Require Import Coq.ZArith.ZArith. Require Import Crypto.Util.Tuple. Require Import Crypto.Util.Decidable. Require Import Crypto.Util.Notations. Delimit Scope zrange_scope with zrange. Record zrange := { lower : Z ; upper : Z }. Bind Scope zrange_scope with zrange. Local Open Scope Z_scope. Definition ZToZRange (z : Z) : zrange := {| lower := z ; upper := z |}. Ltac inversion_zrange := let lower := (eval cbv [lower] in (fun x => lower x)) in let upper := (eval cbv [upper] in (fun y => upper y)) in repeat match goal with | [ H : _ = _ :> zrange |- _ ] => pose proof (f_equal lower H); pose proof (f_equal upper H); clear H; cbv beta iota in * | [ H : Build_zrange _ _ = _ |- _ ] => pose proof (f_equal lower H); pose proof (f_equal upper H); clear H; cbv beta iota in * | [ H : _ = Build_zrange _ _ |- _ ] => pose proof (f_equal lower H); pose proof (f_equal upper H); clear H; cbv beta iota in * end. (** All of the boundedness properties take an optional bitwidth, and enforce the condition that the range is within 0 and 2^bitwidth, if given. *) Section with_bitwidth. Context (bitwidth : option Z). Definition is_bounded_by' : zrange -> Z -> Prop := fun bound val => lower bound <= val <= upper bound /\ match bitwidth with | Some sz => 0 <= lower bound /\ upper bound < 2^sz | None => True end. Definition is_bounded_by {n} : Tuple.tuple zrange n -> Tuple.tuple Z n -> Prop := Tuple.fieldwise is_bounded_by'. End with_bitwidth. Definition is_tighter_than_bool (x y : zrange) : bool := ((lower y <=? lower x) && (upper x <=? upper y))%bool%Z. Global Instance dec_eq_zrange : DecidableRel (@eq zrange) | 10. Proof. intros [lx ux] [ly uy]. destruct (dec (lx = ly)), (dec (ux = uy)); [ left; apply f_equal2; assumption | abstract (right; intro H; inversion_zrange; tauto).. ]. Defined. Module Export Notations. Delimit Scope zrange_scope with zrange. Notation "r[ l ~> u ]" := {| lower := l ; upper := u |} (format "r[ l ~> u ]") : zrange_scope. Infix "<=?" := is_tighter_than_bool : zrange_scope. End Notations.