Require Import Coq.Lists.List. Require Import Crypto.Util.Prod. Require Import Crypto.Util.Tactics.DestructHead. Lemma fold_right_impl_Proper {A} {P Q : A -> Prop} ls (concl1 concl2 : Prop) (Hconcl : concl1 -> concl2) (HPQ : forall a, In a ls -> Q a -> P a) : fold_right (fun a (concl : Prop) => P a -> concl) concl1 ls -> fold_right (fun a (concl : Prop) => Q a -> concl) concl2 ls. Proof. induction ls as [|x xs IHxs]; cbn [fold_right In] in *; intuition. Qed. Lemma forall_In_existT {A P} {Q : forall a : A, P a -> Prop} ls : fold_right (fun xp (concl : Prop) => Q (projT1 xp) (projT2 xp) -> concl) (forall x p, In (@existT A P x p) ls -> Q x p) ls. Proof. induction ls as [|x xs IHxs]; cbn [fold_right In]; intros; destruct_head' False; destruct_head'_or. eapply fold_right_impl_Proper; [ | | refine IHxs ]; intuition (subst; eauto). Qed. Lemma forall_In_pair_existT {A A' P P'} {Q : forall (a : A) (a' : A'), P a -> P' a' -> Prop} ls : fold_right (fun xp_x'p' (concl : Prop) => Q (projT1 (fst xp_x'p')) (projT1 (snd xp_x'p')) (projT2 (fst xp_x'p')) (projT2 (snd xp_x'p')) -> concl) (forall x p x' p', In (@existT A P x p, @existT A' P' x' p') ls -> Q x x' p p') ls. Proof. induction ls as [|x xs IHxs]; cbn [fold_right In]; intros; destruct_head' False; destruct_head'_prod; destruct_head'_or; intros. eapply fold_right_impl_Proper; [ | | refine IHxs ]; intuition (inversion_prod; subst; eauto). Qed.