Require Import Coq.Strings.Ascii Coq.Strings.String. Require Import Coq.Numbers.BinNums. Import BinNatDef. Import BinIntDef. Import BinPosDef. Local Open Scope positive_scope. Local Open Scope string_scope. Definition ascii_to_digit (ch : ascii) : option N := (if ascii_dec ch "0" then Some 0 else if ascii_dec ch "1" then Some 1 else None)%N. Fixpoint pos_bin_app (p q:positive) : positive := match q with | q~0 => (pos_bin_app p q)~0 | q~1 => (pos_bin_app p q)~1 | 1 => p~1 end. Module Raw. Fixpoint of_pos (p : positive) (rest : string) : string := match p with | 1 => String "1" rest | p'~0 => of_pos p' (String "0" rest) | p'~1 => of_pos p' (String "1" rest) end. Fixpoint to_N (s : string) (rest : N) : N := match s with | "" => rest | String ch s' => to_N s' match ascii_to_digit ch with | Some v => N.add v (N.double rest) | None => N0 end end. Fixpoint to_N_of_pos (p : positive) (rest : string) (base : N) : to_N (of_pos p rest) base = to_N rest match base with | N0 => N.pos p | Npos v => Npos (pos_bin_app v p) end. Proof. destruct p as [p|p|]; destruct base; try reflexivity; cbn; rewrite to_N_of_pos; reflexivity. Qed. End Raw. Definition of_pos (p : positive) : string := String "0" (String "b" (Raw.of_pos p "")). Definition of_N (n : N) : string := match n with | N0 => "0b0" | Npos p => of_pos p end. Definition of_Z (z : Z) : string := match z with | Zneg p => String "-" (of_pos p) | Z0 => "0b0" | Zpos p => of_pos p end. Definition of_nat (n : nat) : string := of_N (N.of_nat n). Definition to_N (s : string) : N := match s with | String s0 (String sb s) => if ascii_dec s0 "0" then if ascii_dec sb "b" then Raw.to_N s N0 else N0 else N0 | _ => N0 end. Definition to_pos (s : string) : positive := match to_N s with | N0 => 1 | Npos p => p end. Definition to_Z (s : string) : Z := let '(is_neg, n) := match s with | String s0 s' => if ascii_dec s0 "-" then (true, to_N s') else (false, to_N s) | EmptyString => (false, to_N s) end in match n with | N0 => Z0 | Npos p => if is_neg then Zneg p else Zpos p end. Definition to_nat (s : string) : nat := N.to_nat (to_N s). Lemma to_N_of_N (n : N) : to_N (of_N n) = n. Proof. destruct n; [ reflexivity | apply Raw.to_N_of_pos ]. Qed. Lemma Z_of_of_Z (z : Z) : to_Z (of_Z z) = z. Proof. cbv [of_Z to_Z]; destruct z as [|z|z]; cbn; try reflexivity; rewrite Raw.to_N_of_pos; cbn; reflexivity. Qed. Lemma to_nat_of_nat (n : nat) : to_nat (of_nat n) = n. Proof. cbv [to_nat of_nat]; rewrite to_N_of_N, Nnat.Nat2N.id; reflexivity. Qed. Lemma to_pos_of_pos (p : positive) : to_pos (of_pos p) = p. Proof. cbv [of_pos to_pos to_N]; cbn; rewrite Raw.to_N_of_pos; cbn; reflexivity. Qed. Example of_pos_1 : of_pos 1 = "0b1" := eq_refl. Example of_pos_2 : of_pos 2 = "0b10" := eq_refl. Example of_pos_3 : of_pos 3 = "0b11" := eq_refl. Example of_N_0 : of_N 0 = "0b0" := eq_refl. Example of_Z_0 : of_Z 0 = "0b0" := eq_refl. Example of_Z_m1 : of_Z (-1) = "-0b1" := eq_refl. Example of_nat_0 : of_nat 0 = "0b0" := eq_refl.