Require Import Coq.ZArith.ZArith. Require Import Coq.micromega.Lia. Require Import Crypto.Util.ZUtil.Hints.Core. Require Import Crypto.Util.ZUtil.Tactics.LtbToLt. Local Open Scope Z_scope. Module Z. Lemma positive_is_nonzero : forall x, x > 0 -> x <> 0. Proof. intros; omega. Qed. Hint Resolve positive_is_nonzero : zarith. Lemma le_lt_trans n m p : n <= m -> m < p -> n < p. Proof. lia. Qed. Lemma le_fold_right_max : forall low l x, (forall y, List.In y l -> low <= y) -> List.In x l -> x <= List.fold_right Z.max low l. Proof. induction l as [|a l IHl]; intros ? lower_bound In_list; [cbv [List.In] in *; intuition | ]. simpl. destruct (List.in_inv In_list); subst. + apply Z.le_max_l. + etransitivity. - apply IHl; auto; intuition auto with datatypes. - apply Z.le_max_r. Qed. Lemma le_fold_right_max_initial : forall low l, low <= List.fold_right Z.max low l. Proof. induction l as [|a l IHl]; intros; try reflexivity. etransitivity; [ apply IHl | apply Z.le_max_r ]. Qed. Lemma add_compare_mono_r: forall n m p, (n + p ?= m + p) = (n ?= m). Proof. intros n m p. rewrite <-!(Z.add_comm p). apply Z.add_compare_mono_l. Qed. Lemma leb_add_same x y : (x <=? y + x) = (0 <=? y). Proof. destruct (x <=? y + x) eqn:?, (0 <=? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed. Hint Rewrite leb_add_same : zsimplify. Lemma ltb_add_same x y : (x =? y + x) = (0 >=? y). Proof. destruct (x >=? y + x) eqn:?, (0 >=? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed. Hint Rewrite geb_add_same : zsimplify. Lemma gtb_add_same x y : (x >? y + x) = (0 >? y). Proof. destruct (x >? y + x) eqn:?, (0 >? y) eqn:?; Z.ltb_to_lt; try reflexivity; omega. Qed. Hint Rewrite gtb_add_same : zsimplify. Lemma sub_pos_bound a b X : 0 <= a < X -> 0 <= b < X -> -X < a - b < X. Proof. lia. Qed. Lemma le_sub_1_iff x y : x <= y - 1 <-> x < y. Proof. lia. Qed. Lemma le_add_1_iff x y : x + 1 <= y <-> x < y. Proof. lia. Qed. End Z.