Require Import Coq.ZArith.Zpower Coq.ZArith.Znumtheory Coq.ZArith.ZArith Coq.ZArith.Zdiv. Require Import Coq.Classes.RelationClasses Coq.Classes.Morphisms. Require Import Coq.Structures.Equalities. Require Import Coq.omega.Omega Coq.micromega.Psatz Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith. Require Import Crypto.Util.NatUtil. Require Import Crypto.Util.Notations. Require Import Coq.Lists.List. Require Export Crypto.Util.FixCoqMistakes. Import Nat. Local Open Scope Z. Infix ">>" := Z.shiftr : Z_scope. Infix "<<" := Z.shiftl : Z_scope. Infix "&" := Z.land : Z_scope. Hint Extern 1 => lia : lia. Hint Extern 1 => lra : lra. Hint Extern 1 => nia : nia. Hint Extern 1 => omega : omega. Hint Resolve Z.log2_nonneg Z.div_small Z.mod_small Z.pow_neg_r Z.pow_0_l Z.pow_pos_nonneg Z.lt_le_incl Z.pow_nonzero Z.div_le_upper_bound Z_div_exact_full_2 Z.div_same : zarith. Hint Resolve (fun a b H => proj1 (Z.mod_pos_bound a b H)) (fun a b H => proj2 (Z.mod_pos_bound a b H)) : zarith. (** Only hints that are always safe to apply (i.e., reversible), and which can reasonably be said to "simplify" the goal, should go in this database. *) Create HintDb zsimplify discriminated. Hint Rewrite Z.div_1_r Z.mul_1_r Z.mul_1_l Z.sub_diag Z.mul_0_r Z.mul_0_l Z.add_0_l Z.add_0_r Z.opp_involutive Z.sub_0_r Z_mod_same_full Z.sub_simpl_r Z.sub_simpl_l : zsimplify. Hint Rewrite Z.div_mul Z.div_1_l Z.div_same Z.mod_same Z.div_small Z.mod_small Z.div_add Z.div_add_l Z.mod_add Z.div_0_l Z.mod_mod using lia : zsimplify. (** "push" means transform [-f x] to [f (-x)]; "pull" means go the other way *) Create HintDb push_Zopp discriminated. Create HintDb pull_Zopp discriminated. Create HintDb push_Zpow discriminated. Create HintDb pull_Zpow discriminated. Create HintDb push_Zmul discriminated. Create HintDb pull_Zmul discriminated. Hint Extern 1 => autorewrite with push_Zopp in * : push_Zopp. Hint Extern 1 => autorewrite with pull_Zopp in * : pull_Zopp. Hint Extern 1 => autorewrite with push_Zpow in * : push_Zpow. Hint Extern 1 => autorewrite with pull_Zpow in * : pull_Zpow. Hint Extern 1 => autorewrite with push_Zmul in * : push_Zmul. Hint Extern 1 => autorewrite with pull_Zmul in * : pull_Zmul. Hint Rewrite Z.div_opp_l_nz Z.div_opp_l_z using lia : pull_Zopp. Hint Rewrite Z.mul_opp_l : pull_Zopp. Hint Rewrite <- Z.opp_add_distr : pull_Zopp. Hint Rewrite <- Z.div_opp_l_nz Z.div_opp_l_z using lia : push_Zopp. Hint Rewrite <- Z.mul_opp_l : push_Zopp. Hint Rewrite Z.opp_add_distr : push_Zopp. Hint Rewrite Z.pow_sub_r Z.pow_div_l Z.pow_twice_r Z.pow_mul_l Z.pow_add_r using lia : push_Zpow. Hint Rewrite <- Z.pow_sub_r Z.pow_div_l Z.pow_mul_l Z.pow_add_r Z.pow_twice_r using lia : pull_Zpow. Hint Rewrite Z.mul_add_distr_l Z.mul_add_distr_r Z.mul_sub_distr_l Z.mul_sub_distr_r : push_Zmul. Hint Rewrite <- Z.mul_add_distr_l Z.mul_add_distr_r Z.mul_sub_distr_l Z.mul_sub_distr_r : pull_Zmul. (** For the occasional lemma that can remove the use of [Z.div] *) Create HintDb zstrip_div. Hint Rewrite Z.div_small_iff using lia : zstrip_div. (** It's not clear that [mod] is much easier for [lia] than [Z.div], so we separate out the transformations between [mod] and [div]. We'll put, e.g., [mul_div_eq] into it below. *) Create HintDb zstrip_div. Ltac comes_before ls x y := match ls with | context[cons x ?xs] => match xs with | context[y] => idtac end end. Ltac canonicalize_comm_step mul ls comm comm3 := match goal with | [ |- appcontext[mul ?x ?y] ] => comes_before ls y x; rewrite (comm x y) | [ |- appcontext[mul ?x (mul ?y ?z)] ] => comes_before ls y x; rewrite (comm3 x y z) end. Ltac canonicalize_comm mul ls comm comm3 := repeat canonicalize_comm_step mul ls comm comm3. Module Z. Definition pow2_mod n i := (n & (Z.ones i)). Lemma pow2_mod_spec : forall a b, (0 <= b) -> Z.pow2_mod a b = a mod (2 ^ b). Proof. intros. unfold Z.pow2_mod. rewrite Z.land_ones; auto. Qed. Lemma mul_comm3 x y z : x * (y * z) = y * (x * z). Proof. lia. Qed. Ltac Zcanonicalize_comm ls := canonicalize_comm Z.mul ls Z.mul_comm mul_comm3. Lemma positive_is_nonzero : forall x, x > 0 -> x <> 0. Proof. intros; omega. Qed. Hint Resolve positive_is_nonzero : zarith. Lemma div_positive_gt_0 : forall a b, a > 0 -> b > 0 -> a mod b = 0 -> a / b > 0. Proof. intros; rewrite Z.gt_lt_iff. apply Z.div_str_pos. split; intuition auto with omega. apply Z.divide_pos_le; try (apply Zmod_divide); omega. Qed. Lemma elim_mod : forall a b m, a = b -> a mod m = b mod m. Proof. intros; subst; auto. Qed. Hint Resolve elim_mod : zarith. Lemma mod_add_l : forall a b c, b <> 0 -> (a * b + c) mod b = c mod b. Proof. intros; rewrite (Z.add_comm _ c); autorewrite with zsimplify; reflexivity. Qed. Hint Rewrite mod_add_l using lia : zsimplify. Lemma mod_add' : forall a b c, b <> 0 -> (a + b * c) mod b = a mod b. Proof. intros; rewrite (Z.mul_comm _ c); autorewrite with zsimplify; reflexivity. Qed. Lemma mod_add_l' : forall a b c, a <> 0 -> (a * b + c) mod a = c mod a. Proof. intros; rewrite (Z.mul_comm _ b); autorewrite with zsimplify; reflexivity. Qed. Hint Rewrite mod_add' mod_add_l' using lia : zsimplify. Lemma pos_pow_nat_pos : forall x n, Z.pos x ^ Z.of_nat n > 0. Proof. do 2 (intros; induction n; subst; simpl in *; auto with zarith). rewrite <- Pos.add_1_r, Zpower_pos_is_exp. apply Zmult_gt_0_compat; auto; reflexivity. Qed. Lemma div_mul' : forall a b : Z, b <> 0 -> (b * a) / b = a. Proof. intros. rewrite Z.mul_comm. apply Z.div_mul; auto. Qed. Hint Rewrite div_mul' using lia : zsimplify. (** TODO: Should we get rid of this duplicate? *) Notation gt0_neq0 := positive_is_nonzero (only parsing). Lemma pow_Z2N_Zpow : forall a n, 0 <= a -> ((Z.to_nat a) ^ n = Z.to_nat (a ^ Z.of_nat n)%Z)%nat. Proof. intros; induction n; try reflexivity. rewrite Nat2Z.inj_succ. rewrite pow_succ_r by apply le_0_n. rewrite Z.pow_succ_r by apply Zle_0_nat. rewrite IHn. rewrite Z2Nat.inj_mul; auto using Z.pow_nonneg. Qed. Lemma pow_Zpow : forall a n : nat, Z.of_nat (a ^ n) = Z.of_nat a ^ Z.of_nat n. Proof with auto using Zle_0_nat, Z.pow_nonneg. intros; apply Z2Nat.inj... rewrite <- pow_Z2N_Zpow, !Nat2Z.id... Qed. Lemma mod_exp_0 : forall a x m, x > 0 -> m > 1 -> a mod m = 0 -> a ^ x mod m = 0. Proof. intros. replace x with (Z.of_nat (Z.to_nat x)) in * by (apply Z2Nat.id; omega). induction (Z.to_nat x). { simpl in *; omega. } { rewrite Nat2Z.inj_succ in *. rewrite Z.pow_succ_r by omega. rewrite Z.mul_mod by omega. case_eq n; intros. { subst. simpl. rewrite Zmod_1_l by omega. rewrite H1. apply Zmod_0_l. } { subst. rewrite IHn by (rewrite Nat2Z.inj_succ in *; omega). rewrite H1. auto. } } Qed. Lemma mod_pow : forall (a m b : Z), (0 <= b) -> (m <> 0) -> a ^ b mod m = (a mod m) ^ b mod m. Proof. intros; rewrite <- (Z2Nat.id b) by auto. induction (Z.to_nat b); auto. rewrite Nat2Z.inj_succ. do 2 rewrite Z.pow_succ_r by apply Nat2Z.is_nonneg. rewrite Z.mul_mod by auto. rewrite (Z.mul_mod (a mod m) ((a mod m) ^ Z.of_nat n) m) by auto. rewrite <- IHn by auto. rewrite Z.mod_mod by auto. reflexivity. Qed. Ltac divide_exists_mul := let k := fresh "k" in match goal with | [ H : (?a | ?b) |- _ ] => apply Z.mod_divide in H; try apply Zmod_divides in H; destruct H as [k H] | [ |- (?a | ?b) ] => apply Z.mod_divide; try apply Zmod_divides end; (omega || auto). Lemma divide_mul_div: forall a b c (a_nonzero : a <> 0) (c_nonzero : c <> 0), (a | b * (a / c)) -> (c | a) -> (c | b). Proof. intros ? ? ? ? ? divide_a divide_c_a; do 2 divide_exists_mul. rewrite divide_c_a in divide_a. rewrite div_mul' in divide_a by auto. replace (b * k) with (k * b) in divide_a by ring. replace (c * k * k0) with (k * (k0 * c)) in divide_a by ring. rewrite Z.mul_cancel_l in divide_a by (intuition auto with nia; rewrite H in divide_c_a; ring_simplify in divide_a; intuition). eapply Zdivide_intro; eauto. Qed. Lemma divide2_even_iff : forall n, (2 | n) <-> Z.even n = true. Proof. intro; split. { intro divide2_n. divide_exists_mul; [ | pose proof (Z.mod_pos_bound n 2); omega]. rewrite divide2_n. apply Z.even_mul. } { intro n_even. pose proof (Zmod_even n). rewrite n_even in H. apply Zmod_divide; omega || auto. } Qed. Lemma prime_odd_or_2 : forall p (prime_p : prime p), p = 2 \/ Z.odd p = true. Proof. intros. apply Decidable.imp_not_l; try apply Z.eq_decidable. intros p_neq2. pose proof (Zmod_odd p) as mod_odd. destruct (Sumbool.sumbool_of_bool (Z.odd p)) as [? | p_not_odd]; auto. rewrite p_not_odd in mod_odd. apply Zmod_divides in mod_odd; try omega. destruct mod_odd as [c c_id]. rewrite Z.mul_comm in c_id. apply Zdivide_intro in c_id. apply prime_divisors in c_id; auto. destruct c_id; [omega | destruct H; [omega | destruct H; auto] ]. pose proof (prime_ge_2 p prime_p); omega. Qed. Lemma mul_div_eq : forall a m, m > 0 -> m * (a / m) = (a - a mod m). Proof. intros. rewrite (Z_div_mod_eq a m) at 2 by auto. ring. Qed. Lemma mul_div_eq' : (forall a m, m > 0 -> (a / m) * m = (a - a mod m))%Z. Proof. intros. rewrite (Z_div_mod_eq a m) at 2 by auto. ring. Qed. Hint Rewrite mul_div_eq mul_div_eq' using lia : zdiv_to_mod. Hint Rewrite <- mul_div_eq' using lia : zmod_to_div. Ltac prime_bound := match goal with | [ H : prime ?p |- _ ] => pose proof (prime_ge_2 p H); try omega end. Lemma testbit_low : forall n x i, (0 <= i < n) -> Z.testbit x i = Z.testbit (Z.land x (Z.ones n)) i. Proof. intros. rewrite Z.land_ones by omega. symmetry. apply Z.mod_pow2_bits_low. omega. Qed. Lemma testbit_add_shiftl_low : forall i, (0 <= i) -> forall a b n, (i < n) -> Z.testbit (a + Z.shiftl b n) i = Z.testbit a i. Proof. intros. erewrite Z.testbit_low; eauto. rewrite Z.land_ones, Z.shiftl_mul_pow2 by omega. rewrite Z.mod_add by (pose proof (Z.pow_pos_nonneg 2 n); omega). auto using Z.mod_pow2_bits_low. Qed. Lemma mod_div_eq0 : forall a b, 0 < b -> (a mod b) / b = 0. Proof. intros. apply Z.div_small. auto using Z.mod_pos_bound. Qed. Hint Rewrite mod_div_eq0 using lia : zsimplify. Lemma shiftr_add_shiftl_high : forall n m a b, 0 <= n <= m -> 0 <= a < 2 ^ n -> Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr b (m - n). Proof. intros. rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2 by omega. replace (2 ^ m) with (2 ^ n * 2 ^ (m - n)) by (rewrite <-Z.pow_add_r by omega; f_equal; ring). rewrite <-Z.div_div, Z.div_add, (Z.div_small a) ; try solve [assumption || apply Z.pow_nonzero || apply Z.pow_pos_nonneg; omega]. f_equal; ring. Qed. Lemma shiftr_add_shiftl_low : forall n m a b, 0 <= m <= n -> 0 <= a < 2 ^ n -> Z.shiftr (a + (Z.shiftl b n)) m = Z.shiftr a m + Z.shiftr b (m - n). Proof. intros. rewrite !Z.shiftr_div_pow2, Z.shiftl_mul_pow2, Z.shiftr_mul_pow2 by omega. replace (2 ^ n) with (2 ^ (n - m) * 2 ^ m) by (rewrite <-Z.pow_add_r by omega; f_equal; ring). rewrite Z.mul_assoc, Z.div_add by (apply Z.pow_nonzero; omega). repeat f_equal; ring. Qed. Lemma testbit_add_shiftl_high : forall i, (0 <= i) -> forall a b n, (0 <= n <= i) -> 0 <= a < 2 ^ n -> Z.testbit (a + Z.shiftl b n) i = Z.testbit b (i - n). Proof. intros ? ?. apply natlike_ind with (x := i); intros; try assumption; (destruct (Z_eq_dec 0 n); [ subst; rewrite Z.pow_0_r in *; replace a with 0 by omega; f_equal; ring | ]); try omega. rewrite <-Z.add_1_r at 1. rewrite <-Z.shiftr_spec by assumption. replace (Z.succ x - n) with (x - (n - 1)) by ring. rewrite shiftr_add_shiftl_low, <-Z.shiftl_opp_r with (a := b) by omega. rewrite <-H1 with (a := Z.shiftr a 1); try omega; [ repeat f_equal; ring | ]. rewrite Z.shiftr_div_pow2 by omega. split; apply Z.div_pos || apply Z.div_lt_upper_bound; try solve [rewrite ?Z.pow_1_r; omega]. rewrite <-Z.pow_add_r by omega. replace (1 + (n - 1)) with n by ring; omega. Qed. Lemma land_add_land : forall n m a b, (m <= n)%nat -> Z.land ((Z.land a (Z.ones (Z.of_nat n))) + (Z.shiftl b (Z.of_nat n))) (Z.ones (Z.of_nat m)) = Z.land a (Z.ones (Z.of_nat m)). Proof. intros. rewrite !Z.land_ones by apply Nat2Z.is_nonneg. rewrite Z.shiftl_mul_pow2 by apply Nat2Z.is_nonneg. replace (b * 2 ^ Z.of_nat n) with ((b * 2 ^ Z.of_nat (n - m)) * 2 ^ Z.of_nat m) by (rewrite (le_plus_minus m n) at 2; try assumption; rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg; ring). rewrite Z.mod_add by (pose proof (Z.pow_pos_nonneg 2 (Z.of_nat m)); omega). symmetry. apply Znumtheory.Zmod_div_mod; try (apply Z.pow_pos_nonneg; omega). rewrite (le_plus_minus m n) by assumption. rewrite Nat2Z.inj_add, Z.pow_add_r by apply Nat2Z.is_nonneg. apply Z.divide_factor_l. Qed. Lemma div_pow2succ : forall n x, (0 <= x) -> n / 2 ^ Z.succ x = Z.div2 (n / 2 ^ x). Proof. intros. rewrite Z.pow_succ_r, Z.mul_comm by auto. rewrite <- Z.div_div by (try apply Z.pow_nonzero; omega). rewrite Zdiv2_div. reflexivity. Qed. Lemma shiftr_succ : forall n x, Z.shiftr n (Z.succ x) = Z.shiftr (Z.shiftr n x) 1. Proof. intros. rewrite Z.shiftr_shiftr by omega. reflexivity. Qed. Definition shiftl_by n a := Z.shiftl a n. Lemma shiftl_by_mul_pow2 : forall n a, 0 <= n -> Z.mul (2 ^ n) a = Z.shiftl_by n a. Proof. intros. unfold Z.shiftl_by. rewrite Z.shiftl_mul_pow2 by assumption. apply Z.mul_comm. Qed. Lemma map_shiftl : forall n l, 0 <= n -> map (Z.mul (2 ^ n)) l = map (Z.shiftl_by n) l. Proof. intros; induction l; auto using Z.shiftl_by_mul_pow2. simpl. rewrite IHl. f_equal. apply Z.shiftl_by_mul_pow2. assumption. Qed. Lemma odd_mod : forall a b, (b <> 0)%Z -> Z.odd (a mod b) = if Z.odd b then xorb (Z.odd a) (Z.odd (a / b)) else Z.odd a. Proof. intros. rewrite Zmod_eq_full by assumption. rewrite <-Z.add_opp_r, Z.odd_add, Z.odd_opp, Z.odd_mul. case_eq (Z.odd b); intros; rewrite ?Bool.andb_true_r, ?Bool.andb_false_r; auto using Bool.xorb_false_r. Qed. Lemma mod_same_pow : forall a b c, 0 <= c <= b -> a ^ b mod a ^ c = 0. Proof. intros. replace b with (b - c + c) by ring. rewrite Z.pow_add_r by omega. apply Z_mod_mult. Qed. Hint Rewrite mod_same_pow using lia : zsimplify. Lemma ones_succ : forall x, (0 <= x) -> Z.ones (Z.succ x) = 2 ^ x + Z.ones x. Proof. unfold Z.ones; intros. rewrite !Z.shiftl_1_l. rewrite Z.add_pred_r. apply Z.succ_inj. rewrite !Z.succ_pred. rewrite Z.pow_succ_r; omega. Qed. Lemma div_floor : forall a b c, 0 < b -> a < b * (Z.succ c) -> a / b <= c. Proof. intros. apply Z.lt_succ_r. apply Z.div_lt_upper_bound; try omega. Qed. Lemma shiftr_1_r_le : forall a b, a <= b -> Z.shiftr a 1 <= Z.shiftr b 1. Proof. intros. rewrite !Z.shiftr_div_pow2, Z.pow_1_r by omega. apply Z.div_le_mono; omega. Qed. Lemma shiftr_le : forall a b i : Z, 0 <= i -> a <= b -> a >> i <= b >> i. Proof. intros until 1. revert a b. apply natlike_ind with (x := i); intros; auto. rewrite !shiftr_succ, shiftr_1_r_le; eauto. reflexivity. Qed. Lemma ones_pred : forall i, 0 < i -> Z.ones (Z.pred i) = Z.shiftr (Z.ones i) 1. Proof. induction i; [ | | pose proof (Pos2Z.neg_is_neg p) ]; try omega. intros. unfold Z.ones. rewrite !Z.shiftl_1_l, Z.shiftr_div_pow2, <-!Z.sub_1_r, Z.pow_1_r, <-!Z.add_opp_r by omega. replace (2 ^ (Z.pos p)) with (2 ^ (Z.pos p - 1)* 2). rewrite Z.div_add_l by omega. reflexivity. change 2 with (2 ^ 1) at 2. rewrite <-Z.pow_add_r by (pose proof (Pos2Z.is_pos p); omega). f_equal. omega. Qed. Lemma shiftr_ones' : forall a n, 0 <= a < 2 ^ n -> forall i, (0 <= i) -> Z.shiftr a i <= Z.ones (n - i) \/ n <= i. Proof. intros until 1. apply natlike_ind. + unfold Z.ones. rewrite Z.shiftr_0_r, Z.shiftl_1_l, Z.sub_0_r. omega. + intros. destruct (Z_lt_le_dec x n); try omega. intuition auto with zarith lia. left. rewrite shiftr_succ. replace (n - Z.succ x) with (Z.pred (n - x)) by omega. rewrite Z.ones_pred by omega. apply Z.shiftr_1_r_le. assumption. Qed. Lemma shiftr_ones : forall a n i, 0 <= a < 2 ^ n -> (0 <= i) -> (i <= n) -> Z.shiftr a i <= Z.ones (n - i) . Proof. intros a n i G G0 G1. destruct (Z_le_lt_eq_dec i n G1). + destruct (Z.shiftr_ones' a n G i G0); omega. + subst; rewrite Z.sub_diag. destruct (Z_eq_dec a 0). - subst; rewrite Z.shiftr_0_l; reflexivity. - rewrite Z.shiftr_eq_0; try omega; try reflexivity. apply Z.log2_lt_pow2; omega. Qed. Lemma shiftr_upper_bound : forall a n, 0 <= n -> 0 <= a <= 2 ^ n -> Z.shiftr a n <= 1. Proof. intros a ? ? [a_nonneg a_upper_bound]. apply Z_le_lt_eq_dec in a_upper_bound. destruct a_upper_bound. + destruct (Z_eq_dec 0 a). - subst; rewrite Z.shiftr_0_l; omega. - rewrite Z.shiftr_eq_0; auto; try omega. apply Z.log2_lt_pow2; auto; omega. + subst. rewrite Z.shiftr_div_pow2 by assumption. rewrite Z.div_same; try omega. assert (0 < 2 ^ n) by (apply Z.pow_pos_nonneg; omega). omega. Qed. Lemma lor_shiftl : forall a b n, 0 <= n -> 0 <= a < 2 ^ n -> Z.lor a (Z.shiftl b n) = a + (Z.shiftl b n). Proof. intros. apply Z.bits_inj'; intros t ?. rewrite Z.lor_spec, Z.shiftl_spec by assumption. destruct (Z_lt_dec t n). + rewrite testbit_add_shiftl_low by omega. rewrite Z.testbit_neg_r with (n := t - n) by omega. apply Bool.orb_false_r. + rewrite testbit_add_shiftl_high by omega. replace (Z.testbit a t) with false; [ apply Bool.orb_false_l | ]. symmetry. apply Z.testbit_false; try omega. rewrite Z.div_small; try reflexivity. split; try eapply Z.lt_le_trans with (m := 2 ^ n); try omega. apply Z.pow_le_mono_r; omega. Qed. (* prove that combinations of known positive/nonnegative numbers are positive/nonnegative *) Ltac zero_bounds' := repeat match goal with | [ |- 0 <= _ + _] => apply Z.add_nonneg_nonneg | [ |- 0 <= _ - _] => apply Z.le_0_sub | [ |- 0 <= _ * _] => apply Z.mul_nonneg_nonneg | [ |- 0 <= _ / _] => apply Z.div_pos | [ |- 0 <= _ ^ _ ] => apply Z.pow_nonneg | [ |- 0 <= Z.shiftr _ _] => apply Z.shiftr_nonneg | [ |- 0 <= _ mod _] => apply Z.mod_pos_bound | [ |- 0 < _ + _] => try solve [apply Z.add_pos_nonneg; zero_bounds']; try solve [apply Z.add_nonneg_pos; zero_bounds'] | [ |- 0 < _ - _] => apply Z.lt_0_sub | [ |- 0 < _ * _] => apply Z.lt_0_mul; left; split | [ |- 0 < _ / _] => apply Z.div_str_pos | [ |- 0 < _ ^ _ ] => apply Z.pow_pos_nonneg end; try omega; try prime_bound; auto. Ltac zero_bounds := try omega; try prime_bound; zero_bounds'. Hint Extern 1 => progress zero_bounds : zero_bounds. Lemma ones_nonneg : forall i, (0 <= i) -> 0 <= Z.ones i. Proof. apply natlike_ind. + unfold Z.ones. simpl; omega. + intros. rewrite Z.ones_succ by assumption. zero_bounds. Qed. Lemma ones_pos_pos : forall i, (0 < i) -> 0 < Z.ones i. Proof. intros. unfold Z.ones. rewrite Z.shiftl_1_l. apply Z.lt_succ_lt_pred. apply Z.pow_gt_1; omega. Qed. Lemma N_le_1_l : forall p, (1 <= N.pos p)%N. Proof. destruct p; cbv; congruence. Qed. Lemma Pos_land_upper_bound_l : forall a b, (Pos.land a b <= N.pos a)%N. Proof. induction a; destruct b; intros; try solve [cbv; congruence]; simpl; specialize (IHa b); case_eq (Pos.land a b); intro; simpl; try (apply N_le_1_l || apply N.le_0_l); intro land_eq; rewrite land_eq in *; unfold N.le, N.compare in *; rewrite ?Pos.compare_xI_xI, ?Pos.compare_xO_xI, ?Pos.compare_xO_xO; try assumption. destruct (p ?=a)%positive; cbv; congruence. Qed. Lemma land_upper_bound_l : forall a b, (0 <= a) -> (0 <= b) -> Z.land a b <= a. Proof. intros. destruct a, b; try solve [exfalso; auto]; try solve [cbv; congruence]. cbv [Z.land]. rewrite <-N2Z.inj_pos, <-N2Z.inj_le. auto using Pos_land_upper_bound_l. Qed. Lemma land_upper_bound_r : forall a b, (0 <= a) -> (0 <= b) -> Z.land a b <= b. Proof. intros. rewrite Z.land_comm. auto using Z.land_upper_bound_l. Qed. Lemma le_fold_right_max : forall low l x, (forall y, In y l -> low <= y) -> In x l -> x <= fold_right Z.max low l. Proof. induction l; intros ? lower_bound In_list; [cbv [In] in *; intuition | ]. simpl. destruct (in_inv In_list); subst. + apply Z.le_max_l. + etransitivity. - apply IHl; auto; intuition auto with datatypes. - apply Z.le_max_r. Qed. Lemma le_fold_right_max_initial : forall low l, low <= fold_right Z.max low l. Proof. induction l; intros; try reflexivity. etransitivity; [ apply IHl | apply Z.le_max_r ]. Qed. Ltac ltb_to_lt := repeat match goal with | [ H : (?x let H' := fresh in rename H into H'; pose proof (Zlt_cases x y) as H; rewrite H' in H; clear H' end. Ltac compare_to_sgn := repeat match goal with | [ H : _ |- _ ] => progress rewrite <- ?Z.sgn_neg_iff, <- ?Z.sgn_pos_iff, <- ?Z.sgn_null_iff in H | _ => progress rewrite <- ?Z.sgn_neg_iff, <- ?Z.sgn_pos_iff, <- ?Z.sgn_null_iff end. Local Ltac replace_to_const c := repeat match goal with | [ H : ?x = ?x |- _ ] => clear H | [ H : ?x = c, H' : context[?x] |- _ ] => rewrite H in H' | [ H : c = ?x, H' : context[?x] |- _ ] => rewrite <- H in H' | [ H : ?x = c |- context[?x] ] => rewrite H | [ H : c = ?x |- context[?x] ] => rewrite <- H end. Lemma lt_div_0 n m : n / m < 0 <-> ((n < 0 < m \/ m < 0 < n) /\ 0 < -(n / m)). Proof. Z.compare_to_sgn; rewrite Z.sgn_opp; simpl. pose proof (Zdiv_sgn n m) as H. pose proof (Z.sgn_spec (n / m)) as H'. repeat first [ progress intuition auto | progress simpl in * | congruence | lia | progress replace_to_const (-1) | progress replace_to_const 0 | progress replace_to_const 1 | match goal with | [ x : Z |- _ ] => destruct x end ]. Qed. Lemma two_times_x_minus_x x : 2 * x - x = x. Proof. lia. Qed. Lemma mul_div_le x y z (Hx : 0 <= x) (Hy : 0 <= y) (Hz : 0 < z) (Hyz : y <= z) : x * y / z <= x. Proof. transitivity (x * z / z); [ | rewrite Z.div_mul by lia; lia ]. apply Z_div_le; nia. Qed. Hint Resolve mul_div_le : zarith. Lemma div_mul_diff_exact a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : c * a / b = c * (a / b) + (c * (a mod b)) / b. Proof. rewrite (Z_div_mod_eq a b) at 1 by lia. rewrite Z.mul_add_distr_l. replace (c * (b * (a / b))) with ((c * (a / b)) * b) by lia. rewrite Z.div_add_l by lia. lia. Qed. Lemma div_mul_diff_exact' a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : c * (a / b) = c * a / b - (c * (a mod b)) / b. Proof. rewrite div_mul_diff_exact by assumption; lia. Qed. Lemma div_mul_diff_exact'' a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : a * c / b = (a / b) * c + (c * (a mod b)) / b. Proof. rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia. Qed. Lemma div_mul_diff_exact''' a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : (a / b) * c = a * c / b - (c * (a mod b)) / b. Proof. rewrite (Z.mul_comm a c), div_mul_diff_exact by lia; lia. Qed. Lemma div_mul_diff a b c (Ha : 0 <= a) (Hb : 0 < b) (Hc : 0 <= c) : c * a / b - c * (a / b) <= c. Proof. rewrite div_mul_diff_exact by assumption. ring_simplify; auto with zarith. Qed. Lemma div_mul_le_le a b c : 0 <= a -> 0 < b -> 0 <= c -> c * (a / b) <= c * a / b <= c * (a / b) + c. Proof. pose proof (Z.div_mul_diff a b c); split; try apply Z.div_mul_le; lia. Qed. Lemma div_mul_le_le_offset a b c : 0 <= a -> 0 < b -> 0 <= c -> c * a / b - c <= c * (a / b). Proof. pose proof (Z.div_mul_le_le a b c); lia. Qed. Hint Resolve Zmult_le_compat_r Zmult_le_compat_l Z_div_le Z.div_mul_le_le_offset Z.add_le_mono Z.sub_le_mono : zarith. Lemma sub_same_minus (x y : Z) : x - (x - y) = y. Proof. lia. Qed. Hint Rewrite sub_same_minus : zsimplify. Lemma sub_same_plus (x y : Z) : x - (x + y) = -y. Proof. lia. Qed. Hint Rewrite sub_same_plus : zsimplify. Lemma sub_same_minus_plus (x y z : Z) : x - (x - y + z) = y - z. Proof. lia. Qed. Hint Rewrite sub_same_minus_plus : zsimplify. Lemma sub_same_plus_plus (x y z : Z) : x - (x + y + z) = -y - z. Proof. lia. Qed. Hint Rewrite sub_same_plus_plus : zsimplify. Lemma sub_same_minus_minus (x y z : Z) : x - (x - y - z) = y + z. Proof. lia. Qed. Hint Rewrite sub_same_minus_minus : zsimplify. Lemma sub_same_plus_minus (x y z : Z) : x - (x + y - z) = z - y. Proof. lia. Qed. Hint Rewrite sub_same_plus_minus : zsimplify. Lemma sub_same_minus_then_plus (x y w : Z) : x - (x - y) + w = y + w. Proof. lia. Qed. Hint Rewrite sub_same_minus_then_plus : zsimplify. Lemma sub_same_plus_then_plus (x y w : Z) : x - (x + y) + w = w - y. Proof. lia. Qed. Hint Rewrite sub_same_plus_then_plus : zsimplify. Lemma sub_same_minus_plus_then_plus (x y z w : Z) : x - (x - y + z) + w = y - z + w. Proof. lia. Qed. Hint Rewrite sub_same_minus_plus_then_plus : zsimplify. Lemma sub_same_plus_plus_then_plus (x y z w : Z) : x - (x + y + z) + w = w - y - z. Proof. lia. Qed. Hint Rewrite sub_same_plus_plus_then_plus : zsimplify. Lemma sub_same_minus_minus_then_plus (x y z w : Z) : x - (x - y - z) + w = y + z + w. Proof. lia. Qed. Hint Rewrite sub_same_minus_minus : zsimplify. Lemma sub_same_plus_minus_then_plus (x y z w : Z) : x - (x + y - z) + w = z - y + w. Proof. lia. Qed. Hint Rewrite sub_same_plus_minus_then_plus : zsimplify. (** * [Z.simplify_fractions_le] *) (** The culmination of this series of tactics, [Z.simplify_fractions_le], will use the fact that [a * (b / c) <= (a * b) / c], and do some reasoning modulo associativity and commutativity in [Z] to perform such a reduction. It may leave over goals if it cannot prove that some denominators are non-zero. If the rewrite [a * (b / c)] → [(a * b) / c] is safe to do on the LHS of the goal, this tactic should not turn a solvable goal into an unsolvable one. After running, the tactic does some basic rewriting to simplify fractions, e.g., that [a * b / b = a]. *) Ltac split_sums_step := match goal with | [ |- _ + _ <= _ ] => etransitivity; [ eapply Z.add_le_mono | ] | [ |- _ - _ <= _ ] => etransitivity; [ eapply Z.sub_le_mono | ] end. Ltac split_sums := try (split_sums_step; [ split_sums.. | ]). Ltac pre_reorder_fractions_step := match goal with | [ |- context[?x / ?y * ?z] ] => lazymatch z with | context[_ / _] => fail | _ => idtac end; rewrite (Z.mul_comm (x / y) z) | _ => let LHS := match goal with |- ?LHS <= ?RHS => LHS end in match LHS with | context G[?x * (?y / ?z)] => let G' := context G[(x * y) / z] in transitivity G' end end. Ltac pre_reorder_fractions := try first [ split_sums_step; [ pre_reorder_fractions.. | ] | pre_reorder_fractions_step; [ .. | pre_reorder_fractions ] ]. Ltac split_comparison := match goal with | [ |- ?x <= ?x ] => reflexivity | [ H : _ >= _ |- _ ] => apply Z.ge_le_iff in H | [ |- ?x * ?y <= ?z * ?w ] => lazymatch goal with | [ H : 0 <= x |- _ ] => idtac | [ H : x < 0 |- _ ] => fail | _ => destruct (Z_lt_le_dec x 0) end; [ .. | lazymatch goal with | [ H : 0 <= y |- _ ] => idtac | [ H : y < 0 |- _ ] => fail | _ => destruct (Z_lt_le_dec y 0) end; [ .. | apply Zmult_le_compat; [ | | assumption | assumption ] ] ] | [ |- ?x / ?y <= ?z / ?y ] => lazymatch goal with | [ H : 0 < y |- _ ] => idtac | [ H : y <= 0 |- _ ] => fail | _ => destruct (Z_lt_le_dec 0 y) end; [ apply Z_div_le; [ apply Z.gt_lt_iff; assumption | ] | .. ] | [ |- ?x / ?y <= ?x / ?z ] => lazymatch goal with | [ H : 0 <= x |- _ ] => idtac | [ H : x < 0 |- _ ] => fail | _ => destruct (Z_lt_le_dec x 0) end; [ .. | lazymatch goal with | [ H : 0 < z |- _ ] => idtac | [ H : z <= 0 |- _ ] => fail | _ => destruct (Z_lt_le_dec 0 z) end; [ apply Z.div_le_compat_l; [ assumption | split; [ assumption | ] ] | .. ] ] | [ |- _ + _ <= _ + _ ] => apply Z.add_le_mono | [ |- _ - _ <= _ - _ ] => apply Z.sub_le_mono | [ |- ?x * (?y / ?z) <= (?x * ?y) / ?z ] => apply Z.div_mul_le end. Ltac split_comparison_fin_step := match goal with | _ => assumption | _ => lia | _ => progress subst | [ H : ?n * ?m < 0 |- _ ] => apply (proj1 (Z.lt_mul_0 n m)) in H; destruct H as [ [??]|[??] ] | [ H : ?n / ?m < 0 |- _ ] => apply (proj1 (lt_div_0 n m)) in H; destruct H as [ [ [??]|[??] ] ? ] | [ H : (?x^?y) <= ?n < _, H' : ?n < 0 |- _ ] => assert (0 <= x^y) by zero_bounds; lia | [ H : (?x^?y) < 0 |- _ ] => assert (0 <= x^y) by zero_bounds; lia | [ H : (?x^?y) <= 0 |- _ ] => let H' := fresh in assert (H' : 0 <= x^y) by zero_bounds; assert (x^y = 0) by lia; clear H H' | [ H : _^_ = 0 |- _ ] => apply Z.pow_eq_0_iff in H; destruct H as [ ?|[??] ] | [ H : 0 <= ?x, H' : ?x - 1 < 0 |- _ ] => assert (x = 0) by lia; clear H H' | [ |- ?x <= ?y ] => is_evar x; reflexivity | [ |- ?x <= ?y ] => is_evar y; reflexivity end. Ltac split_comparison_fin := repeat split_comparison_fin_step. Ltac simplify_fractions_step := match goal with | _ => rewrite Z.div_mul by (try apply Z.pow_nonzero; zero_bounds) | [ |- context[?x * ?y / ?x] ] => rewrite (Z.mul_comm x y) | [ |- ?x <= ?x ] => reflexivity end. Ltac simplify_fractions := repeat simplify_fractions_step. Ltac simplify_fractions_le := pre_reorder_fractions; [ repeat split_comparison; split_comparison_fin; zero_bounds.. | simplify_fractions ]. Lemma log2_nonneg' n a : n <= 0 -> n <= Z.log2 a. Proof. intros; transitivity 0; auto with zarith. Qed. Hint Resolve log2_nonneg' : zarith. (** We create separate databases for two directions of transformations involving [Z.log2]; combining them leads to loops. *) (* for hints that take in hypotheses of type [log2 _], and spit out conclusions of type [_ ^ _] *) Create HintDb hyp_log2. (* for hints that take in hypotheses of type [_ ^ _], and spit out conclusions of type [log2 _] *) Create HintDb concl_log2. Hint Resolve (fun a b H => proj1 (Z.log2_lt_pow2 a b H)) (fun a b H => proj1 (Z.log2_le_pow2 a b H)) : concl_log2. Hint Resolve (fun a b H => proj2 (Z.log2_lt_pow2 a b H)) (fun a b H => proj2 (Z.log2_le_pow2 a b H)) : hyp_log2. Lemma le_lt_to_log2 x y z : 0 <= z -> 0 < y -> 2^x <= y < 2^z -> x <= Z.log2 y < z. Proof. destruct (Z_le_gt_dec 0 x); auto with concl_log2 lia. Qed. Lemma div_x_y_x x y : 0 < x -> 0 < y -> x / y / x = 1 / y. Proof. intros; rewrite Z.div_div, (Z.mul_comm y x), <- Z.div_div, Z.div_same by lia. reflexivity. Qed. Hint Rewrite div_x_y_x using lia : zsimplify. Lemma mod_opp_l_z_iff a b (H : b <> 0) : a mod b = 0 <-> (-a) mod b = 0. Proof. split; intro H'; apply Z.mod_opp_l_z in H'; rewrite ?Z.opp_involutive in H'; assumption. Qed. Lemma opp_eq_0_iff a : -a = 0 <-> a = 0. Proof. lia. Qed. Hint Rewrite <- mod_opp_l_z_iff using lia : zsimplify. Hint Rewrite opp_eq_0_iff : zsimplify. Lemma sub_pos_bound a b X : 0 <= a < X -> 0 <= b < X -> -X < a - b < X. Proof. lia. Qed. Lemma div_opp_l_complete a b (Hb : b <> 0) : -a/b = -(a/b) - (if Z_zerop (a mod b) then 0 else 1). Proof. destruct (Z_zerop (a mod b)); autorewrite with zsimplify push_Zopp; reflexivity. Qed. Lemma div_opp_l_complete' a b (Hb : b <> 0) : -(a/b) = -a/b + (if Z_zerop (a mod b) then 0 else 1). Proof. destruct (Z_zerop (a mod b)); autorewrite with zsimplify pull_Zopp; lia. Qed. Hint Rewrite Z.div_opp_l_complete using lia : pull_Zopp. Hint Rewrite Z.div_opp_l_complete' using lia : push_Zopp. Lemma div_opp a : a <> 0 -> -a / a = -1. Proof. intros; autorewrite with pull_Zopp zsimplify; lia. Qed. Hint Rewrite Z.div_opp using lia : zsimplify. Lemma div_sub_1_0 x : x > 0 -> (x - 1) / x = 0. Proof. auto with zarith lia. Qed. Hint Rewrite div_sub_1_0 using lia : zsimplify. Lemma sub_pos_bound_div a b X : 0 <= a < X -> 0 <= b < X -> -1 <= (a - b) / X <= 0. Proof. intros H0 H1; pose proof (Z.sub_pos_bound a b X H0 H1). assert (Hn : -X <= a - b) by lia. assert (Hp : a - b <= X - 1) by lia. split; etransitivity; [ | apply Z_div_le, Hn; lia | apply Z_div_le, Hp; lia | ]; instantiate; autorewrite with zsimplify; try reflexivity. Qed. Hint Resolve (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) (fun a b X H0 H1 => proj1 (Z.sub_pos_bound_div a b X H0 H1)) : zarith. Lemma sub_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (a - b) / X = if a 0); [ lia | ]. autorewrite with zstrip_div; auto with zarith lia. } { autorewrite with zstrip_div; auto with zarith lia. } Qed. Lemma add_opp_pos_bound_div_eq a b X : 0 <= a < X -> 0 <= b < X -> (-b + a) / X = if a 0 = a / b. Proof. intros; symmetry; apply Z.div_small; assumption. Qed. Lemma mod_small_sym a b : 0 <= a < b -> a = a mod b. Proof. intros; symmetry; apply Z.mod_small; assumption. Qed. Hint Resolve div_small_sym mod_small_sym : zarith. Lemma div_add' a b c : c <> 0 -> (a + c * b) / c = a / c + b. Proof. intro; rewrite <- Z.div_add, (Z.mul_comm c); try lia. Qed. Lemma div_add_l' a b c : b <> 0 -> (b * a + c) / b = a + c / b. Proof. intro; rewrite <- Z.div_add_l, (Z.mul_comm b); lia. Qed. Hint Rewrite div_add_l' div_add' using lia : zsimplify. Lemma div_add_sub_l a b c d : b <> 0 -> (a * b + c - d) / b = a + (c - d) / b. Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l. Qed. Lemma div_add_sub_l' a b c d : b <> 0 -> (b * a + c - d) / b = a + (c - d) / b. Proof. rewrite <- Z.add_sub_assoc; apply Z.div_add_l'. Qed. Lemma div_add_sub a b c d : c <> 0 -> (a + b * c - d) / c = (a - d) / c + b. Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l. Qed. Lemma div_add_sub' a b c d : c <> 0 -> (a + c * b - d) / c = (a - d) / c + b. Proof. rewrite (Z.add_comm _ (_ * _)), (Z.add_comm (_ / _)); apply Z.div_add_sub_l'. Qed. Hint Rewrite Z.div_add_sub Z.div_add_sub' Z.div_add_sub_l Z.div_add_sub_l' using lia : zsimplify. Lemma div_mul_skip a b k : 0 < b -> 0 < k -> a * b / k / b = a / k. Proof. intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia. autorewrite with zsimplify; reflexivity. Qed. Lemma div_mul_skip' a b k : 0 < b -> 0 < k -> b * a / k / b = a / k. Proof. intros; rewrite Z.div_div, (Z.mul_comm k), <- Z.div_div by lia. autorewrite with zsimplify; reflexivity. Qed. Hint Rewrite Z.div_mul_skip Z.div_mul_skip' using lia : zsimplify. Lemma mod_eq_le_to_eq a b : 0 < a <= b -> a mod b = 0 -> a = b. Proof. intros H H'. assert (a = b * (a / b)) by auto with zarith lia. assert (a / b = 1) by nia. nia. Qed. Hint Resolve mod_eq_le_to_eq : zarith. Lemma div_same' a b : b <> 0 -> a = b -> a / b = 1. Proof. intros; subst; auto with zarith. Qed. Hint Resolve div_same' : zarith. Lemma mod_eq_le_div_1 a b : 0 < a <= b -> a mod b = 0 -> a / b = 1. Proof. auto with zarith. Qed. Hint Resolve mod_eq_le_div_1 : zarith. Hint Rewrite mod_eq_le_div_1 using lia : zsimplify. Lemma mod_neq_0_le_to_neq a b : a mod b <> 0 -> a <> b. Proof. repeat intro; subst; autorewrite with zsimplify in *; lia. Qed. Hint Resolve mod_neq_0_le_to_neq : zarith. Lemma div_small_neg x y : 0 < -x <= y -> x / y = -1. Proof. intro H; rewrite <- (Z.opp_involutive x). rewrite Z.div_opp_l_complete by lia. generalize dependent (-x); clear x; intros x H. pose proof (mod_neq_0_le_to_neq x y). autorewrite with zsimplify; edestruct Z_zerop; autorewrite with zsimplify in *; lia. Qed. Hint Rewrite div_small_neg using lia : zsimplify. Lemma div_sub_small x y z : 0 <= x < z -> 0 <= y <= z -> (x - y) / z = if x m < p -> n < p. Proof. lia. Qed. Lemma mul_div_lt_by_le x y z b : 0 <= y < z -> 0 <= x < b -> x * y / z < b. Proof. intros [? ?] [? ?]; eapply Z.le_lt_trans; [ | eassumption ]. auto with zarith. Qed. Hint Resolve mul_div_lt_by_le : zarith. Definition pow_sub_r' := fun a b c y H0 H1 => @Logic.eq_trans _ _ _ y (@Z.pow_sub_r a b c H0 H1). Definition pow_sub_r'_sym := fun a b c y p H0 H1 => Logic.eq_sym (@Logic.eq_trans _ y _ _ (Logic.eq_sym p) (@Z.pow_sub_r a b c H0 H1)). Hint Resolve pow_sub_r' pow_sub_r'_sym Z.eq_le_incl : zarith. Hint Resolve (fun b => f_equal (fun e => b ^ e)) (fun e => f_equal (fun b => b ^ e)) : zarith. Definition mul_div_le' := fun x y z w p H0 H1 H2 H3 => @Z.le_trans _ _ w (@Z.mul_div_le x y z H0 H1 H2 H3) p. Hint Resolve mul_div_le' : zarith. Lemma mul_div_le'' x y z w : y <= w -> 0 <= x -> 0 <= y -> 0 < z -> x <= z -> x * y / z <= w. Proof. rewrite (Z.mul_comm x y); intros; apply mul_div_le'; assumption. Qed. Hint Resolve mul_div_le'' : zarith. Lemma two_p_two_eq_four : 2^(2) = 4. Proof. reflexivity. Qed. Hint Rewrite <- two_p_two_eq_four : push_Zpow. Lemma two_sub_sub_inner_sub x y z : 2 * x - y - (x - z) = x - y + z. Proof. clear; lia. Qed. Hint Rewrite two_sub_sub_inner_sub : zsimplify. Lemma f_equal_mul_mod x y x' y' m : x mod m = x' mod m -> y mod m = y' mod m -> (x * y) mod m = (x' * y') mod m. Proof. intros H0 H1; rewrite Zmult_mod, H0, H1, <- Zmult_mod; reflexivity. Qed. Hint Resolve f_equal_mul_mod : zarith. Lemma f_equal_add_mod x y x' y' m : x mod m = x' mod m -> y mod m = y' mod m -> (x + y) mod m = (x' + y') mod m. Proof. intros H0 H1; rewrite Zplus_mod, H0, H1, <- Zplus_mod; reflexivity. Qed. Hint Resolve f_equal_add_mod : zarith. Lemma f_equal_opp_mod x x' m : x mod m = x' mod m -> (-x) mod m = (-x') mod m. Proof. intro H. destruct (Z_zerop (x mod m)) as [H'|H'], (Z_zerop (x' mod m)) as [H''|H'']; try congruence. { rewrite !Z_mod_zero_opp_full by assumption; reflexivity. } { rewrite Z_mod_nz_opp_full, H, <- Z_mod_nz_opp_full by assumption; reflexivity. } Qed. Hint Resolve f_equal_opp_mod : zarith. Lemma f_equal_sub_mod x y x' y' m : x mod m = x' mod m -> y mod m = y' mod m -> (x - y) mod m = (x' - y') mod m. Proof. rewrite <- !Z.add_opp_r; auto with zarith. Qed. Hint Resolve f_equal_sub_mod : zarith. Section equiv_modulo. Context (N : Z). Definition equiv_modulo x y := x mod N = y mod N. Local Infix "==" := equiv_modulo. Local Instance equiv_modulo_Reflexive : Reflexive equiv_modulo := fun _ => Logic.eq_refl. Local Instance equiv_modulo_Symmetric : Symmetric equiv_modulo := fun _ _ => @Logic.eq_sym _ _ _. Local Instance equiv_modulo_Transitive : Transitive equiv_modulo := fun _ _ _ => @Logic.eq_trans _ _ _ _. Lemma mul_mod_Proper : Proper (equiv_modulo ==> equiv_modulo ==> equiv_modulo) Z.mul. Proof. unfold equiv_modulo, Proper, respectful; auto with zarith. Qed. Lemma add_mod_Proper : Proper (equiv_modulo ==> equiv_modulo ==> equiv_modulo) Z.add. Proof. unfold equiv_modulo, Proper, respectful; auto with zarith. Qed. Lemma sub_mod_Proper : Proper (equiv_modulo ==> equiv_modulo ==> equiv_modulo) Z.sub. Proof. unfold equiv_modulo, Proper, respectful; auto with zarith. Qed. Lemma opp_mod_Proper : Proper (equiv_modulo ==> equiv_modulo) Z.opp. Proof. unfold equiv_modulo, Proper, respectful; auto with zarith. Qed. End equiv_modulo. Module EquivModuloInstances (dummy : Nop). (* work around https://coq.inria.fr/bugs/show_bug.cgi?id=4973 *) Existing Instance equiv_modulo_Reflexive. Existing Instance equiv_modulo_Symmetric. Existing Instance equiv_modulo_Transitive. Existing Instance mul_mod_Proper. Existing Instance add_mod_Proper. Existing Instance sub_mod_Proper. Existing Instance opp_mod_Proper. End EquivModuloInstances. Module RemoveEquivModuloInstances (dummy : Nop). Global Remove Hints equiv_modulo_Reflexive equiv_modulo_Symmetric equiv_modulo_Transitive mul_mod_Proper add_mod_Proper sub_mod_Proper opp_mod_Proper : typeclass_instances. End RemoveEquivModuloInstances. End Z. Module Export BoundsTactics. Ltac prime_bound := Z.prime_bound. Ltac zero_bounds := Z.zero_bounds. End BoundsTactics.