arith_rewrite_head = match idc in (Compilers.ident t) return (Compile.value' true t) with | @Literal t v => Base (##v)%expr | Nat_succ => fun x : expr ℕ => Base (#(Nat_succ)%expr @ x)%expr_pat | Nat_pred => fun x : expr ℕ => Base (#(Nat_pred)%expr @ x)%expr_pat | Nat_max => fun x x0 : expr ℕ => Base (#(Nat_max)%expr @ x @ x0)%expr_pat | Nat_mul => fun x x0 : expr ℕ => Base (#(Nat_mul)%expr @ x @ x0)%expr_pat | Nat_add => fun x x0 : expr ℕ => Base (#(Nat_add)%expr @ x @ x0)%expr_pat | Nat_sub => fun x x0 : expr ℕ => Base (#(Nat_sub)%expr @ x @ x0)%expr_pat | Nat_eqb => fun x x0 : expr ℕ => Base (#(Nat_eqb)%expr @ x @ x0)%expr_pat | @nil t => Base []%expr_pat | @cons t => fun (x : expr t) (x0 : expr (list t)) => Base (x :: x0)%expr_pat | @pair A B => fun (x : expr A) (x0 : expr B) => Base (x, x0)%expr_pat | @fst A B => fun x : expr (A * B)%etype => ((match x with | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t idc) x1) _ => args <- invert_bind_args idc Raw.ident.pair; match pattern.type.unify_extracted ((('1 * '2)%pbtype -> '1%pbtype) -> (('1%pbtype -> '2%pbtype -> ('1 * '2)%pbtype) -> '1%pbtype) -> '2%pbtype)%ptype (((A * B)%etype -> A) -> (((let (x2, _) := args in x2) -> (let (_, y) := args in y) -> ((let (x2, _) := args in x2) * (let (_, y) := args in y))%etype) -> s0) -> s)%ptype with | Datatypes.Some (_, _, _, (_, (_, (_, _)), b3, b2))%zrange => if type.type_beq base.type base.type.type_beq (((b3 * b2)%etype -> b3) -> ((b3 -> b2 -> (b3 * b2)%etype) -> b3) -> b2)%ptype (((A * B)%etype -> A) -> (((let (x2, _) := args in x2) -> (let (_, y) := args in y) -> ((let (x2, _) := args in x2) * (let (_, y) := args in y))%etype) -> s0) -> s)%ptype then _ <- ident.unify pattern.ident.fst fst; _ <- ident.unify pattern.ident.pair pair; v <- type.try_make_transport_cps s0 b3; _ <- type.try_make_transport_cps s b2; v1 <- base.try_make_transport_cps b3 b3; _ <- base.try_make_transport_cps b2 b2; v3 <- base.try_make_transport_cps b3 A; v4 <- base.try_make_transport_cps A A; Datatypes.Some (Base (v4 (v3 (v1 (v (Compile.reflect x1)))))) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ ($_)%expr _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (_ @ _)%expr_pat _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _) _ => Datatypes.None | @expr.App _ _ _ s _ #(_)%expr_pat _ | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; Datatypes.None);;; Base (#(fst)%expr @ x)%expr_pat)%option | @snd A B => fun x : expr (A * B)%etype => ((match x with | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t idc) _) x0 => args <- invert_bind_args idc Raw.ident.pair; match pattern.type.unify_extracted ((('1 * '2)%pbtype -> '2%pbtype) -> (('1%pbtype -> '2%pbtype -> ('1 * '2)%pbtype) -> '1%pbtype) -> '2%pbtype)%ptype (((A * B)%etype -> B) -> (((let (x2, _) := args in x2) -> (let (_, y) := args in y) -> ((let (x2, _) := args in x2) * (let (_, y) := args in y))%etype) -> s0) -> s)%ptype with | Datatypes.Some (_, _, _, (_, (_, (_, _)), b3, b2))%zrange => if type.type_beq base.type base.type.type_beq (((b3 * b2)%etype -> b2) -> ((b3 -> b2 -> (b3 * b2)%etype) -> b3) -> b2)%ptype (((A * B)%etype -> B) -> (((let (x2, _) := args in x2) -> (let (_, y) := args in y) -> ((let (x2, _) := args in x2) * (let (_, y) := args in y))%etype) -> s0) -> s)%ptype then _ <- ident.unify pattern.ident.snd snd; _ <- ident.unify pattern.ident.pair pair; _ <- type.try_make_transport_cps s0 b3; v0 <- type.try_make_transport_cps s b2; _ <- base.try_make_transport_cps b3 b3; v2 <- base.try_make_transport_cps b2 b2; v3 <- base.try_make_transport_cps b2 B; v4 <- base.try_make_transport_cps B B; Datatypes.Some (Base (v4 (v3 (v2 (v0 (Compile.reflect x0)))))) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ ($_)%expr _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (_ @ _)%expr_pat _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _) _ => Datatypes.None | @expr.App _ _ _ s _ #(_)%expr_pat _ | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; Datatypes.None);;; Base (#(snd)%expr @ x)%expr_pat)%option | @prod_rect A B T => fun (x : expr A -> expr B -> UnderLets (expr T)) (x0 : expr (A * B)%etype) => Base (#(prod_rect)%expr @ (λ (x1 : var A)(x2 : var B), to_expr (x ($x1) ($x2)))%expr @ x0)%expr_pat | @bool_rect T => fun (x x0 : expr unit -> UnderLets (expr T)) (x1 : expr bool) => Base (#(bool_rect)%expr @ (λ x2 : var unit, to_expr (x ($x2)))%expr @ (λ x2 : var unit, to_expr (x0 ($x2)))%expr @ x1)%expr_pat | @nat_rect P => fun (x : expr unit -> UnderLets (expr P)) (x0 : expr ℕ -> expr P -> UnderLets (expr P)) (x1 : expr ℕ) => Base (#(nat_rect)%expr @ (λ x2 : var unit, to_expr (x ($x2)))%expr @ (λ (x2 : var ℕ)(x3 : var P), to_expr (x0 ($x2) ($x3)))%expr @ x1)%expr_pat | @nat_rect_arrow P Q => fun (x : expr P -> UnderLets (expr Q)) (x0 : expr ℕ -> (expr P -> UnderLets (expr Q)) -> expr P -> UnderLets (expr Q)) (x1 : expr ℕ) (x2 : expr P) => Base (#(nat_rect_arrow)%expr @ (λ x3 : var P, to_expr (x ($x3)))%expr @ (λ (x3 : var ℕ)(x4 : var (P -> Q)%ptype)(x5 : var P), to_expr (x0 ($x3) (fun x6 : expr P => Base ($x4 @ x6)%expr_pat) ($x5)))%expr @ x1 @ x2)%expr_pat | @list_rect A P => fun (x : expr unit -> UnderLets (expr P)) (x0 : expr A -> expr (list A) -> expr P -> UnderLets (expr P)) (x1 : expr (list A)) => Base (#(list_rect)%expr @ (λ x2 : var unit, to_expr (x ($x2)))%expr @ (λ (x2 : var A)(x3 : var (list A))(x4 : var P), to_expr (x0 ($x2) ($x3) ($x4)))%expr @ x1)%expr_pat | @list_case A P => fun (x : expr unit -> UnderLets (expr P)) (x0 : expr A -> expr (list A) -> UnderLets (expr P)) (x1 : expr (list A)) => Base (#(list_case)%expr @ (λ x2 : var unit, to_expr (x ($x2)))%expr @ (λ (x2 : var A)(x3 : var (list A)), to_expr (x0 ($x2) ($x3)))%expr @ x1)%expr_pat | @List_length T => fun x : expr (list T) => Base (#(List_length)%expr @ x)%expr_pat | List_seq => fun x x0 : expr ℕ => Base (#(List_seq)%expr @ x @ x0)%expr_pat | @List_firstn A => fun (x : expr ℕ) (x0 : expr (list A)) => Base (#(List_firstn)%expr @ x @ x0)%expr_pat | @List_skipn A => fun (x : expr ℕ) (x0 : expr (list A)) => Base (#(List_skipn)%expr @ x @ x0)%expr_pat | @List_repeat A => fun (x : expr A) (x0 : expr ℕ) => Base (#(List_repeat)%expr @ x @ x0)%expr_pat | @List_combine A B => fun (x : expr (list A)) (x0 : expr (list B)) => Base (#(List_combine)%expr @ x @ x0)%expr_pat | @List_map A B => fun (x : expr A -> UnderLets (expr B)) (x0 : expr (list A)) => Base (#(List_map)%expr @ (λ x1 : var A, to_expr (x ($x1)))%expr @ x0)%expr_pat | @List_app A => fun x x0 : expr (list A) => Base (x ++ x0)%expr | @List_rev A => fun x : expr (list A) => Base (#(List_rev)%expr @ x)%expr_pat | @List_flat_map A B => fun (x : expr A -> UnderLets (expr (list B))) (x0 : expr (list A)) => Base (#(List_flat_map)%expr @ (λ x1 : var A, to_expr (x ($x1)))%expr @ x0)%expr_pat | @List_partition A => fun (x : expr A -> UnderLets (expr bool)) (x0 : expr (list A)) => Base (#(List_partition)%expr @ (λ x1 : var A, to_expr (x ($x1)))%expr @ x0)%expr_pat | @List_fold_right A B => fun (x : expr B -> expr A -> UnderLets (expr A)) (x0 : expr A) (x1 : expr (list B)) => Base (#(List_fold_right)%expr @ (λ (x2 : var B)(x3 : var A), to_expr (x ($x2) ($x3)))%expr @ x0 @ x1)%expr_pat | @List_update_nth T => fun (x : expr ℕ) (x0 : expr T -> UnderLets (expr T)) (x1 : expr (list T)) => Base (#(List_update_nth)%expr @ x @ (λ x2 : var T, to_expr (x0 ($x2)))%expr @ x1)%expr_pat | @List_nth_default T => fun (x : expr T) (x0 : expr (list T)) (x1 : expr ℕ) => Base (#(List_nth_default)%expr @ x @ x0 @ x1)%expr_pat | Z_add => fun x x0 : expr ℤ => (((match x with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base x0) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base x) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => match x with | @expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t0 idc0) x2 => _ <- invert_bind_args idc0 Raw.ident.Z_opp; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s0 -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s0 -> s)%ptype then v <- type.try_make_transport_cps s0 ℤ; v0 <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (- (v (Compile.reflect x2) + v0 (Compile.reflect x1)))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s0 _ ($_)%expr _ | @expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s0 _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> ℤ)%ptype then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (x0 - v (Compile.reflect x1))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => match x with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t0 idc0) x1 => (_ <- invert_bind_args idc0 Raw.ident.Z_opp; args0 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> (projT1 args0))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> (projT1 args0))%ptype then v <- type.try_make_transport_cps s ℤ; xv <- ident.unify pattern.ident.Literal ##(projT2 args0); fv <- (if (let (x2, _) := xv in x2) >? 0 then Datatypes.Some (Base (##(let (x2, _) := xv in x2) - v (Compile.reflect x1))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; _ <- invert_bind_args idc0 Raw.ident.Z_opp; args0 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> (projT1 args0))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> (projT1 args0))%ptype then v <- type.try_make_transport_cps s ℤ; xv <- ident.unify pattern.ident.Literal ##(projT2 args0); fv <- (if (let (x2, _) := xv in x2) Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => (_ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> s)%ptype then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (x - v (Compile.reflect x1))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end);; match x with | @expr.Ident _ _ _ t0 idc0 => (args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); v <- type.try_make_transport_cps s ℤ; fv <- (if (let (x2, _) := xv in x2) >? 0 then Datatypes.Some (Base (##(let (x2, _) := xv in x2) - v (Compile.reflect x1))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); v <- type.try_make_transport_cps s ℤ; fv <- (if (let (x2, _) := xv in x2) Datatypes.None end | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end);; Datatypes.None);;; Base (x + x0)%expr)%option | Z_mul => fun x x0 : expr ℤ => (((match x with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base (##0)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base (##0)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 1 then Datatypes.Some (Base x0) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => (args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 1 then Datatypes.Some (Base x) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; match x with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t0 idc0) x1 => _ <- invert_bind_args idc0 Raw.ident.Z_opp; args0 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> (projT1 args0))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> (projT1 args0))%ptype then v <- type.try_make_transport_cps s ℤ; xv <- ident.unify pattern.ident.Literal ##(projT2 args0); fv <- (if (let (x2, _) := xv in x2) =? -1 then Datatypes.Some (Base (v (Compile.reflect x1))) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => match x with | @expr.Ident _ _ _ t0 idc0 => args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); v <- type.try_make_transport_cps s ℤ; fv <- (if (let (x2, _) := xv in x2) =? -1 then Datatypes.Some (Base (v (Compile.reflect x1))) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? -1 then Datatypes.Some (Base (- x0)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? -1 then Datatypes.Some (Base (- x)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => match x with | @expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t0 idc0) x2 => _ <- invert_bind_args idc0 Raw.ident.Z_opp; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s0 -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s0 -> s)%ptype then v <- type.try_make_transport_cps s0 ℤ; v0 <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (v (Compile.reflect x2) * v0 (Compile.reflect x1))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s0 _ ($_)%expr _ | @expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s0 _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> ℤ)%ptype then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (- (v (Compile.reflect x1) * x0))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => match x with | @expr.Ident _ _ _ t0 idc0 => args <- invert_bind_args idc0 Raw.ident.Literal; args0 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> (projT1 args0))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> (projT1 args0))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); xv0 <- ident.unify pattern.ident.Literal ##(projT2 args0); Datatypes.Some (Base (##((let (x1, _) := xv in x1) * (let (x1, _) := xv0 in x1))%Z)%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> s)%ptype then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (- (x * v (Compile.reflect x1)))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) Datatypes.None end | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => (args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) Datatypes.None end);; args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if ((let (x1, _) := xv in x1) =? 2 ^ Z.log2 (let (x1, _) := xv in x1)) && negb ((let (x1, _) := xv in x1) =? 2) then Datatypes.Some (Base (x << ##(Z.log2 (let (x1, _) := xv in x1)))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x with | @expr.Ident _ _ _ t idc => (args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if ((let (x1, _) := xv in x1) =? 2 ^ Z.log2 (let (x1, _) := xv in x1)) && negb ((let (x1, _) := xv in x1) =? 2) then Datatypes.Some (Base (x0 << ##(Z.log2 (let (x1, _) := xv in x1)))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; match x0 with | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t0 idc0) x2) x1 => match x2 with | @expr.Ident _ _ _ t1 idc1 => match x1 with | @expr.App _ _ _ s1 _ (@expr.App _ _ _ s2 _ (@expr.Ident _ _ _ t2 idc2) x4) x3 => _ <- invert_bind_args idc2 Raw.ident.Z_mul; args0 <- invert_bind_args idc1 Raw.ident.Literal; _ <- invert_bind_args idc0 Raw.ident.Z_mul; args2 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ -> ℤ -> ℤ)%ptype ((projT1 args2) -> (projT1 args0) -> s2 -> s1)%ptype with | Datatypes.Some (_, (_, (_, _)))%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ -> ℤ -> ℤ)%ptype ((projT1 args2) -> (projT1 args0) -> s2 -> s1)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args2); xv0 <- ident.unify pattern.ident.Literal ##(projT2 args0); v <- type.try_make_transport_cps s2 ℤ; v0 <- type.try_make_transport_cps s1 ℤ; fv <- (if (Z.abs (let (x5, _) := xv in x5) <=? Z.abs max_const_val) && (Z.abs (let (x5, _) := xv0 in x5) <=? Z.abs max_const_val) then Datatypes.Some (Base (v (Compile.reflect x4) * (v0 (Compile.reflect x3) * (##(let (x5, _) := xv in x5) * ##(let (x5, _) := xv0 in x5))))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s1 _ (@expr.App _ _ _ s2 _ ($_)%expr _) _ | @expr.App _ _ _ s1 _ (@expr.App _ _ _ s2 _ (@expr.Abs _ _ _ _ _ _) _) _ | @expr.App _ _ _ s1 _ (@expr.App _ _ _ s2 _ (_ @ _)%expr_pat _) _ | @expr.App _ _ _ s1 _ (@expr.App _ _ _ s2 _ (@expr.LetIn _ _ _ _ _ _ _) _) _ => Datatypes.None | @expr.App _ _ _ s1 _ #(_)%expr_pat _ | @expr.App _ _ _ s1 _ ($_)%expr _ | @expr.App _ _ _ s1 _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s1 _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end | _ => Datatypes.None end;; match x1 with | (@expr.App _ _ _ s2 _ (@expr.Ident _ _ _ t1 idc1) x4 @ @expr.Ident _ _ _ t2 idc2)%expr_pat => args <- invert_bind_args idc2 Raw.ident.Literal; _ <- invert_bind_args idc1 Raw.ident.Z_mul; _ <- invert_bind_args idc0 Raw.ident.Z_mul; args2 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ -> ℤ -> ℤ)%ptype ((projT1 args2) -> s0 -> s2 -> (projT1 args))%ptype with | Datatypes.Some (_, (_, (_, _)))%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ -> ℤ -> ℤ)%ptype ((projT1 args2) -> s0 -> s2 -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args2); v <- type.try_make_transport_cps s0 ℤ; v0 <- type.try_make_transport_cps s2 ℤ; xv0 <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (Z.abs (let (x5, _) := xv in x5) <=? Z.abs max_const_val) && (Z.abs (let (x5, _) := xv0 in x5) <=? Z.abs max_const_val) then Datatypes.Some (Base (v (Compile.reflect x2) * (v0 (Compile.reflect x4) * (##(let (x5, _) := xv in x5) * ##(let (x5, _) := xv0 in x5))))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | (@expr.App _ _ _ s2 _ (@expr.Ident _ _ _ t1 idc1) x4 @ ($_)%expr)%expr_pat | (@expr.App _ _ _ s2 _ (@expr.Ident _ _ _ t1 idc1) x4 @ @expr.Abs _ _ _ _ _ _)%expr_pat | (@expr.App _ _ _ s2 _ (@expr.Ident _ _ _ t1 idc1) x4 @ (_ @ _))%expr_pat | (@expr.App _ _ _ s2 _ (@expr.Ident _ _ _ t1 idc1) x4 @ @expr.LetIn _ _ _ _ _ _ _)%expr_pat => Datatypes.None | (@expr.App _ _ _ s2 _ ($_)%expr _ @ _)%expr_pat | (@expr.App _ _ _ s2 _ (@expr.Abs _ _ _ _ _ _) _ @ _)%expr_pat | (@expr.App _ _ _ s2 _ (_ @ _) _ @ _)%expr_pat | (@expr.App _ _ _ s2 _ (@expr.LetIn _ _ _ _ _ _ _) _ @ _)%expr_pat => Datatypes.None | _ => Datatypes.None end;; _ <- invert_bind_args idc0 Raw.ident.Z_mul; args0 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ -> ℤ)%ptype ((projT1 args0) -> s0 -> s)%ptype with | Datatypes.Some (_, (_, _))%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ -> ℤ)%ptype ((projT1 args0) -> s0 -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args0); v <- type.try_make_transport_cps s0 ℤ; v0 <- type.try_make_transport_cps s ℤ; fv <- (if Z.abs (let (x3, _) := xv in x3) <=? Z.abs max_const_val then Datatypes.Some (Base (v (Compile.reflect x2) * (v0 (Compile.reflect x1) * ##(let (x3, _) := xv in x3)))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ ($_)%expr _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (_ @ _)%expr_pat _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _) _ => Datatypes.None | @expr.App _ _ _ s _ #(_)%expr_pat _ | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if Z.abs (let (x1, _) := xv in x1) <=? Z.abs max_const_val then Datatypes.Some (Base (x0 * ##(let (x1, _) := xv in x1))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end);; Datatypes.None);;; Base (x * x0)%expr)%option | Z_pow => fun x x0 : expr ℤ => Base (#(Z_pow)%expr @ x @ x0)%expr_pat | Z_sub => fun x x0 : expr ℤ => (((match x with | @expr.Ident _ _ _ t idc => match x0 with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t0 idc0) x1 => _ <- invert_bind_args idc0 Raw.ident.Z_opp; args0 <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args0) -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args0) -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args0); v <- type.try_make_transport_cps s ℤ; fv <- (if (let (x2, _) := xv in x2) =? 0 then Datatypes.Some (Base (v (Compile.reflect x1))) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base (- x0)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base x) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => match x with | @expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t0 idc0) x2 => _ <- invert_bind_args idc0 Raw.ident.Z_opp; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s0 -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s0 -> s)%ptype then v <- type.try_make_transport_cps s0 ℤ; v0 <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (v0 (Compile.reflect x1) - v (Compile.reflect x2))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s0 _ ($_)%expr _ | @expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s0 _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> ℤ)%ptype then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (- (v (Compile.reflect x1) + x0))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x0 with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => (_ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> s)%ptype then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (x + v (Compile.reflect x1))%expr) else Datatypes.None | Datatypes.None => Datatypes.None end);; match x with | @expr.Ident _ _ _ t0 idc0 => (args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); v <- type.try_make_transport_cps s ℤ; fv <- (if (let (x2, _) := xv in x2) >? 0 then Datatypes.Some (Base (##(let (x2, _) := xv in x2) + v (Compile.reflect x1))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> s)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); v <- type.try_make_transport_cps s ℤ; fv <- (if (let (x2, _) := xv in x2) Datatypes.None end | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype ((projT1 args) -> ℤ)%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) Datatypes.None end | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x1 => match x0 with | @expr.Ident _ _ _ t0 idc0 => (args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> (projT1 args))%ptype then v <- type.try_make_transport_cps s ℤ; xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x2, _) := xv in x2) >? 0 then Datatypes.Some (Base (- (v (Compile.reflect x1) + ##(let (x2, _) := xv in x2)))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; args <- invert_bind_args idc0 Raw.ident.Literal; _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (s -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (s -> (projT1 args))%ptype then v <- type.try_make_transport_cps s ℤ; xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x2, _) := xv in x2) Datatypes.None end | _ => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match x0 with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) Datatypes.None end | _ => Datatypes.None end);; Datatypes.None);;; Base (x - x0)%expr)%option | Z_opp => fun x : expr ℤ => (((match x with | @expr.App _ _ _ s _ (@expr.Ident _ _ _ t idc) x0 => _ <- invert_bind_args idc Raw.ident.Z_opp; match pattern.type.unify_extracted ℤ s with | Datatypes.Some _ => if type.type_beq base.type base.type.type_beq ℤ s then v <- type.try_make_transport_cps s ℤ; Datatypes.Some (Base (v (Compile.reflect x0))) else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (_ @ _)%expr_pat _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;; match pattern.type.unify_extracted ℤ ℤ with | Datatypes.Some _ => if type.type_beq base.type base.type.type_beq ℤ ℤ then fv <- (if negb (SubstVarLike.is_var_fst_snd_pair_opp_cast x) then Datatypes.Some (UnderLet x (fun v : var ℤ => Base (- $v)%expr)) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; Datatypes.None);;; Base (- x)%expr)%option | Z_div => fun x x0 : expr ℤ => ((match x0 with | @expr.Ident _ _ _ t idc => (args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 1 then Datatypes.Some (Base x) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 2 ^ Z.log2 (let (x1, _) := xv in x1) then Datatypes.Some (Base (x >> ##(Z.log2 (let (x1, _) := xv in x1)))%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; Datatypes.None);;; Base (x / x0)%expr)%option | Z_modulo => fun x x0 : expr ℤ => (match x0 with | @expr.Ident _ _ _ t idc => (args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 1 then Datatypes.Some (Base (##0)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end);; args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 2 ^ Z.log2 (let (x1, _) := xv in x1) then Datatypes.Some (Base (x &' ##((let (x1, _) := xv in x1) - 1)%Z)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;;; Base (x mod x0)%expr)%option | Z_log2 => fun x : expr ℤ => Base (#(Z_log2)%expr @ x)%expr_pat | Z_log2_up => fun x : expr ℤ => Base (#(Z_log2_up)%expr @ x)%expr_pat | Z_eqb => fun x x0 : expr ℤ => Base (#(Z_eqb)%expr @ x @ x0)%expr_pat | Z_leb => fun x x0 : expr ℤ => Base (#(Z_leb)%expr @ x @ x0)%expr_pat | Z_ltb => fun x x0 : expr ℤ => Base (#(Z_ltb)%expr @ x @ x0)%expr_pat | Z_geb => fun x x0 : expr ℤ => Base (#(Z_geb)%expr @ x @ x0)%expr_pat | Z_gtb => fun x x0 : expr ℤ => Base (#(Z_gtb)%expr @ x @ x0)%expr_pat | Z_of_nat => fun x : expr ℕ => Base (#(Z_of_nat)%expr @ x)%expr_pat | Z_to_nat => fun x : expr ℤ => Base (#(Z_to_nat)%expr @ x)%expr_pat | Z_shiftr => fun x x0 : expr ℤ => Base (x >> x0)%expr | Z_shiftl => fun x x0 : expr ℤ => Base (x << x0)%expr | Z_land => fun x x0 : expr ℤ => ((match x0 with | @expr.Ident _ _ _ t idc => args <- invert_bind_args idc Raw.ident.Literal; match pattern.type.unify_extracted (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype with | Datatypes.Some (_, _)%zrange => if type.type_beq base.type base.type.type_beq (ℤ -> ℤ)%ptype (ℤ -> (projT1 args))%ptype then xv <- ident.unify pattern.ident.Literal ##(projT2 args); fv <- (if (let (x1, _) := xv in x1) =? 0 then Datatypes.Some (Base (##0)%expr) else Datatypes.None); Datatypes.Some (fv0 <-- fv; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | _ => Datatypes.None end;; Datatypes.None);;; Base (x &' x0)%expr)%option | Z_lor => fun x x0 : expr ℤ => Base (x || x0)%expr | Z_min => fun x x0 : expr ℤ => Base (#(Z_min)%expr @ x @ x0)%expr_pat | Z_max => fun x x0 : expr ℤ => Base (#(Z_max)%expr @ x @ x0)%expr_pat | Z_bneg => fun x : expr ℤ => Base (#(Z_bneg)%expr @ x)%expr_pat | Z_lnot_modulo => fun x x0 : expr ℤ => Base (#(Z_lnot_modulo)%expr @ x @ x0)%expr_pat | Z_mul_split => fun x x0 x1 : expr ℤ => Base (#(Z_mul_split)%expr @ x @ x0 @ x1)%expr_pat | Z_add_get_carry => fun x x0 x1 : expr ℤ => Base (#(Z_add_get_carry)%expr @ x @ x0 @ x1)%expr_pat | Z_add_with_carry => fun x x0 x1 : expr ℤ => Base (#(Z_add_with_carry)%expr @ x @ x0 @ x1)%expr_pat | Z_add_with_get_carry => fun x x0 x1 x2 : expr ℤ => Base (#(Z_add_with_get_carry)%expr @ x @ x0 @ x1 @ x2)%expr_pat | Z_sub_get_borrow => fun x x0 x1 : expr ℤ => Base (#(Z_sub_get_borrow)%expr @ x @ x0 @ x1)%expr_pat | Z_sub_with_get_borrow => fun x x0 x1 x2 : expr ℤ => Base (#(Z_sub_with_get_borrow)%expr @ x @ x0 @ x1 @ x2)%expr_pat | Z_zselect => fun x x0 x1 : expr ℤ => Base (#(Z_zselect)%expr @ x @ x0 @ x1)%expr_pat | Z_add_modulo => fun x x0 x1 : expr ℤ => Base (#(Z_add_modulo)%expr @ x @ x0 @ x1)%expr_pat | Z_rshi => fun x x0 x1 x2 : expr ℤ => Base (#(Z_rshi)%expr @ x @ x0 @ x1 @ x2)%expr_pat | Z_cc_m => fun x x0 : expr ℤ => Base (#(Z_cc_m)%expr @ x @ x0)%expr_pat | Z_cast range => fun x : expr ℤ => Base (#(Z_cast range)%expr @ x)%expr_pat | Z_cast2 range => fun x : expr (ℤ * ℤ)%etype => (match x with | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Ident _ _ _ t idc) x1) x0 => args <- invert_bind_args idc Raw.ident.pair; match pattern.type.unify_extracted (((ℤ -> ℤ -> (ℤ * ℤ)%pbtype) -> ℤ) -> ℤ)%ptype ((((let (x2, _) := args in x2) -> (let (_, y) := args in y) -> ((let (x2, _) := args in x2) * (let (_, y) := args in y))%etype) -> s0) -> s)%ptype with | Datatypes.Some (_, (_, (_, _)), _, _)%zrange => if type.type_beq base.type base.type.type_beq (((ℤ -> ℤ -> (ℤ * ℤ)%etype) -> ℤ) -> ℤ)%ptype ((((let (x2, _) := args in x2) -> (let (_, y) := args in y) -> ((let (x2, _) := args in x2) * (let (_, y) := args in y))%etype) -> s0) -> s)%ptype then _ <- ident.unify pattern.ident.pair pair; v <- type.try_make_transport_cps s0 ℤ; v0 <- type.try_make_transport_cps s ℤ; Datatypes.Some (fv0 <-- do_again (ℤ * ℤ) (#(Z_cast (Datatypes.fst range))%expr @ ($(v (Compile.reflect x1)))%expr, #(Z_cast (Datatypes.snd range))%expr @ ($(v0 (Compile.reflect x0)))%expr)%expr_pat; Base fv0)%under_lets else Datatypes.None | Datatypes.None => Datatypes.None end | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ ($_)%expr _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.Abs _ _ _ _ _ _) _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (_ @ _)%expr_pat _) _ | @expr.App _ _ _ s _ (@expr.App _ _ _ s0 _ (@expr.LetIn _ _ _ _ _ _ _) _) _ => Datatypes.None | @expr.App _ _ _ s _ #(_)%expr_pat _ | @expr.App _ _ _ s _ ($_)%expr _ | @expr.App _ _ _ s _ (@expr.Abs _ _ _ _ _ _) _ | @expr.App _ _ _ s _ (@expr.LetIn _ _ _ _ _ _ _) _ => Datatypes.None | _ => Datatypes.None end;;; Base (#(Z_cast2 range)%expr @ x)%expr_pat)%option | Some A => fun x : expr A => Base (#(Some)%expr @ x)%expr_pat | None A => Base #(None)%expr | @option_rect A P => fun (x : expr A -> UnderLets (expr P)) (x0 : expr unit -> UnderLets (expr P)) (x1 : expr (base.type.option A)) => Base (#(option_rect)%expr @ (λ x2 : var A, to_expr (x ($x2)))%expr @ (λ x2 : var unit, to_expr (x0 ($x2)))%expr @ x1)%expr_pat | Build_zrange => fun x x0 : expr ℤ => Base (#(Build_zrange)%expr @ x @ x0)%expr_pat | @zrange_rect P => fun (x : expr ℤ -> expr ℤ -> UnderLets (expr P)) (x0 : expr base.type.zrange) => Base (#(zrange_rect)%expr @ (λ x1 x2 : var ℤ, to_expr (x ($x1) ($x2)))%expr @ x0)%expr_pat | fancy_add log2wordmax imm => fun x : expr (ℤ * ℤ)%etype => Base (#(fancy_add log2wordmax imm)%expr @ x)%expr_pat | fancy_addc log2wordmax imm => fun x : expr (ℤ * ℤ * ℤ)%etype => Base (#(fancy_addc log2wordmax imm)%expr @ x)%expr_pat | fancy_sub log2wordmax imm => fun x : expr (ℤ * ℤ)%etype => Base (#(fancy_sub log2wordmax imm)%expr @ x)%expr_pat | fancy_subb log2wordmax imm => fun x : expr (ℤ * ℤ * ℤ)%etype => Base (#(fancy_subb log2wordmax imm)%expr @ x)%expr_pat | fancy_mulll log2wordmax => fun x : expr (ℤ * ℤ)%etype => Base (#(fancy_mulll log2wordmax)%expr @ x)%expr_pat | fancy_mullh log2wordmax => fun x : expr (ℤ * ℤ)%etype => Base (#(fancy_mullh log2wordmax)%expr @ x)%expr_pat | fancy_mulhl log2wordmax => fun x : expr (ℤ * ℤ)%etype => Base (#(fancy_mulhl log2wordmax)%expr @ x)%expr_pat | fancy_mulhh log2wordmax => fun x : expr (ℤ * ℤ)%etype => Base (#(fancy_mulhh log2wordmax)%expr @ x)%expr_pat | fancy_rshi log2wordmax x => fun x0 : expr (ℤ * ℤ)%etype => Base (#(fancy_rshi log2wordmax x)%expr @ x0)%expr_pat | fancy_selc => fun x : expr (ℤ * ℤ * ℤ)%etype => Base (#(fancy_selc)%expr @ x)%expr_pat | fancy_selm log2wordmax => fun x : expr (ℤ * ℤ * ℤ)%etype => Base (#(fancy_selm log2wordmax)%expr @ x)%expr_pat | fancy_sell => fun x : expr (ℤ * ℤ * ℤ)%etype => Base (#(fancy_sell)%expr @ x)%expr_pat | fancy_addm => fun x : expr (ℤ * ℤ * ℤ)%etype => Base (#(fancy_addm)%expr @ x)%expr_pat end : Compile.value' true t