107) # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) /* zero107 is 0 mod p */ static const felem zero107 = { two107m43m11, two107, two107m43p11, two107m43p11 }; /*- * An alternative felem_diff for larger inputs |in| * felem_diff_zero107 subtracts |in| from |out| * On entry: * in[i] < 2^106 * On exit: * out[i] < out[i] + 2^107 */ static void felem_diff_zero107(felem out, const felem in) { /* * In order to prevent underflow, we add 0 mod p before subtracting. */ out[0] += zero107[0]; out[1] += zero107[1]; out[2] += zero107[2]; out[3] += zero107[3]; out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; } /*- * longfelem_diff subtracts |in| from |out| * On entry: * in[i] < 7*2^67 * On exit: * out[i] < out[i] + 2^70 + 2^40 */ static void longfelem_diff(longfelem out, const longfelem in) { static const limb two70m8p6 = (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); static const limb two70 = (((limb) 1) << 70); static const limb two70m40m38p6 = (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + (((limb) 1) << 6); static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); /* add 0 mod p to avoid underflow */ out[0] += two70m8p6; out[1] += two70p40; out[2] += two70; out[3] += two70m40m38p6; out[4] += two70m6; out[5] += two70m6; out[6] += two70m6; out[7] += two70m6; /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ out[0] -= in[0]; out[1] -= in[1]; out[2] -= in[2]; out[3] -= in[3]; out[4] -= in[4]; out[5] -= in[5]; out[6] -= in[6]; out[7] -= in[7]; } # define two64m0 (((limb)1) << 64) - 1 # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 # define two64m46 (((limb)1) << 64) - (((limb)1) << 46) # define two64m32 (((limb)1) << 64) - (((limb)1) << 32) /* zero110 is 0 mod p */ static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; /*- * felem_shrink converts an felem into a smallfelem. The result isn't quite * minimal as the value may be greater than p. * * On entry: * in[i] < 2^109 * On exit: * out[i] < 2^64 */ static void felem_shrink(smallfelem out, const felem in) { felem tmp; u64 a, b, mask; s64 high, low; static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ /* Carry 2->3 */ tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64)); /* tmp[3] < 2^110 */ tmp[2] = zero110[2] + (u64)in[2]; tmp[0] = zero110[0] + in[0]; tmp[1] = zero110[1] + in[1]; /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ /* * We perform two partial reductions where we eliminate the high-word of * tmp[3]. We don't update the other words till the end. */ a = tmp[3] >> 64; /* a < 2^46 */ tmp[3] = (u64)tmp[3]; tmp[3] -= a; tmp[3] += ((limb) a) << 32; /* tmp[3] < 2^79 */ b = a; a = tmp[3] >> 64; /* a < 2^15 */ b += a; /* b < 2^46 + 2^15 < 2^47 */ tmp[3] = (u64)tmp[3]; tmp[3] -= a; tmp[3] += ((limb) a) << 32; /* tmp[3] < 2^64 + 2^47 */ /* * This adjusts the other two words to complete the two partial * reductions. */ tmp[0] += b; tmp[1] -= (((limb) b) << 32); /* * In order to make space in tmp[3] for the carry from 2 -> 3, we * conditionally subtract kPrime if tmp[3] is large enough. */ high = tmp[3] >> 64; /* As tmp[3] < 2^65, high is either 1 or 0 */ high <<= 63; high >>= 63; /*- * high is: * all ones if the high word of tmp[3] is 1 * all zeros if the high word of tmp[3] if 0 */ low = tmp[3]; mask = low >> 63; /*- * mask is: * all ones if the MSB of low is 1 * all zeros if the MSB of low if 0 */ low &= bottom63bits; low -= kPrime3Test; /* if low was greater than kPrime3Test then the MSB is zero */ low = ~low; low >>= 63; /*- * low is: * all ones if low was > kPrime3Test * all zeros if low was <= kPrime3Test */ mask = (mask & low) | high; tmp[0] -= mask & kPrime[0]; tmp[1] -= mask & kPrime[1]; /* kPrime[2] is zero, so omitted */ tmp[3] -= mask & kPrime[3]; /* tmp[3] < 2**64 - 2**32 + 1 */ tmp[1] += ((u64)(tmp[0] >> 64)); tmp[0] = (u64)tmp[0]; tmp[2] += ((u64)(tmp[1] >> 64)); tmp[1] = (u64)tmp[1]; tmp[3] += ((u64)(tmp[2] >> 64)); tmp[2] = (u64)tmp[2]; /* tmp[i] < 2^64 */ out[0] = tmp[0]; out[1] = tmp[1]; out[2] = tmp[2]; out[3] = tmp[3]; } /* smallfelem_expand converts a smallfelem to an felem */ static void smallfelem_expand(felem out, const smallfelem in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; } /*- * smallfelem_square sets |out| = |small|^2 * On entry: * small[i] < 2^64 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void smallfelem_square(longfelem out, const smallfelem small) { limb a; u64 high, low; a = ((uint128_t) small[0]) * small[0]; low = a; high = a >> 64; out[0] = low; out[1] = high; a = ((uint128_t) small[0]) * small[1]; low = a; high = a >> 64; out[1] += low; out[1] += low; out[2] = high; a = ((uint128_t) small[0]) * small[2]; low = a; high = a >> 64; out[2] += low; out[2] *= 2; out[3] = high; a = ((uint128_t) small[0]) * small[3]; low = a; high = a >> 64; out[3] += low; out[4] = high; a = ((uint128_t) small[1]) * small[2]; low = a; high = a >> 64; out[3] += low; out[3] *= 2; out[4] += high; a = ((uint128_t) small[1]) * small[1]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t) small[1]) * small[3]; low = a; high = a >> 64; out[4] += low; out[4] *= 2; out[5] = high; a = ((uint128_t) small[2]) * small[3]; low = a; high = a >> 64; out[5] += low; out[5] *= 2; out[6] = high; out[6] += high; a = ((uint128_t) small[2]) * small[2]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t) small[3]) * small[3]; low = a; high = a >> 64; out[6] += low; out[7] = high; } /*- * felem_square sets |out| = |in|^2 * On entry: * in[i] < 2^109 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void felem_square(longfelem out, const felem in) { u64 small[4]; felem_shrink(small, in); smallfelem_square(out, small); } /*- * smallfelem_mul sets |out| = |small1| * |small2| * On entry: * small1[i] < 2^64 * small2[i] < 2^64 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void smallfelem_mul(longfelem out, const smallfelem small1, const smallfelem small2) { limb a; u64 high, low; a = ((uint128_t) small1[0]) * small2[0]; low = a; high = a >> 64; out[0] = low; out[1] = high; a = ((uint128_t) small1[0]) * small2[1]; low = a; high = a >> 64; out[1] += low; out[2] = high; a = ((uint128_t) small1[1]) * small2[0]; low = a; high = a >> 64; out[1] += low; out[2] += high; a = ((uint128_t) small1[0]) * small2[2]; low = a; high = a >> 64; out[2] += low; out[3] = high; a = ((uint128_t) small1[1]) * small2[1]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t) small1[2]) * small2[0]; low = a; high = a >> 64; out[2] += low; out[3] += high; a = ((uint128_t) small1[0]) * small2[3]; low = a; high = a >> 64; out[3] += low; out[4] = high; a = ((uint128_t) small1[1]) * small2[2]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t) small1[2]) * small2[1]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t) small1[3]) * small2[0]; low = a; high = a >> 64; out[3] += low; out[4] += high; a = ((uint128_t) small1[1]) * small2[3]; low = a; high = a >> 64; out[4] += low; out[5] = high; a = ((uint128_t) small1[2]) * small2[2]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t) small1[3]) * small2[1]; low = a; high = a >> 64; out[4] += low; out[5] += high; a = ((uint128_t) small1[2]) * small2[3]; low = a; high = a >> 64; out[5] += low; out[6] = high; a = ((uint128_t) small1[3]) * small2[2]; low = a; high = a >> 64; out[5] += low; out[6] += high; a = ((uint128_t) small1[3]) * small2[3]; low = a; high = a >> 64; out[6] += low; out[7] = high; } /*- * felem_mul sets |out| = |in1| * |in2| * On entry: * in1[i] < 2^109 * in2[i] < 2^109 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void felem_mul(longfelem out, const felem in1, const felem in2) { smallfelem small1, small2; felem_shrink(small1, in1); felem_shrink(small2, in2); smallfelem_mul(out, small1, small2); } /*- * felem_small_mul sets |out| = |small1| * |in2| * On entry: * small1[i] < 2^64 * in2[i] < 2^109 * On exit: * out[i] < 7 * 2^64 < 2^67 */ static void felem_small_mul(longfelem out, const smallfelem small1, const felem in2) { smallfelem small2; felem_shrink(small2, in2); smallfelem_mul(out, small1, small2); } # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) # define two100 (((limb)1) << 100) # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) /* zero100 is 0 mod p */ static const felem zero100 = { two100m36m4, two100, two100m36p4, two100m36p4 }; /*- * Internal function for the different flavours of felem_reduce. * felem_reduce_ reduces the higher coefficients in[4]-in[7]. * On entry: * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] * out[1] >= in[7] + 2^32*in[4] * out[2] >= in[5] + 2^32*in[5] * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] * On exit: * out[0] <= out[0] + in[4] + 2^32*in[5] * out[1] <= out[1] + in[5] + 2^33*in[6] * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] * out[3] <= out[3] + 2^32*in[4] + 3*in[7] */ static void felem_reduce_(felem out, const longfelem in) { int128_t c; /* combine common terms from below */ c = in[4] + (in[5] << 32); out[0] += c; out[3] -= c; c = in[5] - in[7]; out[1] += c; out[2] -= c; /* the remaining terms */ /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ out[1] -= (in[4] << 32); out[3] += (in[4] << 32); /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ out[2] -= (in[5] << 32); /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ out[0] -= in[6]; out[0] -= (in[6] << 32); out[1] += (in[6] << 33); out[2] += (in[6] * 2); out[3] -= (in[6] << 32); /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ out[0] -= in[7]; out[0] -= (in[7] << 32); out[2] += (in[7] << 33); out[3] += (in[7] * 3); } /*- * felem_reduce converts a longfelem into an felem. * To be called directly after felem_square or felem_mul. * On entry: * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 * On exit: * out[i] < 2^101 */ static void felem_reduce(felem out, const longfelem in) { out[0] = zero100[0] + in[0]; out[1] = zero100[1] + in[1]; out[2] = zero100[2] + in[2]; out[3] = zero100[3] + in[3]; felem_reduce_(out, in); /*- * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 * out[1] > 2^100 - 2^64 - 7*2^96 > 0 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 * * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 */ } /*- * felem_reduce_zero105 converts a larger longfelem into an felem. * On entry: * in[0] < 2^71 * On exit: * out[i] < 2^106 */ static void felem_reduce_zero105(felem out, const longfelem in) { out[0] = zero105[0] + in[0]; out[1] = zero105[1] + in[1]; out[2] = zero105[2] + in[2]; out[3] = zero105[3] + in[3]; felem_reduce_(out, in); /*- * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 * out[1] > 2^105 - 2^71 - 2^103 > 0 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 * * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 */ } /* * subtract_u64 sets *result = *result - v and *carry to one if the * subtraction underflowed. */ static void subtract_u64(u64 *result, u64 *carry, u64 v) { uint128_t r = *result; r -= v; *carry = (r >> 64) & 1; *result = (u64)r; } /* * felem_contract converts |in| to its unique, minimal representation. On * entry: in[i] < 2^109 */ static void felem_contract(smallfelem out, const felem in) { unsigned i; u64 all_equal_so_far = 0, result = 0, carry; felem_shrink(out, in); /* small is minimal except that the value might be > p */ all_equal_so_far--; /* * We are doing a constant time test if out >= kPrime. We need to compare * each u64, from most-significant to least significant. For each one, if * all words so far have been equal (m is all ones) then a non-equal * result is the answer. Otherwise we continue. */ for (i = 3; i < 4; i--) { u64 equal; uint128_t a = ((uint128_t) kPrime[i]) - out[i]; /* * if out[i] > kPrime[i] then a will underflow and the high 64-bits * will all be set. */ result |= all_equal_so_far & ((u64)(a >> 64)); /* * if kPrime[i] == out[i] then |equal| will be all zeros and the * decrement will make it all ones. */ equal = kPrime[i] ^ out[i]; equal--; equal &= equal << 32; equal &= equal << 16; equal &= equal << 8; equal &= equal << 4; equal &= equal << 2; equal &= equal << 1; equal = ((s64) equal) >> 63; all_equal_so_far &= equal; } /* * if all_equal_so_far is still all ones then the two values are equal * and so out >= kPrime is true. */ result |= all_equal_so_far; /* if out >= kPrime then we subtract kPrime. */ subtract_u64(&out[0], &carry, result & kPrime[0]); subtract_u64(&out[1], &carry, carry); subtract_u64(&out[2], &carry, carry); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[1], &carry, result & kPrime[1]); subtract_u64(&out[2], &carry, carry); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[2], &carry, result & kPrime[2]); subtract_u64(&out[3], &carry, carry); subtract_u64(&out[3], &carry, result & kPrime[3]); } static void smallfelem_square_contract(smallfelem out, const smallfelem in) { longfelem longtmp; felem tmp; smallfelem_square(longtmp, in); felem_reduce(tmp, longtmp); felem_contract(out, tmp); } static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, const smallfelem in2) { longfelem longtmp; felem tmp; smallfelem_mul(longtmp, in1, in2); felem_reduce(tmp, longtmp); felem_contract(out, tmp); } /*- * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 * otherwise. * On entry: * small[i] < 2^64 */ static limb smallfelem_is_zero(const smallfelem small) { limb result; u64 is_p; u64 is_zero = small[0] | small[1] | small[2] | small[3]; is_zero--; is_zero &= is_zero << 32; is_zero &= is_zero << 16; is_zero &= is_zero << 8; is_zero &= is_zero << 4; is_zero &= is_zero << 2; is_zero &= is_zero << 1; is_zero = ((s64) is_zero) >> 63; is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]); is_p--; is_p &= is_p << 32; is_p &= is_p << 16; is_p &= is_p << 8; is_p &= is_p << 4; is_p &= is_p << 2; is_p &= is_p << 1; is_p = ((s64) is_p) >> 63; is_zero |= is_p; result = is_zero; result |= ((limb) is_zero) << 64; return result; } static int smallfelem_is_zero_int(const smallfelem small) { return (int)(smallfelem_is_zero(small) & ((limb) 1)); } /*- * felem_inv calculates |out| = |in|^{-1} * * Based on Fermat's Little Theorem: * a^p = a (mod p) * a^{p-1} = 1 (mod p) * a^{p-2} = a^{-1} (mod p) */ static void felem_inv(felem out, const felem in) { felem ftmp, ftmp2; /* each e_I will hold |in|^{2^I - 1} */ felem e2, e4, e8, e16, e32, e64; longfelem tmp; unsigned i; felem_square(tmp, in); felem_reduce(ftmp, tmp); /* 2^1 */ felem_mul(tmp, in, ftmp); felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ felem_assign(e2, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */ felem_mul(tmp, ftmp, e2); felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */ felem_assign(e4, ftmp); felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */ felem_mul(tmp, ftmp, e4); felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */ felem_assign(e8, ftmp); for (i = 0; i < 8; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^16 - 2^8 */ felem_mul(tmp, ftmp, e8); felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */ felem_assign(e16, ftmp); for (i = 0; i < 16; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^32 - 2^16 */ felem_mul(tmp, ftmp, e16); felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */ felem_assign(e32, ftmp); for (i = 0; i < 32; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^64 - 2^32 */ felem_assign(e64, ftmp); felem_mul(tmp, ftmp, in); felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */ for (i = 0; i < 192; i++) { felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); } /* 2^256 - 2^224 + 2^192 */ felem_mul(tmp, e64, e32); felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ for (i = 0; i < 16; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } /* 2^80 - 2^16 */ felem_mul(tmp, ftmp2, e16); felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ for (i = 0; i < 8; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } /* 2^88 - 2^8 */ felem_mul(tmp, ftmp2, e8); felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ for (i = 0; i < 4; i++) { felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); } /* 2^92 - 2^4 */ felem_mul(tmp, ftmp2, e4); felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ felem_mul(tmp, ftmp2, e2); felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ felem_square(tmp, ftmp2); felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ felem_mul(tmp, ftmp2, in); felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ felem_mul(tmp, ftmp2, ftmp); felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ } static void smallfelem_inv_contract(smallfelem out, const smallfelem in) { felem tmp; smallfelem_expand(tmp, in); felem_inv(tmp, tmp); felem_contract(out, tmp); } /*- * Group operations * ---------------- * * Building on top of the field operations we have the operations on the * elliptic curve group itself. Points on the curve are represented in Jacobian * coordinates */ /*- * point_double calculates 2*(x_in, y_in, z_in) * * The method is taken from: * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b * * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. * while x_out == y_in is not (maybe this works, but it's not tested). */ static void point_double(felem x_out, felem y_out, felem z_out, const felem x_in, const felem y_in, const felem z_in) { longfelem tmp, tmp2; felem delta, gamma, beta, alpha, ftmp, ftmp2; smallfelem small1, small2; felem_assign(ftmp, x_in); /* ftmp[i] < 2^106 */ felem_assign(ftmp2, x_in); /* ftmp2[i] < 2^106 */ /* delta = z^2 */ felem_square(tmp, z_in); felem_reduce(delta, tmp); /* delta[i] < 2^101 */ /* gamma = y^2 */ felem_square(tmp, y_in); felem_reduce(gamma, tmp); /* gamma[i] < 2^101 */ felem_shrink(small1, gamma); /* beta = x*gamma */ felem_small_mul(tmp, small1, x_in); felem_reduce(beta, tmp); /* beta[i] < 2^101 */ /* alpha = 3*(x-delta)*(x+delta) */ felem_diff(ftmp, delta); /* ftmp[i] < 2^105 + 2^106 < 2^107 */ felem_sum(ftmp2, delta); /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ felem_scalar(ftmp2, 3); /* ftmp2[i] < 3 * 2^107 < 2^109 */ felem_mul(tmp, ftmp, ftmp2); felem_reduce(alpha, tmp); /* alpha[i] < 2^101 */ felem_shrink(small2, alpha); /* x' = alpha^2 - 8*beta */ smallfelem_square(tmp, small2); felem_reduce(x_out, tmp); felem_assign(ftmp, beta); felem_scalar(ftmp, 8); /* ftmp[i] < 8 * 2^101 = 2^104 */ felem_diff(x_out, ftmp); /* x_out[i] < 2^105 + 2^101 < 2^106 */ /* z' = (y + z)^2 - gamma - delta */ felem_sum(delta, gamma); /* delta[i] < 2^101 + 2^101 = 2^102 */ felem_assign(ftmp, y_in); felem_sum(ftmp, z_in); /* ftmp[i] < 2^106 + 2^106 = 2^107 */ felem_square(tmp, ftmp); felem_reduce(z_out, tmp); felem_diff(z_out, delta); /* z_out[i] < 2^105 + 2^101 < 2^106 */ /* y' = alpha*(4*beta - x') - 8*gamma^2 */ felem_scalar(beta, 4); /* beta[i] < 4 * 2^101 = 2^103 */ felem_diff_zero107(beta, x_out); /* beta[i] < 2^107 + 2^103 < 2^108 */ felem_small_mul(tmp, small2, beta); /* tmp[i] < 7 * 2^64 < 2^67 */ smallfelem_square(tmp2, small1); /* tmp2[i] < 7 * 2^64 */ longfelem_scalar(tmp2, 8); /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ longfelem_diff(tmp, tmp2); /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ felem_reduce_zero105(y_out, tmp); /* y_out[i] < 2^106 */ } /* * point_double_small is the same as point_double, except that it operates on * smallfelems */ static void point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, const smallfelem x_in, const smallfelem y_in, const smallfelem z_in) { felem felem_x_out, felem_y_out, felem_z_out; felem felem_x_in, felem_y_in, felem_z_in; smallfelem_expand(felem_x_in, x_in); smallfelem_expand(felem_y_in, y_in); smallfelem_expand(felem_z_in, z_in); point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in, felem_z_in); felem_shrink(x_out, felem_x_out); felem_shrink(y_out, felem_y_out); felem_shrink(z_out, felem_z_out); } /* copy_conditional copies in to out iff mask is all ones. */ static void copy_conditional(felem out, const felem in, limb mask) { unsigned i; for (i = 0; i < NLIMBS; ++i) { const limb tmp = mask & (in[i] ^ out[i]); out[i] ^= tmp; } } /* copy_small_conditional copies in to out iff mask is all ones. */ static void copy_small_conditional(felem out, const smallfelem in, limb mask) { unsigned i; const u64 mask64 = mask; for (i = 0; i < NLIMBS; ++i) { out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); } } /*- * point_add calculates (x1, y1, z1) + (x2, y2, z2) * * The method is taken from: * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). * * This function includes a branch for checking whether the two input points * are equal, (while not equal to the point at infinity). This case never * happens during single point multiplication, so there is no timing leak for * ECDH or ECDSA signing. */ void point_add(felem x3, felem y3, felem z3, const felem x1, const felem y1, const felem z1, const int mixed, const smallfelem x2, const smallfelem y2, const smallfelem z2) { felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; longfelem tmp, tmp2; smallfelem small1, small2, small3, small4, small5; limb x_equal, y_equal, z1_is_zero, z2_is_zero; felem_shrink(small3, z1); z1_is_zero = smallfelem_is_zero(small3); z2_is_zero = smallfelem_is_zero(z2); /* ftmp = z1z1 = z1**2 */ smallfelem_square(tmp, small3); felem_reduce(ftmp, tmp); /* ftmp[i] < 2^101 */ felem_shrink(small1, ftmp); if (!mixed) { /* ftmp2 = z2z2 = z2**2 */ smallfelem_square(tmp, z2); felem_reduce(ftmp2, tmp); /* ftmp2[i] < 2^101 */ felem_shrink(small2, ftmp2); felem_shrink(small5, x1); /* u1 = ftmp3 = x1*z2z2 */ smallfelem_mul(tmp, small5, small2); felem_reduce(ftmp3, tmp); /* ftmp3[i] < 2^101 */ /* ftmp5 = z1 + z2 */ felem_assign(ftmp5, z1); felem_small_sum(ftmp5, z2); /* ftmp5[i] < 2^107 */ /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ felem_square(tmp, ftmp5); felem_reduce(ftmp5, tmp); /* ftmp2 = z2z2 + z1z1 */ felem_sum(ftmp2, ftmp); /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ felem_diff(ftmp5, ftmp2); /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ /* ftmp2 = z2 * z2z2 */ smallfelem_mul(tmp, small2, z2); felem_reduce(ftmp2, tmp); /* s1 = ftmp2 = y1 * z2**3 */ felem_mul(tmp, y1, ftmp2); felem_reduce(ftmp6, tmp); /* ftmp6[i] < 2^101 */ } else { /* * We'll assume z2 = 1 (special case z2 = 0 is handled later) */ /* u1 = ftmp3 = x1*z2z2 */ felem_assign(ftmp3, x1); /* ftmp3[i] < 2^106 */ /* ftmp5 = 2z1z2 */ felem_assign(ftmp5, z1); felem_scalar(ftmp5, 2); /* ftmp5[i] < 2*2^106 = 2^107 */ /* s1 = ftmp2 = y1 * z2**3 */ felem_assign(ftmp6, y1); /* ftmp6[i] < 2^106 */ } /* u2 = x2*z1z1 */ smallfelem_mul(tmp, x2, small1); felem_reduce(ftmp4, tmp); /* h = ftmp4 = u2 - u1 */ felem_diff_zero107(ftmp4, ftmp3); /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ felem_shrink(small4, ftmp4); x_equal = smallfelem_is_zero(small4); /* z_out = ftmp5 * h */ felem_small_mul(tmp, small4, ftmp5); felem_reduce(z_out, tmp); /* z_out[i] < 2^101 */ /* ftmp = z1 * z1z1 */ smallfelem_mul(tmp, small1, small3); felem_reduce(ftmp, tmp); /* s2 = tmp = y2 * z1**3 */ felem_small_mul(tmp, y2, ftmp); felem_reduce(ftmp5, tmp); /* r = ftmp5 = (s2 - s1)*2 */ felem_diff_zero107(ftmp5, ftmp6); /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ felem_scalar(ftmp5, 2); /* ftmp5[i] < 2^109 */ felem_shrink(small1, ftmp5); y_equal = smallfelem_is_zero(small1); if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { point_double(x3, y3, z3, x1, y1, z1); return; } /* I = ftmp = (2h)**2 */ felem_assign(ftmp, ftmp4); felem_scalar(ftmp, 2); /* ftmp[i] < 2*2^108 = 2^109 */ felem_square(tmp, ftmp); felem_reduce(ftmp, tmp); /* J = ftmp2 = h * I */ felem_mul(tmp, ftmp4, ftmp); felem_reduce(ftmp2, tmp); /* V = ftmp4 = U1 * I */ felem_mul(tmp, ftmp3, ftmp); felem_reduce(ftmp4, tmp); /* x_out = r**2 - J - 2V */ smallfelem_square(tmp, small1); felem_reduce(x_out, tmp); felem_assign(ftmp3, ftmp4); felem_scalar(ftmp4, 2); felem_sum(ftmp4, ftmp2); /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ felem_diff(x_out, ftmp4); /* x_out[i] < 2^105 + 2^101 */ /* y_out = r(V-x_out) - 2 * s1 * J */ felem_diff_zero107(ftmp3, x_out); /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ felem_small_mul(tmp, small1, ftmp3); felem_mul(tmp2, ftmp6, ftmp2); longfelem_scalar(tmp2, 2); /* tmp2[i] < 2*2^67 = 2^68 */ longfelem_diff(tmp, tmp2); /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ felem_reduce_zero105(y_out, tmp); /* y_out[i] < 2^106 */ copy_small_conditional(x_out, x2, z1_is_zero); copy_conditional(x_out, x1, z2_is_zero); copy_small_conditional(y_out, y2, z1_is_zero); copy_conditional(y_out, y1, z2_is_zero); copy_small_conditional(z_out, z2, z1_is_zero); copy_conditional(z_out, z1, z2_is_zero); felem_assign(x3, x_out); felem_assign(y3, y_out); felem_assign(z3, z_out); }