Require Import Coq.ZArith.Zpower Coq.ZArith.Znumtheory Coq.ZArith.ZArith Coq.ZArith.Zdiv. Require Import Coq.omega.Omega Coq.Numbers.Natural.Peano.NPeano Coq.Arith.Arith. Require Import Crypto.Util.ZUtil.Divide. Require Import Crypto.Util.ZUtil.Modulo. Require Import Crypto.Util.ZUtil.Odd. Require Import Crypto.Util.NatUtil. Require Import Crypto.Util.ZUtil.Tactics.PrimeBound. Require Export Crypto.Util.FixCoqMistakes. Require Import Crypto.Util.Tactics.BreakMatch. Local Open Scope Z. Require Coqprime.PrimalityTest.Euler Coqprime.PrimalityTest.Zp Coqprime.PrimalityTest.IGroup Coqprime.PrimalityTest.EGroup Coqprime.PrimalityTest.FGroup Coqprime.List.UList. (* TODO: move somewhere else for lemmas about Coqprime.PrimalityTest? *) Lemma in_ZPGroup_range (n : Z) (n_pos : 1 < n) (p : Z) : List.In p (Coqprime.PrimalityTest.FGroup.s (Coqprime.PrimalityTest.Zp.ZPGroup n n_pos)) -> 1 <= p < n. Proof. unfold Coqprime.PrimalityTest.Zp.ZPGroup; simpl; intros Hin. pose proof (Coqprime.PrimalityTest.IGroup.isupport_incl Z (Coqprime.PrimalityTest.Zp.pmult n) (Coqprime.PrimalityTest.Zp.mkZp n) 1 Z.eq_dec) as H. unfold List.incl in *. specialize (H p Hin). apply Coqprime.PrimalityTest.Zp.in_mkZp in H; auto. destruct (Z.eq_dec p 0); try subst. apply Coqprime.PrimalityTest.IGroup.isupport_is_inv_true in Hin. rewrite Coqprime.PrimalityTest.Zp.rel_prime_is_inv in Hin by auto. pose proof (not_rel_prime_0 n n_pos). destruct (rel_prime_dec 0 n) in Hin; try congruence. omega. Qed. Lemma generator_subgroup_is_group p (lt_1_p : 1 < p): forall y, (List.In y (Coqprime.PrimalityTest.FGroup.s (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p)) /\ Coqprime.PrimalityTest.EGroup.e_order Z.eq_dec y (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p) = Coqprime.PrimalityTest.FGroup.g_order (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p)) -> forall a, List.In a (Coqprime.PrimalityTest.FGroup.s (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p)) -> List.In a (Coqprime.PrimalityTest.EGroup.support Z.eq_dec y (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p)). Proof. intros y H a H0. destruct H as [in_ZPGroup_y y_order]. pose proof (Coqprime.PrimalityTest.EGroup.support_incl_G Z Z.eq_dec (Coqprime.PrimalityTest.Zp.pmult p) y (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p) in_ZPGroup_y). eapply Permutation.permutation_in; [|eauto]. apply Permutation.permutation_sym. eapply Coqprime.List.UList.ulist_eq_permutation; try apply Coqprime.PrimalityTest.EGroup.support_ulist; eauto. unfold Coqprime.PrimalityTest.EGroup.e_order, Coqprime.PrimalityTest.FGroup.g_order in y_order. apply Nat2Z.inj in y_order. auto. Qed. Section EulerCriterion. Variable x p : Z. Hypothesis prime_p : prime p. Hypothesis neq_p_2 : p <> 2. (* Euler's Criterion is also provable with p = 2, but we do not need it and are lazy.*) Hypothesis x_id : x * 2 + 1 = p. Lemma lt_1_p : 1 < p. Proof using prime_p. Z.prime_bound. Qed. Lemma x_pos: 0 < x. Proof using prime_p x_id. Z.prime_bound. Qed. Lemma x_nonneg: 0 <= x. Proof using prime_p x_id. Z.prime_bound. Qed. Lemma x_id_inv : x = (p - 1) / 2. Proof using x_id. intros; apply Zeq_plus_swap in x_id. replace (p - 1) with (2 * ((p - 1) / 2)) in x_id by (symmetry; apply Z_div_exact_2; [omega | rewrite <- x_id; apply Z_mod_mult]). ring_simplify in x_id; apply Z.mul_cancel_l in x_id; omega. Qed. Lemma mod_p_order : Coqprime.PrimalityTest.FGroup.g_order (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p) = p - 1. Proof using Type. intros; rewrite <- Coqprime.PrimalityTest.Zp.phi_is_order. apply Coqprime.PrimalityTest.Euler.prime_phi_n_minus_1; auto. Qed. Lemma p_odd : Z.odd p = true. Proof using neq_p_2 prime_p. pose proof (Z.prime_odd_or_2 p prime_p) as H. destruct H; auto. Qed. Lemma prime_pred_even : Z.even (p - 1) = true. Proof using neq_p_2 prime_p. intros. rewrite <- Z.odd_succ. replace (Z.succ (p - 1)) with p by ring. apply p_odd. Qed. Lemma fermat_little: forall a (a_nonzero : a mod p <> 0), a ^ (p - 1) mod p = 1. Proof using prime_p. intros a a_nonzero. assert (rel_prime a p). { apply rel_prime_mod_rev; try Z.prime_bound. assert (0 < p) as p_pos by Z.prime_bound. apply rel_prime_le_prime; auto; pose proof (Z.mod_pos_bound a p p_pos). omega. } rewrite (Coqprime.PrimalityTest.Zp.Zpower_mod_is_gpow _ _ _ lt_1_p) by (auto || Z.prime_bound). rewrite <- mod_p_order. apply Coqprime.PrimalityTest.EGroup.fermat_gen; try apply Z.eq_dec. apply Coqprime.PrimalityTest.Zp.in_mod_ZPGroup; auto. Qed. Lemma fermat_inv : forall a, a mod p <> 0 -> ((a^(p-2) mod p) * a) mod p = 1. Proof using prime_p. intros a H. pose proof (prime_ge_2 _ prime_p). rewrite Zmult_mod_idemp_l. replace (a ^ (p - 2) * a) with (a^(p-1)). 2:replace (a ^ (p - 2) * a) with (a^1 * a ^ (p - 2)) by ring. 2:rewrite <-Zpower_exp; try f_equal; omega. auto using fermat_little. Qed. Lemma squared_fermat_little: forall a (a_nonzero : a mod p <> 0), (a * a) ^ x mod p = 1. Proof using prime_p x_id. intros. rewrite <- Z.pow_2_r. rewrite <- Z.pow_mul_r by (apply x_nonneg || omega). replace (2 * x) with (x * 2 + 1 - 1) by omega. rewrite x_id. apply fermat_little; auto. Qed. Lemma euler_criterion_square_reverse : forall a (a_nonzero : a mod p <> 0), (exists b, b * b mod p = a) -> (a ^ x mod p = 1). Proof using Type*. intros a a_nonzero a_square. destruct a_square as [b a_square]. assert (b mod p <> 0) as b_nonzero. { intuition. rewrite <- Z.pow_2_r in a_square. rewrite Z.mod_exp_0 in a_square by Z.prime_bound. rewrite <- a_square in a_nonzero. auto. } pose proof (squared_fermat_little b b_nonzero). rewrite Z.mod_pow in * by Z.prime_bound. rewrite <- a_square. rewrite Z.mod_mod; Z.prime_bound. Qed. Lemma exists_primitive_root_power : (exists y, List.In y (Coqprime.PrimalityTest.FGroup.s (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p)) /\ Coqprime.PrimalityTest.EGroup.e_order Z.eq_dec y (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p) = Coqprime.PrimalityTest.FGroup.g_order (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p) /\ (forall a (a_range : 1 <= a <= p - 1), exists j, 0 <= j <= p - 1 /\ y ^ j mod p = a)). Proof using Type. intros. destruct (Coqprime.PrimalityTest.Zp.Zp_cyclic p lt_1_p prime_p) as [y [y_in_ZPGroup y_order]]. exists y; repeat split; auto. intros. pose proof (in_ZPGroup_range p lt_1_p y y_in_ZPGroup) as y_range1. assert (0 <= y < p) as y_range0 by omega. assert (rel_prime y p) as rel_prime_y_p by (apply rel_prime_le_prime; omega || auto). assert (rel_prime a p) as rel_prime_a_p by (apply rel_prime_le_prime; omega || auto). assert (List.In a (Coqprime.PrimalityTest.FGroup.s (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p))) as a_in_ZPGroup by (apply Coqprime.PrimalityTest.Zp.in_ZPGroup; omega || auto). destruct (Coqprime.PrimalityTest.EGroup.support_gpow Z Z.eq_dec (Coqprime.PrimalityTest.Zp.pmult p) y (Coqprime.PrimalityTest.Zp.ZPGroup p lt_1_p) y_in_ZPGroup a) as [k [k_range gpow_y_k]]; [apply generator_subgroup_is_group; auto |]. exists k; split. { unfold Coqprime.PrimalityTest.EGroup.e_order in y_order. rewrite y_order in k_range. rewrite mod_p_order in k_range. omega. } { assert (y mod p = y) as y_small by (apply Z.mod_small; omega). rewrite <- y_small in gpow_y_k. rewrite <- (Coqprime.PrimalityTest.Zp.Zpower_mod_is_gpow y k p lt_1_p) in gpow_y_k by (omega || auto). auto. } Qed. Ltac ereplace x := match type of x with ?t => let e := fresh "e" in evar (e:t); replace x with e; subst e end. Lemma euler_criterion_square : forall a (a_range : 1 <= a <= p - 1) (pow_a_x : a ^ x mod p = 1), exists b, b * b mod p = a. Proof using Type*. intros a a_range pow_a_x. destruct (exists_primitive_root_power) as [y [in_ZPGroup_y [y_order gpow_y]]]; auto. destruct (gpow_y a a_range) as [j [j_range pow_y_j]]; clear gpow_y. rewrite Z.mod_pow in pow_a_x by Z.prime_bound. replace a with (a mod p) in pow_y_j by (apply Z.mod_small; omega). rewrite <- pow_y_j in pow_a_x. rewrite <- Z.mod_pow in pow_a_x by Z.prime_bound. rewrite <- Z.pow_mul_r in pow_a_x by omega. assert (p - 1 | j * x) as divide_mul_j_x. { rewrite <- Coqprime.PrimalityTest.Zp.phi_is_order in y_order. rewrite Coqprime.PrimalityTest.Euler.prime_phi_n_minus_1 in y_order by auto. ereplace (p-1); try eapply Coqprime.PrimalityTest.EGroup.e_order_divide_gpow; eauto with zarith. simpl. apply in_ZPGroup_range in in_ZPGroup_y. replace y with (y mod p) by (apply Z.mod_small; omega). erewrite <- Coqprime.PrimalityTest.Zp.Zpower_mod_is_gpow; eauto. apply rel_prime_le_prime; (omega || auto). apply Z.mul_nonneg_nonneg; intuition; omega. } exists (y ^ (j / 2)). rewrite <- Z.pow_add_r by (apply Z.div_pos; omega). rewrite <- Z_div_plus by omega. rewrite Z.mul_comm. rewrite x_id_inv in divide_mul_j_x; auto. apply (Z.divide_mul_div _ j 2) in divide_mul_j_x; try (apply prime_pred_divide2 || Z.prime_bound); auto. rewrite <- Zdivide_Zdiv_eq by (auto || omega). rewrite Zplus_diag_eq_mult_2. replace (a mod p) with a in pow_y_j by (symmetry; apply Z.mod_small; omega). rewrite Z_div_mult by omega; auto. apply Z.divide2_even_iff. apply prime_pred_even. Qed. Lemma euler_criterion : forall a (a_range : 1 <= a <= p - 1), (a ^ x mod p = 1) <-> exists b, b * b mod p = a. Proof using Type*. intros a a_range; split. { exact (euler_criterion_square _ a_range). } { apply euler_criterion_square_reverse; auto. replace (a mod p) with a by (symmetry; apply Zmod_small; omega). omega. } Qed. Lemma euler_criterion_nonsquare : forall a (a_range : 1 <= a <= p - 1), (a ^ x mod p <> 1) <-> ~ (exists b, b * b mod p = a). Proof using Type*. intros a a_range; split; intros A B; apply (euler_criterion a a_range) in B; congruence. Qed. End EulerCriterion. Lemma divide2_1mod4 : forall x (x_1mod4 : x mod 4 = 1) (x_nonneg : 0 <= x), (2 | x / 2). Proof. intros x x_1mod4 x_nonneg0. assert (Z.to_nat x mod 4 = 1)%nat as x_1mod4_nat. { replace 1 with (Z.of_nat 1) in * by auto. replace (x mod 4) with (Z.of_nat (Z.to_nat x mod 4)) in * by (rewrite mod_Zmod by omega; rewrite Z2Nat.id; auto). apply Nat2Z.inj in x_1mod4; auto. } remember (Z.to_nat x / 4)%nat as c eqn:Heqc. destruct (divide2_1mod4_nat c (Z.to_nat x) Heqc x_1mod4_nat) as [k k_id]. replace 2%nat with (Z.to_nat 2) in * by auto. apply inj_eq in k_id. rewrite div_Zdiv in k_id by (replace (Z.to_nat 2) with 2%nat by auto; omega). rewrite Nat2Z.inj_mul in k_id. do 2 rewrite Z2Nat.id in k_id by omega. rewrite Z.mul_comm in k_id. symmetry in k_id. apply Zdivide_intro in k_id; auto. Qed. Lemma minus1_even_pow : forall x y, (2 | y) -> (1 < x) -> (0 <= y) -> ((x - 1) ^ y mod x = 1). Proof. intros x y divide_2_y lt_1_x y_nonneg. apply Zdivide_Zdiv_eq in divide_2_y; try omega. rewrite divide_2_y. rewrite Z.pow_mul_r by omega. assert ((x - 1) ^ 2 mod x = 1) as square_case. { replace ((x - 1) ^ 2) with (x ^ 2 - 2 * x + 1) by (do 2 rewrite Z.pow_2_r; rewrite Z.mul_sub_distr_l; do 2 rewrite Z.mul_sub_distr_r; omega). rewrite Zplus_mod. rewrite Z.pow_2_r. rewrite <- Z.mul_sub_distr_r. rewrite Z_mod_mult. do 2 rewrite Zmod_1_l by auto; auto. } rewrite <- (Z2Nat.id (y / 2)) by omega. induction (Z.to_nat (y / 2)) as [|n IHn]; try apply Zmod_1_l; auto. rewrite Nat2Z.inj_succ. rewrite Z.pow_succ_r by apply Zle_0_nat. rewrite Zmult_mod. rewrite IHn. rewrite square_case. simpl; apply Zmod_1_l; auto. Qed. Lemma prime_1mod4_neq2 : forall p (prime_p : prime p), (p mod 4 = 1) -> p <> 2. Proof. intros; intuition. assert (4 <> 0)%Z as neq_4_0 by omega. pose proof (Z.div_mod p 4 neq_4_0). omega. Qed. Lemma div2_p_1mod4 : forall (p : Z) (prime_p : prime p) (neq_p_2: p <> 2), (p / 2) * 2 + 1 = p. Proof. intros p prime_p neq_p_2. destruct (Z.prime_odd_or_2 p prime_p); intuition. rewrite <- Zdiv2_div. pose proof (Zdiv2_odd_eqn p); break_match; break_match_hyps; congruence || omega. Qed. Lemma minus1_square_1mod4 : forall (p : Z) (prime_p : prime p), (p mod 4 = 1)%Z -> exists b : Z, (b * b mod p = p - 1)%Z. Proof. intros p prime_p H. assert (p <> 2) as neq_p_2 by (apply prime_1mod4_neq2; auto). apply (euler_criterion (p / 2) p prime_p). + auto. + apply div2_p_1mod4; auto. + Z.prime_bound. + apply minus1_even_pow; [apply divide2_1mod4 | | apply Z_div_pos]; Z.prime_bound. Qed. Lemma odd_as_div a : Z.odd a = true -> a = (2*(a/2) + 1)%Z. Proof. rewrite Zodd_mod, <-Zeq_is_eq_bool; intro H_1; rewrite <-H_1. apply Z_div_mod_eq; reflexivity. Qed.