Require Import Coq.ZArith.ZArith Coq.micromega.Lia. Require Import Coq.ZArith.Znumtheory. Require Import Crypto.Util.ZUtil.Tactics.CompareToSgn. Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem. Require Import Crypto.Util.ZUtil.Tactics.LtbToLt. Require Import Crypto.Util.ZUtil.Le. Require Import Crypto.Util.ZUtil.Hints.Core. Require Import Crypto.Util.ZUtil.Hints.ZArith. Require Import Crypto.Util.ZUtil.Hints.PullPush. Require Import Crypto.Util.ZUtil.Hints. Require Import Crypto.Util.ZUtil.ZSimplify.Core. Require Import Crypto.Util.Tactics.BreakMatch. Local Open Scope Z_scope. Module Z. Lemma div_mul' : forall a b : Z, b <> 0 -> (b * a) / b = a. Proof. intros. rewrite Z.mul_comm. apply Z.div_mul; auto. Qed. Hint Rewrite div_mul' using zutil_arith : zsimplify. Local Ltac replace_to_const c := repeat match goal with | [ H : ?x = ?x |- _ ] => clear H | [ H : ?x = c, H' : context[?x] |- _ ] => rewrite H in H' | [ H : c = ?x, H' : context[?x] |- _ ] => rewrite <- H in H' | [ H : ?x = c |- context[?x] ] => rewrite H | [ H : c = ?x |- context[?x] ] => rewrite <- H end. Lemma lt_div_0 n m : n / m < 0 <-> ((n < 0 < m \/ m < 0 < n) /\ 0 < -(n / m)). Proof. Z.compare_to_sgn; rewrite Z.sgn_opp; simpl. pose proof (Zdiv_sgn n m) as H. pose proof (Z.sgn_spec (n / m)) as H'. repeat first [ progress intuition auto | progress simpl in * | congruence | lia | progress replace_to_const (-1) | progress replace_to_const 0 | progress replace_to_const 1 | match goal with | [ x : Z |- _ ] => destruct x end ]. Qed. Lemma div_add' a b c : c <> 0 -> (a + c * b) / c = a / c + b. Proof. intro; rewrite <- Z.div_add, (Z.mul_comm c); try lia. Qed. Lemma div_add_l' a b c : b <> 0 -> (b * a + c) / b = a + c / b. Proof. intro; rewrite <- Z.div_add_l, (Z.mul_comm b); lia. Qed. Hint Rewrite Z.div_add' Z.div_add_l' using zutil_arith : push_Zdiv. Hint Rewrite <- Z.div_add' Z.div_add_l' using zutil_arith : pull_Zdiv. Hint Rewrite div_add_l' div_add' using zutil_arith : zsimplify. Lemma div_sub a b c : c <> 0 -> (a - b * c) / c = a / c - b. Proof. intros; rewrite <- !Z.add_opp_r, <- Z.div_add by lia; apply f_equal2; lia. Qed. Lemma div_sub' a b c : c <> 0 -> (a - c * b) / c = a / c - b. Proof. intro; rewrite <- div_sub, (Z.mul_comm c); try lia. Qed. Hint Rewrite div_sub div_sub' using zutil_arith : zsimplify. Lemma div_add_sub_l a b c d : b <> 0 -> (a * b + c - d) / b = a + (c - d) / b. Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l. Qed. Lemma div_add_sub_l' a b c d : b <> 0 -> (b * a + c - d) / b = a + (c - d) / b. Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l'. Qed. Lemma div_add_sub a b c d : c <> 0 -> (a + b * c - d) / c = (a - d) / c + b. Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l. Qed. Lemma div_add_sub' a b c d : c <> 0 -> (a + c * b - d) / c = (a - d) / c + b. Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l'. Qed. Hint Rewrite Z.div_add_sub Z.div_add_sub' Z.div_add_sub_l Z.div_add_sub_l' using zutil_arith : zsimplify. Lemma div_mul_skip a b k : 0 < b -> 0 < k -> a * b / k / b = a / k. Proof. intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia. autorewrite with zsimplify. reflexivity. Qed. Lemma div_mul_skip' a b k : 0 < b -> 0 < k -> b * a / k / b = a / k. Proof. intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia. autorewrite with zsimplify; reflexivity. Qed. Hint Rewrite Z.div_mul_skip Z.div_mul_skip' using zutil_arith : zsimplify. Lemma div_mul_skip_pow base e0 e1 x y : 0 < y -> 0 < base -> 0 <= e1 <= e0 -> x * base^e0 / y / base^e1 = x * base^(e0 - e1) / y. Proof. intros. assert (0 < base^e1) by auto with zarith. replace (base^e0) with (base^(e0 - e1) * base^e1) by (autorewrite with pull_Zpow zsimplify; reflexivity). rewrite !Z.mul_assoc. autorewrite with zsimplify; lia. Qed. Hint Rewrite div_mul_skip_pow using zutil_arith : zsimplify. Lemma div_mul_skip_pow' base e0 e1 x y : 0 < y -> 0 < base -> 0 <= e1 <= e0 -> base^e0 * x / y / base^e1 = base^(e0 - e1) * x / y. Proof. intros. rewrite (Z.mul_comm (base^e0) x), div_mul_skip_pow by lia. auto using f_equal2 with lia. Qed. Hint Rewrite div_mul_skip_pow' using zutil_arith : zsimplify. Lemma div_le_mono_nonneg a b c : 0 <= c -> a <= b -> a / c <= b / c. Proof. destruct (Z_zerop c). { subst; simpl; autorewrite with zsimplify; reflexivity. } { intros; apply Z.div_le_mono; omega. } Qed. Hint Resolve div_le_mono_nonneg : zarith. Lemma div_le_mono_pow_pos a b c e : a <= b -> a / Z.pos c ^ e <= b / Z.pos c ^ e. Proof. auto with zarith. Qed. Lemma div_nonneg a b : 0 <= a -> 0 <= b -> 0 <= a / b. Proof. destruct (Z_zerop b); subst; rewrite ?Zdiv_0_r; [ reflexivity | ]. intros; apply Z.div_pos; omega. Qed. Hint Resolve div_nonneg : zarith. Lemma div_add_exact x y d : d <> 0 -> x mod d = 0 -> (x + y) / d = x / d + y / d. Proof. intros; rewrite (Z_div_exact_full_2 x d) at 1 by assumption. rewrite Z.div_add_l' by assumption; lia. Qed. Hint Rewrite div_add_exact using zutil_arith : zsimplify. Lemma Z_divide_div_mul_exact' a b c : b <> 0 -> (b | a) -> a * c / b = c * (a / b). Proof. intros. rewrite Z.mul_comm. auto using Z.divide_div_mul_exact. Qed. Lemma div_sub_mod_exact a b : b <> 0 -> a / b = (a - a mod b) / b. Proof. intro. rewrite (Z.div_mod a b) at 2 by lia. autorewrite with zsimplify. reflexivity. Qed. Lemma div_sub_mod_cond x y d : d <> 0 -> (x - y) / d = x / d + ((x mod d - y) / d). Proof. clear. intro. replace (x - y) with ((x - x mod d) + (x mod d - y)) by lia. rewrite Z.div_add_exact by (autorewrite with pull_Zmod zsimplify; auto). rewrite <- Z.div_sub_mod_exact by lia; lia. Qed. Hint Resolve div_sub_mod_cond : zarith. Lemma div_add_mod_cond_l : forall x y d, d <> 0 -> (x + y) / d = (x mod d + y) / d + x / d. Proof. intros. replace (x + y) with ((x - x mod d) + (x mod d + y)) by lia. rewrite Z.div_add_exact by (autorewrite with pull_Zmod zsimplify; auto). rewrite <- Z.div_sub_mod_exact by lia; lia. Qed. Lemma div_add_mod_cond_r : forall x y d, d <> 0 -> (x + y) / d = (x + y mod d) / d + y / d. Proof. intros. rewrite Z.add_comm, div_add_mod_cond_l by auto. repeat (f_equal; try ring). Qed. Lemma div_le_zero x y : 0 < y -> x / y <= 0 -> x < y. Proof. clear. intros. apply Z.nle_gt; intro. pose proof (Z.div_str_pos x y ltac:(lia)). lia. Qed. Lemma div_between_full n a b : 0 < b -> n * b <= a < (1 + n) * b -> a / b = n. Proof. intros. pose proof (Z.div_le_lower_bound a b n ltac:(lia) ltac:(lia)). pose proof (Z.div_lt_upper_bound a b (n+1) ltac:(lia) ltac:(lia)). lia. Qed. Lemma mod_small_n_neg n a b : n < 0 -> 0 < b -> n * b <= a < (1 + n) * b -> a mod b = a - n * b. Proof. intros. rewrite Z.mod_eq, div_between_full with (n:=n) by omega. ring. Qed. Lemma div_div_comm : forall x y z, 0 < y -> 0 < z -> x / y / z = x / z / y. Proof. intros; rewrite !Z.div_div by omega. f_equal; ring. Qed. Lemma div_lt_upper_bound' a b q : 0 < b -> a < q * b -> a / b < q. Proof. intros; apply Z.div_lt_upper_bound; nia. Qed. Hint Resolve div_lt_upper_bound' : zarith. Lemma div_cross_le_abs a b c' d : c' <> 0 -> d <> 0 -> a * Z.sgn c' * Z.abs d <= b * Z.sgn d * Z.abs c' -> a / c' <= b / d. Proof. clear. destruct c', d; cbn [Z.abs Z.sgn]; rewrite ?Zdiv_0_r, ?Z.mul_0_r, ?Z.mul_0_l, ?Z.mul_1_l, ?Z.mul_1_r; try lia; intros ?? H; Z.div_mod_to_quot_rem_in_goal; subst. all: repeat match goal with | [ H : context[_ * -1] |- _ ] => rewrite (Z.mul_add_distr_r _ _ (-1)), <- ?(Z.mul_comm (-1)), ?Z.mul_assoc in H | [ H : context[-1 * _] |- _ ] => rewrite (Z.mul_add_distr_l (-1)), <- ?(Z.mul_comm (-1)), ?Z.mul_assoc in H | [ H : context[-1 * Z.neg ?x] |- _ ] => rewrite (Z.mul_comm (-1) (Z.neg x)), <- Z.opp_eq_mul_m1 in H | [ H : context[-1 * ?x] |- _ ] => rewrite (Z.mul_comm (-1) x), <- Z.opp_eq_mul_m1 in H | [ H : context[-Z.neg _] |- _ ] => cbn [Z.opp] in H end. all:lazymatch goal with | [ H : (Z.pos ?p * ?q + ?r) * Z.pos ?p' <= (Z.pos ?p' * ?q' + ?r') * Z.pos ?p |- _ ] => let H' := fresh in assert (H' : q <= q' + (r' * Z.pos p - r * Z.pos p') / (Z.pos p * Z.pos p')) by (Z.div_mod_to_quot_rem_in_goal; nia); revert H' end. all:Z.div_mod_to_quot_rem_in_goal; nia. Qed. Lemma div_positive_gt_0 : forall a b, a > 0 -> b > 0 -> a mod b = 0 -> a / b > 0. Proof. intros; rewrite Z.gt_lt_iff. apply Z.div_str_pos. split; intuition auto with omega. apply Z.divide_pos_le; try (apply Zmod_divide); omega. Qed. Lemma div_opp_l_complete a b (Hb : b <> 0) : -a/b = -(a/b) - (if Z_zerop (a mod b) then 0 else 1). Proof. destruct (Z_zerop (a mod b)); autorewrite with zsimplify push_Zopp; reflexivity. Qed. Lemma div_opp_l_complete' a b (Hb : b <> 0) : -(a/b) = -a/b + (if Z_zerop (a mod b) then 0 else 1). Proof. destruct (Z_zerop (a mod b)); autorewrite with zsimplify pull_Zopp; lia. Qed. Hint Rewrite Z.div_opp_l_complete using zutil_arith : pull_Zopp. Hint Rewrite Z.div_opp_l_complete' using zutil_arith : push_Zopp. Lemma div_opp a : a <> 0 -> -a / a = -1. Proof. intros; autorewrite with pull_Zopp zsimplify; lia. Qed. Hint Rewrite Z.div_opp using zutil_arith : zsimplify. Lemma div_sub_1_0 x : x > 0 -> (x - 1) / x = 0. Proof. auto with zarith lia. Qed. Hint Rewrite div_sub_1_0 using zutil_arith : zsimplify. Lemma div_same' a b : b <> 0 -> a = b -> a / b = 1. Proof. intros; subst; auto with zarith. Qed. Hint Resolve div_same' : zarith. Lemma div_opp_r a b : a / (-b) = ((-a) / b). Proof. Z.div_mod_to_quot_rem; nia. Qed. Hint Resolve div_opp_r : zarith. Lemma div_floor : forall a b c, 0 < b -> a < b * (Z.succ c) -> a / b <= c. Proof. intros. apply Z.lt_succ_r. apply Z.div_lt_upper_bound; try omega. Qed. Lemma mul_div_le x y z (Hx : 0 <= x) (Hy : 0 <= y) (Hz : 0 < z) (Hyz : y <= z) : x * y / z <= x. Proof. transitivity (x * z / z); [ | rewrite Z.div_mul by lia; lia ]. apply Z_div_le; nia. Qed. Hint Resolve mul_div_le : zarith. Lemma div_mul_diff_exact a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : c * a / b = c * (a / b) + (c * (a mod b)) / b. Proof. rewrite (Z_div_mod_eq a b) at 1 by lia. rewrite Z.mul_add_distr_l. replace (c * (b * (a / b))) with ((c * (a / b)) * b) by lia. rewrite Z.div_add_l by lia. lia. Qed. Lemma div_mul_diff_exact' a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : c * (a / b) = c * a / b - (c * (a mod b)) / b. Proof. rewrite div_mul_diff_exact by assumption; lia. Qed. Lemma div_mul_diff_exact'' a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : a * c / b = (a / b) * c + (c * (a mod b)) / b. Proof. rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia. Qed. Lemma div_mul_diff_exact''' a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : (a / b) * c = a * c / b - (c * (a mod b)) / b. Proof. rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia. Qed. Lemma div_mul_diff a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : c * a / b - c * (a / b) <= c. Proof. rewrite div_mul_diff_exact by assumption. ring_simplify; auto with zarith. Qed. Lemma div_mul_le_le a b c : 0 <= a -> 0 < b -> 0 <= c -> c * (a / b) <= c * a / b <= c * (a / b) + c. Proof. pose proof (Z.div_mul_diff a b c); split; try apply Z.div_mul_le; lia. Qed. Lemma div_mul_le_le_offset a b c : 0 <= a -> 0 < b -> 0 <= c -> c * a / b - c <= c * (a / b). Proof. pose proof (Z.div_mul_le_le a b c); lia. Qed. Hint Resolve div_mul_le_le_offset : zarith. Lemma div_x_y_x x y : 0 < x -> 0 < y -> x / y / x = 1 / y. Proof. intros; rewrite Z.div_div, (Z.mul_comm y x), <- Z.div_div, Z.div_same by lia. reflexivity. Qed. Hint Rewrite div_x_y_x using zutil_arith : zsimplify. Lemma sub_pos_bound_div a b X : 0 <= a < X -> 0 <= b < X -> -1 <= (a - b) / X <= 0. Proof. intros H0 H1; pose proof (Z.sub_pos_bound a b X H0 H1). assert (Hn : -X <= a - b) by lia. assert (Hp : a - b <= X - 1) by lia. split; etransitivity; [ | apply Z_div_le, Hn; lia | apply Z_div_le, Hp; lia | ]; instantiate; autorewrite with zsimplify; try reflexivity. Qed. Hint Resolve (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) : zarith. Lemma sub_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (a - b) / X = if a 0); [ lia | ]. autorewrite with zstrip_div; auto with zarith lia. } { autorewrite with zstrip_div; auto with zarith lia. } Qed. Lemma add_opp_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (-b + a) / X = if a 0 = a / b. Proof. intros; symmetry; apply Z.div_small; assumption. Qed. Hint Resolve div_small_sym : zarith. Lemma mod_eq_le_div_1 a b : 0 < a <= b -> a mod b = 0 -> a / b = 1. Proof. intros; Z.div_mod_to_quot_rem; nia. Qed. Hint Resolve mod_eq_le_div_1 : zarith. Hint Rewrite mod_eq_le_div_1 using zutil_arith : zsimplify. Lemma div_small_neg x y : 0 < -x <= y -> x / y = -1. Proof. intros; Z.div_mod_to_quot_rem; nia. Qed. Hint Rewrite div_small_neg using zutil_arith : zsimplify. Lemma div_sub_small x y z : 0 <= x < z -> 0 <= y <= z -> (x - y) / z = if x 0 <= x < b -> x * y / z < b. Proof. intros [? ?] [? ?]; eapply Z.le_lt_trans; [ | eassumption ]. auto with zarith. Qed. Hint Resolve mul_div_lt_by_le : zarith. Definition mul_div_le' := fun x y z w p H0 H1 H2 H3 => @Z.le_trans _ _ w (@Z.mul_div_le x y z H0 H1 H2 H3) p. Hint Resolve mul_div_le' : zarith. Lemma mul_div_le'' x y z w : y <= w -> 0 <= x -> 0 <= y -> 0 < z -> x <= z -> x * y / z <= w. Proof. rewrite (Z.mul_comm x y); intros; apply mul_div_le'; assumption. Qed. Hint Resolve mul_div_le'' : zarith. Lemma div_between n a b : 0 <= n -> b <> 0 -> n * b <= a < (1 + n) * b -> a / b = n. Proof. intros; Z.div_mod_to_quot_rem_in_goal; nia. Qed. Hint Rewrite div_between using zutil_arith : zsimplify. Lemma div_between_1 a b : b <> 0 -> b <= a < 2 * b -> a / b = 1. Proof. intros; rewrite (div_between 1) by lia; reflexivity. Qed. Hint Rewrite div_between_1 using zutil_arith : zsimplify. Lemma div_between_if n a b : 0 <= n -> b <> 0 -> n * b <= a < (2 + n) * b -> (a / b = if (1 + n) * b <=? a then 1 + n else n)%Z. Proof. intros. break_match; Z.ltb_to_lt; apply div_between; lia. Qed. Lemma div_between_0_if a b : b <> 0 -> 0 <= a < 2 * b -> a / b = if b <=? a then 1 else 0. Proof. intros; rewrite (div_between_if 0) by lia; autorewrite with zsimplify_const; reflexivity. Qed. End Z.