Require Import Coq.Lists.List. Require Import Coq.omega.Omega Lia. Require Import Coq.Arith.Peano_dec. Require Import Coq.Classes.Morphisms. Require Import Coq.Numbers.Natural.Peano.NPeano. Require Import Crypto.Util.NatUtil. Require Import Crypto.Util.Pointed. Require Import Crypto.Util.Prod. Require Import Crypto.Util.Decidable. Require Export Crypto.Util.FixCoqMistakes. Require Export Crypto.Util.Tactics.BreakMatch. Require Export Crypto.Util.Tactics.DestructHead. Require Import Crypto.Util.Tactics.SpecializeBy. Require Import Crypto.Util.Tactics.RewriteHyp. Require Import Crypto.Util.Tactics.ConstrFail. Import ListNotations. Local Open Scope list_scope. Scheme Equality for list. Definition list_case {A} (P : list A -> Type) (N : P nil) (C : forall x xs, P (cons x xs)) (ls : list A) : P ls := match ls return P ls with | nil => N | cons x xs => C x xs end. Global Instance list_rect_Proper_dep_gen {A P} (RP : forall x : list A, P x -> P x -> Prop) : Proper (RP nil ==> forall_relation (fun x => forall_relation (fun xs => RP xs ==> RP (cons x xs))) ==> forall_relation RP) (@list_rect A P) | 10. Proof. cbv [forall_relation respectful]; intros N N' HN C C' HC ls. induction ls as [|l ls IHls]; cbn [list_rect]; repeat first [ apply IHls | apply HC | apply HN | progress intros | reflexivity ]. Qed. Global Instance list_rect_Proper_dep {A P} : Proper (eq ==> forall_relation (fun _ => forall_relation (fun _ => forall_relation (fun _ => eq))) ==> forall_relation (fun _ => eq)) (@list_rect A P) | 1. Proof. cbv [forall_relation respectful Proper]; intros; eapply (@list_rect_Proper_dep_gen A P (fun _ => eq)); cbv [forall_relation respectful]; intros; subst; eauto. Qed. Global Instance list_rect_arrow_Proper_dep {A P Q} : Proper ((eq ==> eq) ==> forall_relation (fun _ => forall_relation (fun _ => (eq ==> eq) ==> (eq ==> eq))) ==> forall_relation (fun _ => eq ==> eq)) (@list_rect A (fun x => P x -> Q x)) | 10. Proof. cbv [forall_relation respectful Proper]; intros; eapply (@list_rect_Proper_dep_gen A (fun x => P x -> Q x) (fun _ => eq ==> eq)%signature); intros; subst; eauto. Qed. Global Instance list_case_Proper_dep {A P} : Proper (eq ==> forall_relation (fun _ => forall_relation (fun _ => eq)) ==> forall_relation (fun _ => eq)) (@list_case A P) | 1. Proof. cbv [forall_relation]; intros N N' ? C C' HC ls; subst N'; revert N; destruct ls; eauto. Qed. Global Instance list_rect_Proper_gen {A P} R : Proper (R ==> (eq ==> eq ==> R ==> R) ==> eq ==> R) (@list_rect A (fun _ => P)) | 10. Proof. repeat intro; subst; apply (@list_rect_Proper_dep_gen A (fun _ => P) (fun _ => R)); cbv [forall_relation respectful] in *; eauto. Qed. Global Instance list_rect_Proper {A P} : Proper (eq ==> pointwise_relation _ (pointwise_relation _ (pointwise_relation _ eq)) ==> eq ==> eq) (@list_rect A (fun _ => P)). Proof. repeat intro; subst; apply (@list_rect_Proper_dep A (fun _ => P)); eauto. Qed. Global Instance list_rect_arrow_Proper {A P Q} : Proper ((eq ==> eq) ==> (eq ==> eq ==> (eq ==> eq) ==> eq ==> eq) ==> eq ==> eq ==> eq) (@list_rect A (fun _ => P -> Q)) | 10. Proof. eapply list_rect_Proper_gen. Qed. Global Instance list_case_Proper {A P} : Proper (eq ==> pointwise_relation _ (pointwise_relation _ eq) ==> eq ==> eq) (@list_case A (fun _ => P)). Proof. repeat intro; subst; apply (@list_case_Proper_dep A (fun _ => P)); eauto. Qed. Create HintDb distr_length discriminated. Create HintDb simpl_set_nth discriminated. Create HintDb simpl_update_nth discriminated. Create HintDb simpl_nth_default discriminated. Create HintDb simpl_nth_error discriminated. Create HintDb simpl_firstn discriminated. Create HintDb simpl_skipn discriminated. Create HintDb simpl_fold_right discriminated. Create HintDb simpl_sum_firstn discriminated. Create HintDb push_map discriminated. Create HintDb push_combine discriminated. Create HintDb push_flat_map discriminated. Create HintDb push_fold_right discriminated. Create HintDb push_partition discriminated. Create HintDb pull_nth_error discriminated. Create HintDb push_nth_error discriminated. Create HintDb pull_nth_default discriminated. Create HintDb push_nth_default discriminated. Create HintDb pull_firstn discriminated. Create HintDb push_firstn discriminated. Create HintDb pull_skipn discriminated. Create HintDb push_skipn discriminated. Create HintDb push_sum discriminated. Create HintDb pull_update_nth discriminated. Create HintDb push_update_nth discriminated. Create HintDb znonzero discriminated. Hint Rewrite @app_length @rev_length @map_length @seq_length @fold_left_length @split_length_l @split_length_r @firstn_length @combine_length @prod_length : distr_length. Hint Extern 1 => progress autorewrite with distr_length in * : distr_length. Ltac distr_length := autorewrite with distr_length in *; try solve [simpl in *; omega]. Module Export List. Local Set Implicit Arguments. Import ListNotations. (** From the 8.6 Standard Library *) Section Elts. Variable A : Type. (** Results about [nth_error] *) Lemma nth_error_In l n (x : A) : nth_error l n = Some x -> In x l. Proof using Type. revert n. induction l as [|a l IH]; intros [|n]; simpl; try easy. - injection 1; auto. - eauto. Qed. End Elts. Section Map. Variables (A : Type) (B : Type). Variable f : A -> B. Lemma map_nil : forall A B (f : A -> B), map f nil = nil. Proof. reflexivity. Qed. Lemma map_cons (x:A)(l:list A) : map f (x::l) = (f x) :: (map f l). Proof using Type. reflexivity. Qed. Lemma map_repeat x n : map f (List.repeat x n) = List.repeat (f x) n. Proof. induction n; simpl List.repeat; simpl map; congruence. Qed. End Map. Hint Rewrite @map_cons @map_nil @map_repeat : push_map. Hint Rewrite @map_app : push_map. Section FlatMap. Lemma flat_map_nil {A B} (f:A->list B) : List.flat_map f (@nil A) = nil. Proof. reflexivity. Qed. Lemma flat_map_cons {A B} (f:A->list B) x xs : (List.flat_map f (x::xs) = (f x++List.flat_map f xs))%list. Proof. reflexivity. Qed. End FlatMap. Hint Rewrite @flat_map_cons @flat_map_nil : push_flat_map. Lemma rev_cons {A} x ls : @rev A (x :: ls) = rev ls ++ [x]. Proof. reflexivity. Qed. Hint Rewrite @rev_cons : list. Section FoldRight. Context {A B} (f:B->A->A). Lemma fold_right_nil : forall {A B} (f:B->A->A) a, List.fold_right f a nil = a. Proof. reflexivity. Qed. Lemma fold_right_cons : forall a b bs, fold_right f a (b::bs) = f b (fold_right f a bs). Proof. reflexivity. Qed. Lemma fold_right_snoc a x ls: @fold_right A B f a (ls ++ [x]) = fold_right f (f x a) ls. Proof. rewrite <-(rev_involutive ls), <-rev_cons. rewrite !fold_left_rev_right; reflexivity. Qed. End FoldRight. Hint Rewrite @fold_right_nil @fold_right_cons @fold_right_snoc : simpl_fold_right push_fold_right. Section Partition. Lemma partition_nil {A} (f:A->_) : partition f nil = (nil, nil). Proof. reflexivity. Qed. Lemma partition_cons {A} (f:A->_) x xs : partition f (x::xs) = if f x then (x :: (fst (partition f xs)), (snd (partition f xs))) else ((fst (partition f xs)), x :: (snd (partition f xs))). Proof. cbv [partition]; break_match; reflexivity. Qed. End Partition. Hint Rewrite @partition_nil @partition_cons : push_partition. Lemma in_seq len start n : In n (seq start len) <-> start <= n < start+len. Proof. revert start. induction len as [|len IHlen]; simpl; intros. - rewrite <- plus_n_O. split;[easy|]. intros (H,H'). apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')). - rewrite IHlen, <- plus_n_Sm; simpl; split. * intros [H|H]; subst; intuition auto with arith. * intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H); intuition. Qed. Section Facts. Variable A : Type. Theorem length_zero_iff_nil (l : list A): length l = 0 <-> l=[]. Proof using Type. split; [now destruct l | now intros ->]. Qed. End Facts. Section Cutting. Variable A : Type. Local Notation firstn := (@firstn A). Lemma firstn_nil n: firstn n [] = []. Proof using Type. induction n; now simpl. Qed. Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l). Proof using Type. now simpl. Qed. Lemma firstn_all l: firstn (length l) l = l. Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed. Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l. Proof using Type. induction n as [|k iHk]. - intro l. inversion 1 as [H1|?]. rewrite (length_zero_iff_nil l) in H1. subst. now simpl. - destruct l as [|x xs]; simpl. * now reflexivity. * simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H. Qed. Lemma firstn_O l: firstn 0 l = []. Proof using Type. now simpl. Qed. Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n. Proof using Type. induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl]. - auto with arith. - apply le_n_S, iHk. Qed. Lemma firstn_length_le: forall l:list A, forall n:nat, n <= length l -> length (firstn n l) = n. Proof using Type. induction l as [|x xs Hrec]. - simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl. - destruct n as [|n]. * now simpl. * simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H). Qed. Lemma firstn_app n: forall l1 l2, firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2). Proof using Type. induction n as [|k iHk]; intros l1 l2. - now simpl. - destruct l1 as [|x xs]. * unfold List.firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O. * rewrite <- app_comm_cons. simpl. f_equal. apply iHk. Qed. Lemma firstn_app_2 n: forall l1 l2, firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2. Proof using Type. induction n as [| k iHk];intros l1 l2. - unfold List.firstn at 2. rewrite <- plus_n_O, app_nil_r. rewrite firstn_app. rewrite <- minus_diag_reverse. unfold List.firstn at 2. rewrite app_nil_r. apply firstn_all. - destruct l2 as [|x xs]. * simpl. rewrite app_nil_r. apply firstn_all2. auto with arith. * rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k). auto with arith. rewrite H0, firstn_all2; [reflexivity | auto with arith]. Qed. Lemma firstn_firstn: forall l:list A, forall i j : nat, firstn i (firstn j l) = firstn (min i j) l. Proof. induction l as [|x xs Hl]. - intros. simpl. now rewrite ?firstn_nil. - destruct i. * intro. now simpl. * destruct j. + now simpl. + simpl. f_equal. apply Hl. Qed. End Cutting. End List. Hint Rewrite @firstn_skipn : simpl_firstn. Hint Rewrite @firstn_skipn : simpl_skipn. Hint Rewrite @firstn_nil @firstn_cons @List.firstn_all @firstn_O @firstn_app_2 @List.firstn_firstn : push_firstn. Hint Rewrite @firstn_nil @firstn_cons @List.firstn_all @firstn_O @firstn_app_2 @List.firstn_firstn : simpl_firstn. Hint Rewrite @firstn_app : push_firstn. Hint Rewrite <- @firstn_cons @firstn_app @List.firstn_firstn : pull_firstn. Hint Rewrite @firstn_all2 @removelast_firstn @firstn_removelast using omega : push_firstn. Hint Rewrite @firstn_all2 @removelast_firstn @firstn_removelast using omega : simpl_firstn. Local Arguments value / _ _. Local Arguments error / _. Definition sum_firstn l n := fold_right Z.add 0%Z (firstn n l). Definition sum xs := sum_firstn xs (length xs). Section map2. Context {A B C} (f : A -> B -> C). Fixpoint map2 (la : list A) (lb : list B) : list C := match la, lb with | nil, _ => nil | _, nil => nil | a :: la', b :: lb' => f a b :: map2 la' lb' end. End map2. (* xs[n] := f xs[n] *) Fixpoint update_nth {T} n f (xs:list T) {struct n} := match n with | O => match xs with | nil => nil | x'::xs' => f x'::xs' end | S n' => match xs with | nil => nil | x'::xs' => x'::update_nth n' f xs' end end. (* xs[n] := x *) Definition set_nth {T} n x (xs:list T) := update_nth n (fun _ => x) xs. Definition splice_nth {T} n (x:T) xs := firstn n xs ++ x :: skipn (S n) xs. Hint Unfold splice_nth. Fixpoint take_while {T} (f : T -> bool) (ls : list T) : list T := match ls with | nil => nil | cons x xs => if f x then x :: @take_while T f xs else nil end. Fixpoint drop_while {T} (f : T -> bool) (ls : list T) : list T := match ls with | nil => nil | cons x xs => if f x then @drop_while T f xs else x :: xs end. Ltac boring := simpl; intuition auto with zarith datatypes; repeat match goal with | [ H : _ |- _ ] => rewrite H; clear H | [ |- context[match ?pf with end] ] => solve [ case pf ] | _ => progress autounfold in * | _ => progress autorewrite with core | _ => progress simpl in * | _ => progress intuition auto with zarith datatypes end; eauto. Ltac boring_list := repeat match goal with | _ => progress boring | _ => progress autorewrite with distr_length simpl_nth_default simpl_update_nth simpl_set_nth simpl_nth_error in * end. Lemma nth_default_cons : forall {T} (x u0 : T) us, nth_default x (u0 :: us) 0 = u0. Proof. auto. Qed. Hint Rewrite @nth_default_cons : simpl_nth_default. Hint Rewrite @nth_default_cons : push_nth_default. Lemma nth_default_cons_S : forall {A} us (u0 : A) n d, nth_default d (u0 :: us) (S n) = nth_default d us n. Proof. boring. Qed. Hint Rewrite @nth_default_cons_S : simpl_nth_default. Hint Rewrite @nth_default_cons_S : push_nth_default. Lemma nth_default_nil : forall {T} n (d : T), nth_default d nil n = d. Proof. induction n; boring. Qed. Hint Rewrite @nth_default_nil : simpl_nth_default. Hint Rewrite @nth_default_nil : push_nth_default. Lemma nth_error_nil_error : forall {A} n, nth_error (@nil A) n = None. Proof. induction n; boring. Qed. Hint Rewrite @nth_error_nil_error : simpl_nth_error. Ltac nth_tac' := intros; simpl in *; unfold error,value in *; repeat progress (match goal with | [ |- context[nth_error nil ?n] ] => rewrite nth_error_nil_error | [ H: ?x = Some _ |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x | [ H: ?x = None _ |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x | [ |- context[match ?x with Some _ => ?a | None => ?a end ] ] => destruct x | [ |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] => case_eq (nth_error xs i); intros | [ |- context[(if lt_dec ?a ?b then _ else _) = _] ] => destruct (lt_dec a b) | [ |- context[_ = (if lt_dec ?a ?b then _ else _)] ] => destruct (lt_dec a b) | [ H: context[(if lt_dec ?a ?b then _ else _) = _] |- _ ] => destruct (lt_dec a b) | [ H: context[_ = (if lt_dec ?a ?b then _ else _)] |- _ ] => destruct (lt_dec a b) | [ H: _ /\ _ |- _ ] => destruct H | [ H: Some _ = Some _ |- _ ] => injection H; clear H; intros; subst | [ H: None = Some _ |- _ ] => inversion H | [ H: Some _ = None |- _ ] => inversion H | [ |- Some _ = Some _ ] => apply f_equal end); eauto; try (autorewrite with list in *); try omega; eauto. Lemma nth_error_map : forall A B (f:A->B) i xs y, nth_error (map f xs) i = Some y -> exists x, nth_error xs i = Some x /\ f x = y. Proof. induction i; destruct xs; nth_tac'. Qed. Lemma nth_error_seq : forall i start len, nth_error (seq start len) i = if lt_dec i len then Some (start + i) else None. induction i as [|? IHi]; destruct len; nth_tac'; erewrite IHi; nth_tac'. Qed. Lemma nth_error_error_length : forall A i (xs:list A), nth_error xs i = None -> i >= length xs. Proof. induction i as [|? IHi]; destruct xs; nth_tac'; try match goal with H : _ |- _ => specialize (IHi _ H) end; omega. Qed. Lemma nth_error_value_length : forall A i (xs:list A) x, nth_error xs i = Some x -> i < length xs. Proof. induction i as [|? IHi]; destruct xs; nth_tac'; try match goal with H : _ |- _ => specialize (IHi _ _ H) end; omega. Qed. Lemma nth_error_length_error : forall A i (xs:list A), i >= length xs -> nth_error xs i = None. Proof. induction i as [|? IHi]; destruct xs; nth_tac'; rewrite IHi by omega; auto. Qed. Hint Resolve nth_error_length_error. Hint Rewrite @nth_error_length_error using omega : simpl_nth_error. Lemma map_nth_default : forall (A B : Type) (f : A -> B) n x y l, (n < length l) -> nth_default y (map f l) n = f (nth_default x l n). Proof. intros A B f n x y l H. unfold nth_default. erewrite map_nth_error. reflexivity. nth_tac'. let H0 := match goal with H0 : _ = None |- _ => H0 end in pose proof (nth_error_error_length A n l H0). omega. Qed. Hint Rewrite @map_nth_default using omega : push_nth_default. Ltac nth_tac := repeat progress (try nth_tac'; try (match goal with | [ H: nth_error (map _ _) _ = Some _ |- _ ] => destruct (nth_error_map _ _ _ _ _ _ H); clear H | [ H: nth_error (seq _ _) _ = Some _ |- _ ] => rewrite nth_error_seq in H | [H: nth_error _ _ = None |- _ ] => specialize (nth_error_error_length _ _ _ H); intro; clear H end)). Lemma app_cons_app_app : forall T xs (y:T) ys, xs ++ y :: ys = (xs ++ (y::nil)) ++ ys. Proof. induction xs; boring. Qed. Lemma unfold_set_nth {T} n x : forall xs, @set_nth T n x xs = match n with | O => match xs with | nil => nil | x'::xs' => x::xs' end | S n' => match xs with | nil => nil | x'::xs' => x'::set_nth n' x xs' end end. Proof. induction n; destruct xs; reflexivity. Qed. Lemma simpl_set_nth_0 {T} x : forall xs, @set_nth T 0 x xs = match xs with | nil => nil | x'::xs' => x::xs' end. Proof. intro; rewrite unfold_set_nth; reflexivity. Qed. Lemma simpl_set_nth_S {T} x n : forall xs, @set_nth T (S n) x xs = match xs with | nil => nil | x'::xs' => x'::set_nth n x xs' end. Proof. intro; rewrite unfold_set_nth; reflexivity. Qed. Hint Rewrite @simpl_set_nth_S @simpl_set_nth_0 : simpl_set_nth. Lemma update_nth_ext {T} f g n : forall xs, (forall x, nth_error xs n = Some x -> f x = g x) -> @update_nth T n f xs = @update_nth T n g xs. Proof. induction n as [|n IHn]; destruct xs; simpl; intros H; try rewrite IHn; try rewrite H; try congruence; trivial. Qed. Global Instance update_nth_Proper {T} : Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@update_nth T). Proof. repeat intro; subst; apply update_nth_ext; trivial. Qed. Global Instance update_nth_Proper_eq {A} : Proper (eq ==> (eq ==> eq) ==> eq ==> eq) (@update_nth A) | 1. Proof. repeat intro; subst; apply update_nth_Proper; repeat intro; eauto. Qed. Lemma update_nth_id_eq_specific {T} f n : forall (xs : list T) (H : forall x, nth_error xs n = Some x -> f x = x), update_nth n f xs = xs. Proof. induction n as [|n IHn]; destruct xs; simpl; intros H; try rewrite IHn; try rewrite H; unfold value in *; try congruence; assumption. Qed. Hint Rewrite @update_nth_id_eq_specific using congruence : simpl_update_nth. Lemma update_nth_id_eq : forall {T} f (H : forall x, f x = x) n (xs : list T), update_nth n f xs = xs. Proof. intros; apply update_nth_id_eq_specific; trivial. Qed. Hint Rewrite @update_nth_id_eq using congruence : simpl_update_nth. Lemma update_nth_id : forall {T} n (xs : list T), update_nth n (fun x => x) xs = xs. Proof. intros; apply update_nth_id_eq; trivial. Qed. Hint Rewrite @update_nth_id : simpl_update_nth. Lemma nth_update_nth : forall m {T} (xs:list T) (n:nat) (f:T -> T), nth_error (update_nth m f xs) n = if eq_nat_dec n m then option_map f (nth_error xs n) else nth_error xs n. Proof. induction m as [|? IHm]. { destruct n, xs; auto. } { destruct xs, n; intros; simpl; auto; [ | rewrite IHm ]; clear IHm; edestruct eq_nat_dec; reflexivity. } Qed. Hint Rewrite @nth_update_nth : push_nth_error. Hint Rewrite <- @nth_update_nth : pull_nth_error. Lemma length_update_nth : forall {T} i f (xs:list T), length (update_nth i f xs) = length xs. Proof. induction i, xs; boring. Qed. Hint Rewrite @length_update_nth : distr_length. Lemma nth_set_nth : forall m {T} (xs:list T) (n:nat) x, nth_error (set_nth m x xs) n = if eq_nat_dec n m then (if lt_dec n (length xs) then Some x else None) else nth_error xs n. Proof. intros m T xs n x; unfold set_nth; rewrite nth_update_nth. destruct (nth_error xs n) eqn:?, (lt_dec n (length xs)) as [p|p]; rewrite <- nth_error_Some in p; solve [ reflexivity | exfalso; apply p; congruence ]. Qed. Hint Rewrite @nth_set_nth : push_nth_error. Lemma length_set_nth : forall {T} i x (xs:list T), length (set_nth i x xs) = length xs. Proof. intros; apply length_update_nth. Qed. Hint Rewrite @length_set_nth : distr_length. Lemma nth_error_length_exists_value : forall {A} (i : nat) (xs : list A), (i < length xs)%nat -> exists x, nth_error xs i = Some x. Proof. induction i, xs; boring; try omega. Qed. Lemma nth_error_length_not_error : forall {A} (i : nat) (xs : list A), nth_error xs i = None -> (i < length xs)%nat -> False. Proof. intros A i xs H H0. destruct (nth_error_length_exists_value i xs); intuition; congruence. Qed. Lemma nth_error_value_eq_nth_default : forall {T} i (x : T) xs, nth_error xs i = Some x -> forall d, nth_default d xs i = x. Proof. unfold nth_default; boring. Qed. Hint Rewrite @nth_error_value_eq_nth_default using eassumption : simpl_nth_default. Lemma skipn0 : forall {T} (xs:list T), skipn 0 xs = xs. Proof. auto. Qed. Lemma destruct_repeat : forall {A} xs y, (forall x : A, In x xs -> x = y) -> xs = nil \/ exists xs', xs = y :: xs' /\ (forall x : A, In x xs' -> x = y). Proof. destruct xs as [|? xs]; intros; try tauto. right. exists xs; split. + f_equal; auto using in_eq. + intros; auto using in_cons. Qed. Lemma splice_nth_equiv_update_nth : forall {T} n f d (xs:list T), splice_nth n (f (nth_default d xs n)) xs = if lt_dec n (length xs) then update_nth n f xs else xs ++ (f d)::nil. Proof. induction n, xs; boring_list; break_match; auto; omega. Qed. Lemma splice_nth_equiv_update_nth_update : forall {T} n f d (xs:list T), n < length xs -> splice_nth n (f (nth_default d xs n)) xs = update_nth n f xs. Proof. intros. rewrite splice_nth_equiv_update_nth; break_match; auto; omega. Qed. Lemma splice_nth_equiv_update_nth_snoc : forall {T} n f d (xs:list T), n >= length xs -> splice_nth n (f (nth_default d xs n)) xs = xs ++ (f d)::nil. Proof. intros. rewrite splice_nth_equiv_update_nth; break_match; auto; omega. Qed. Definition IMPOSSIBLE {T} : list T. exact nil. Qed. Ltac remove_nth_error := repeat match goal with | _ => exfalso; solve [ eauto using @nth_error_length_not_error ] | [ |- context[match nth_error ?ls ?n with _ => _ end] ] => destruct (nth_error ls n) eqn:? end. Lemma update_nth_equiv_splice_nth: forall {T} n f (xs:list T), update_nth n f xs = if lt_dec n (length xs) then match nth_error xs n with | Some v => splice_nth n (f v) xs | None => IMPOSSIBLE end else xs. Proof. induction n as [|? IHn]; destruct xs; intros; autorewrite with simpl_update_nth simpl_nth_default in *; simpl in *; try (erewrite IHn; clear IHn); auto. repeat break_match; remove_nth_error; try reflexivity; try omega. Qed. Lemma splice_nth_equiv_set_nth : forall {T} n x (xs:list T), splice_nth n x xs = if lt_dec n (length xs) then set_nth n x xs else xs ++ x::nil. Proof. intros T n x xs; rewrite splice_nth_equiv_update_nth with (f := fun _ => x); auto. Qed. Lemma splice_nth_equiv_set_nth_set : forall {T} n x (xs:list T), n < length xs -> splice_nth n x xs = set_nth n x xs. Proof. intros T n x xs H; rewrite splice_nth_equiv_update_nth_update with (f := fun _ => x); auto. Qed. Lemma splice_nth_equiv_set_nth_snoc : forall {T} n x (xs:list T), n >= length xs -> splice_nth n x xs = xs ++ x::nil. Proof. intros T n x xs H; rewrite splice_nth_equiv_update_nth_snoc with (f := fun _ => x); auto. Qed. Lemma set_nth_equiv_splice_nth: forall {T} n x (xs:list T), set_nth n x xs = if lt_dec n (length xs) then splice_nth n x xs else xs. Proof. intros T n x xs; unfold set_nth; rewrite update_nth_equiv_splice_nth with (f := fun _ => x); auto. repeat break_match; remove_nth_error; trivial. Qed. Lemma combine_update_nth : forall {A B} n f g (xs:list A) (ys:list B), combine (update_nth n f xs) (update_nth n g ys) = update_nth n (fun xy => (f (fst xy), g (snd xy))) (combine xs ys). Proof. induction n as [|? IHn]; destruct xs, ys; simpl; try rewrite IHn; reflexivity. Qed. (* grumble, grumble, [rewrite] is bad at inferring the identity function, and constant functions *) Ltac rewrite_rev_combine_update_nth := let lem := match goal with | [ |- context[update_nth ?n (fun xy => (@?f xy, @?g xy)) (combine ?xs ?ys)] ] => let f := match (eval cbv [fst] in (fun y x => f (x, y))) with | fun _ => ?f => f end in let g := match (eval cbv [snd] in (fun x y => g (x, y))) with | fun _ => ?g => g end in constr:(@combine_update_nth _ _ n f g xs ys) end in rewrite <- lem. Lemma combine_update_nth_l : forall {A B} n (f : A -> A) xs (ys:list B), combine (update_nth n f xs) ys = update_nth n (fun xy => (f (fst xy), snd xy)) (combine xs ys). Proof. intros ??? f xs ys. etransitivity; [ | apply combine_update_nth with (g := fun x => x) ]. rewrite update_nth_id; reflexivity. Qed. Lemma combine_update_nth_r : forall {A B} n (g : B -> B) (xs:list A) (ys:list B), combine xs (update_nth n g ys) = update_nth n (fun xy => (fst xy, g (snd xy))) (combine xs ys). Proof. intros ??? g xs ys. etransitivity; [ | apply combine_update_nth with (f := fun x => x) ]. rewrite update_nth_id; reflexivity. Qed. Lemma combine_set_nth : forall {A B} n (x:A) xs (ys:list B), combine (set_nth n x xs) ys = match nth_error ys n with | None => combine xs ys | Some y => set_nth n (x,y) (combine xs ys) end. Proof. intros A B n x xs ys; unfold set_nth; rewrite combine_update_nth_l. nth_tac; [ repeat rewrite_rev_combine_update_nth; apply f_equal2 | assert (nth_error (combine xs ys) n = None) by (apply nth_error_None; rewrite combine_length; omega * ) ]; autorewrite with simpl_update_nth; reflexivity. Qed. Lemma nth_error_value_In : forall {T} n xs (x:T), nth_error xs n = Some x -> In x xs. Proof. induction n; destruct xs; nth_tac. Qed. Lemma In_nth_error_value : forall {T} xs (x:T), In x xs -> exists n, nth_error xs n = Some x. Proof. induction xs as [|?? IHxs]; nth_tac; destruct_head or; subst. - exists 0; reflexivity. - edestruct IHxs as [x0]; eauto. exists (S x0). eauto. Qed. Lemma nth_value_index : forall {T} i xs (x:T), nth_error xs i = Some x -> In i (seq 0 (length xs)). Proof. induction i as [|? IHi]; destruct xs; nth_tac; right. rewrite <- seq_shift; apply in_map; eapply IHi; eauto. Qed. Lemma nth_error_app : forall {T} n (xs ys:list T), nth_error (xs ++ ys) n = if lt_dec n (length xs) then nth_error xs n else nth_error ys (n - length xs). Proof. induction n as [|n IHn]; destruct xs as [|? xs]; nth_tac; rewrite IHn; destruct (lt_dec n (length xs)); trivial; omega. Qed. Lemma nth_default_app : forall {T} n x (xs ys:list T), nth_default x (xs ++ ys) n = if lt_dec n (length xs) then nth_default x xs n else nth_default x ys (n - length xs). Proof. intros T n x xs ys. unfold nth_default. rewrite nth_error_app. destruct (lt_dec n (length xs)); auto. Qed. Hint Rewrite @nth_default_app : push_nth_default. Lemma combine_truncate_r : forall {A B} (xs : list A) (ys : list B), combine xs ys = combine xs (firstn (length xs) ys). Proof. induction xs; destruct ys; boring. Qed. Lemma combine_truncate_l : forall {A B} (xs : list A) (ys : list B), combine xs ys = combine (firstn (length ys) xs) ys. Proof. induction xs; destruct ys; boring. Qed. Lemma combine_app_samelength : forall {A B} (xs xs':list A) (ys ys':list B), length xs = length ys -> combine (xs ++ xs') (ys ++ ys') = combine xs ys ++ combine xs' ys'. Proof. induction xs, xs', ys, ys'; boring; omega. Qed. Lemma map_fst_combine {A B} (xs:list A) (ys:list B) : List.map fst (List.combine xs ys) = List.firstn (length ys) xs. Proof. revert xs; induction ys; destruct xs; simpl; solve [ trivial | congruence ]. Qed. Lemma map_snd_combine {A B} (xs:list A) (ys:list B) : List.map snd (List.combine xs ys) = List.firstn (length xs) ys. Proof. revert xs; induction ys; destruct xs; simpl; solve [ trivial | congruence ]. Qed. Hint Rewrite @map_fst_combine @map_snd_combine : push_map. Lemma skipn_nil : forall {A} n, skipn n nil = @nil A. Proof. destruct n; auto. Qed. Hint Rewrite @skipn_nil : simpl_skipn. Hint Rewrite @skipn_nil : push_skipn. Lemma skipn_0 : forall {A} xs, @skipn A 0 xs = xs. Proof. reflexivity. Qed. Hint Rewrite @skipn_0 : simpl_skipn. Hint Rewrite @skipn_0 : push_skipn. Lemma skipn_cons_S : forall {A} n x xs, @skipn A (S n) (x::xs) = @skipn A n xs. Proof. reflexivity. Qed. Hint Rewrite @skipn_cons_S : simpl_skipn. Hint Rewrite @skipn_cons_S : push_skipn. Lemma skipn_app : forall {A} n (xs ys : list A), skipn n (xs ++ ys) = skipn n xs ++ skipn (n - length xs) ys. Proof. induction n, xs, ys; boring. Qed. Hint Rewrite @skipn_app : push_skipn. Lemma skipn_skipn {A} n1 n2 (ls : list A) : skipn n2 (skipn n1 ls) = skipn (n1 + n2) ls. Proof. revert n2 ls; induction n1, ls; simpl; autorewrite with simpl_skipn; boring. Qed. Hint Rewrite @skipn_skipn : simpl_skipn. Hint Rewrite <- @skipn_skipn : push_skipn. Hint Rewrite @skipn_skipn : pull_skipn. Lemma skipn_firstn {A} (ls : list A) n m : skipn n (firstn m ls) = firstn (m - n) (skipn n ls). Proof. revert n m; induction ls, m, n; simpl; autorewrite with simpl_skipn simpl_firstn; boring_list. Qed. Lemma firstn_skipn_add {A} (ls : list A) n m : firstn n (skipn m ls) = skipn m (firstn (m + n) ls). Proof. revert n m; induction ls, m; simpl; autorewrite with simpl_skipn simpl_firstn; boring_list. Qed. Lemma firstn_skipn_add' {A} (ls : list A) n m : firstn n (skipn m ls) = skipn m (firstn (n + m) ls). Proof. rewrite firstn_skipn_add; do 2 f_equal; auto with arith. Qed. Hint Rewrite <- @firstn_skipn_add @firstn_skipn_add' : simpl_firstn. Hint Rewrite <- @firstn_skipn_add @firstn_skipn_add' : simpl_skipn. Lemma firstn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat -> firstn n (xs ++ ys) = firstn n xs. Proof. induction n, xs, ys; boring; try omega. Qed. Hint Rewrite @firstn_app_inleft using solve [ distr_length ] : simpl_firstn. Hint Rewrite @firstn_app_inleft using solve [ distr_length ] : push_firstn. Lemma skipn_app_inleft : forall {A} n (xs ys : list A), (n <= length xs)%nat -> skipn n (xs ++ ys) = skipn n xs ++ ys. Proof. induction n, xs, ys; boring; try omega. Qed. Hint Rewrite @skipn_app_inleft using solve [ distr_length ] : push_skipn. Lemma firstn_map : forall {A B} (f : A -> B) n (xs : list A), firstn n (map f xs) = map f (firstn n xs). Proof. induction n, xs; boring. Qed. Hint Rewrite @firstn_map : push_firstn. Hint Rewrite <- @firstn_map : pull_firstn. Lemma skipn_map : forall {A B} (f : A -> B) n (xs : list A), skipn n (map f xs) = map f (skipn n xs). Proof. induction n, xs; boring. Qed. Hint Rewrite @skipn_map : push_skipn. Hint Rewrite <- @skipn_map : pull_skipn. Lemma firstn_all : forall {A} n (xs:list A), n = length xs -> firstn n xs = xs. Proof. induction n, xs; boring; omega. Qed. Hint Rewrite @firstn_all using solve [ distr_length ] : simpl_firstn. Hint Rewrite @firstn_all using solve [ distr_length ] : push_firstn. Lemma skipn_all : forall {T} n (xs:list T), (n >= length xs)%nat -> skipn n xs = nil. Proof. induction n, xs; boring; omega. Qed. Hint Rewrite @skipn_all using solve [ distr_length ] : simpl_skipn. Hint Rewrite @skipn_all using solve [ distr_length ] : push_skipn. Lemma firstn_app_sharp : forall {A} n (l l': list A), length l = n -> firstn n (l ++ l') = l. Proof. intros. rewrite firstn_app_inleft; auto using firstn_all; omega. Qed. Hint Rewrite @firstn_app_sharp using solve [ distr_length ] : simpl_firstn. Hint Rewrite @firstn_app_sharp using solve [ distr_length ] : push_firstn. Lemma skipn_app_sharp : forall {A} n (l l': list A), length l = n -> skipn n (l ++ l') = l'. Proof. intros. rewrite skipn_app_inleft; try rewrite skipn_all; auto; omega. Qed. Hint Rewrite @skipn_app_sharp using solve [ distr_length ] : simpl_skipn. Hint Rewrite @skipn_app_sharp using solve [ distr_length ] : push_skipn. Lemma skipn_length : forall {A} n (xs : list A), length (skipn n xs) = (length xs - n)%nat. Proof. induction n, xs; boring. Qed. Hint Rewrite @skipn_length : distr_length. Lemma length_cons : forall {T} (x:T) xs, length (x::xs) = S (length xs). reflexivity. Qed. Hint Rewrite @length_cons : distr_length. Lemma length_cons_full {T} n (x:list T) (t:T) (H: length (t :: x) = S n) : length x = n. Proof. distr_length. Qed. Lemma cons_length : forall A (xs : list A) a, length (a :: xs) = S (length xs). Proof. auto. Qed. Lemma length0_nil : forall {A} (xs : list A), length xs = 0%nat -> xs = nil. Proof. induction xs; boring; discriminate. Qed. Lemma length_tl {A} ls : length (@tl A ls) = (length ls - 1)%nat. Proof. destruct ls; cbn [tl length]; omega. Qed. Hint Rewrite @length_tl : distr_length. Lemma length_snoc : forall {T} xs (x:T), length xs = pred (length (xs++x::nil)). Proof. boring; simpl_list; boring. Qed. Lemma combine_cons : forall {A B} a b (xs:list A) (ys:list B), combine (a :: xs) (b :: ys) = (a,b) :: combine xs ys. Proof. reflexivity. Qed. Hint Rewrite @combine_cons : push_combine. Lemma firstn_combine : forall {A B} n (xs:list A) (ys:list B), firstn n (combine xs ys) = combine (firstn n xs) (firstn n ys). Proof. induction n, xs, ys; boring. Qed. Hint Rewrite @firstn_combine : push_firstn. Hint Rewrite <- @firstn_combine : pull_firstn. Lemma combine_nil_r : forall {A B} (xs:list A), combine xs (@nil B) = nil. Proof. induction xs; boring. Qed. Hint Rewrite @combine_nil_r : push_combine. Lemma combine_snoc {A B} xs : forall ys x y, length xs = length ys -> @combine A B (xs ++ (x :: nil)) (ys ++ (y :: nil)) = combine xs ys ++ ((x, y) :: nil). Proof. induction xs; intros; destruct ys; distr_length; cbn; try rewrite IHxs by omega; reflexivity. Qed. Hint Rewrite @combine_snoc using (solve [distr_length]) : push_combine. Lemma skipn_combine : forall {A B} n (xs:list A) (ys:list B), skipn n (combine xs ys) = combine (skipn n xs) (skipn n ys). Proof. induction n, xs, ys; boring. rewrite combine_nil_r; reflexivity. Qed. Hint Rewrite @skipn_combine : push_skipn. Hint Rewrite <- @skipn_combine : pull_skipn. Lemma break_list_last: forall {T} (xs:list T), xs = nil \/ exists xs' y, xs = xs' ++ y :: nil. Proof. destruct xs using rev_ind; auto. right; do 2 eexists; auto. Qed. Lemma break_list_first: forall {T} (xs:list T), xs = nil \/ exists x xs', xs = x :: xs'. Proof. destruct xs; auto. right; do 2 eexists; auto. Qed. Lemma list012 : forall {T} (xs:list T), xs = nil \/ (exists x, xs = x::nil) \/ (exists x xs' y, xs = x::xs'++y::nil). Proof. destruct xs as [|? xs]; auto. right. destruct xs using rev_ind. { left; eexists; auto. } { right; repeat eexists; auto. } Qed. Lemma nil_length0 : forall {T}, length (@nil T) = 0%nat. Proof. auto. Qed. Hint Rewrite @nil_length0 : distr_length. Lemma nth_error_Some_nth_default : forall {T} i x (l : list T), (i < length l)%nat -> nth_error l i = Some (nth_default x l i). Proof. intros ? ? ? ? i_lt_length. destruct (nth_error_length_exists_value _ _ i_lt_length) as [k nth_err_k]. unfold nth_default. rewrite nth_err_k. reflexivity. Qed. Lemma update_nth_cons : forall {T} f (u0 : T) us, update_nth 0 f (u0 :: us) = (f u0) :: us. Proof. reflexivity. Qed. Hint Rewrite @update_nth_cons : simpl_update_nth. Lemma set_nth_cons : forall {T} (x u0 : T) us, set_nth 0 x (u0 :: us) = x :: us. Proof. intros; apply update_nth_cons. Qed. Hint Rewrite @set_nth_cons : simpl_set_nth. Lemma cons_update_nth : forall {T} n f (y : T) us, y :: update_nth n f us = update_nth (S n) f (y :: us). Proof. induction n; boring. Qed. Hint Rewrite <- @cons_update_nth : simpl_update_nth. Lemma update_nth_nil : forall {T} n f, update_nth n f (@nil T) = @nil T. Proof. induction n; boring. Qed. Hint Rewrite @update_nth_nil : simpl_update_nth. Lemma cons_set_nth : forall {T} n (x y : T) us, y :: set_nth n x us = set_nth (S n) x (y :: us). Proof. intros; apply cons_update_nth. Qed. Hint Rewrite <- @cons_set_nth : simpl_set_nth. Lemma set_nth_nil : forall {T} n (x : T), set_nth n x nil = nil. Proof. intros; apply update_nth_nil. Qed. Hint Rewrite @set_nth_nil : simpl_set_nth. Lemma skipn_nth_default : forall {T} n us (d : T), (n < length us)%nat -> skipn n us = nth_default d us n :: skipn (S n) us. Proof. induction n as [|n IHn]; destruct us as [|? us]; intros d H; nth_tac. rewrite (IHn us d) at 1 by omega. nth_tac. Qed. Lemma nth_default_out_of_bounds : forall {T} n us (d : T), (n >= length us)%nat -> nth_default d us n = d. Proof. induction n as [|n IHn]; unfold nth_default; nth_tac; let us' := match goal with us : list _ |- _ => us end in destruct us' as [|? us]; nth_tac. assert (n >= length us)%nat by omega. pose proof (nth_error_length_error _ n us). specialize_by_assumption. rewrite_hyp * in *. congruence. Qed. Hint Rewrite @nth_default_out_of_bounds using omega : simpl_nth_default. Ltac nth_error_inbounds := match goal with | [ |- context[match nth_error ?xs ?i with Some _ => _ | None => _ end ] ] => case_eq (nth_error xs i); match goal with | [ |- forall _, nth_error xs i = Some _ -> _ ] => let x := fresh "x" in let H := fresh "H" in intros x H; repeat progress erewrite H; repeat progress erewrite (nth_error_value_eq_nth_default i xs x); auto | [ |- nth_error xs i = None -> _ ] => let H := fresh "H" in intros H; destruct (nth_error_length_not_error _ _ H); try solve [distr_length] end; idtac end. Ltac set_nth_inbounds := match goal with | [ |- context[set_nth ?i ?x ?xs] ] => rewrite (set_nth_equiv_splice_nth i x xs); destruct (lt_dec i (length xs)); match goal with | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H | [ H : (i < (length xs))%nat |- _ ] => try solve [distr_length] end end. Ltac update_nth_inbounds := match goal with | [ |- context[update_nth ?i ?f ?xs] ] => rewrite (update_nth_equiv_splice_nth i f xs); destruct (lt_dec i (length xs)); match goal with | [ H : ~ (i < (length xs))%nat |- _ ] => destruct H | [ H : (i < (length xs))%nat |- _ ] => remove_nth_error; try solve [distr_length] end end. Ltac nth_inbounds := nth_error_inbounds || set_nth_inbounds || update_nth_inbounds. Definition nth_dep {A} (ls : list A) (n : nat) (pf : n < length ls) : A. Proof. refine (match nth_error ls n as v return nth_error ls n = v -> A with | Some v => fun _ => v | None => fun bad => match _ : False with end end eq_refl). apply (proj1 (@nth_error_None _ _ _)) in bad; instantiate; generalize dependent (length ls); clear. abstract (intros; omega). Defined. Lemma nth_error_nth_dep {A} ls n pf : nth_error ls n = Some (@nth_dep A ls n pf). Proof. unfold nth_dep. generalize dependent (@nth_error_None A ls n). edestruct nth_error; boring. Qed. Lemma nth_default_nth_dep {A} d ls n pf : nth_default d ls n = @nth_dep A ls n pf. Proof. unfold nth_dep. generalize dependent (@nth_error_None A ls n). destruct (nth_error ls n) eqn:?; boring. erewrite nth_error_value_eq_nth_default by eassumption; reflexivity. Qed. Lemma nth_default_in_bounds : forall {T} (d' d : T) n us, (n < length us)%nat -> nth_default d us n = nth_default d' us n. Proof. intros; erewrite !nth_default_nth_dep; reflexivity. Grab Existential Variables. assumption. Qed. Hint Resolve @nth_default_in_bounds : simpl_nth_default. Lemma cons_eq_head : forall {T} (x y:T) xs ys, x::xs = y::ys -> x=y. Proof. intros; congruence. Qed. Lemma cons_eq_tail : forall {T} (x y:T) xs ys, x::xs = y::ys -> xs=ys. Proof. intros; congruence. Qed. Lemma map_nth_default_always {A B} (f : A -> B) (n : nat) (x : A) (l : list A) : nth_default (f x) (map f l) n = f (nth_default x l n). Proof. revert n; induction l; simpl; intro n; destruct n; [ try reflexivity.. ]. nth_tac. Qed. Hint Rewrite @map_nth_default_always : push_nth_default. Lemma map_S_seq {A} (f:nat->A) len : forall start, List.map (fun i => f (S i)) (seq start len) = List.map f (seq (S start) len). Proof. induction len as [|len IHlen]; intros; simpl; rewrite ?IHlen; reflexivity. Qed. Lemma seq_snoc len : forall start, seq start (S len) = seq start len ++ ((start + len)%nat :: nil). Proof. induction len; intros. { cbv [seq app]. autorewrite with natsimplify; reflexivity. } { remember (S len); simpl seq. rewrite (IHlen (S start)); subst; simpl seq. rewrite Nat.add_succ_r; reflexivity. } Qed. Lemma seq_len_0 a : seq a 0 = nil. Proof. reflexivity. Qed. Lemma seq_add start a b : seq start (a + b) = seq start a ++ seq (start + a) b. Proof. revert start b; induction a as [|a IHa]; cbn; intros start b. { f_equal; omega. } { rewrite IHa; do 3 f_equal; omega. } Qed. Lemma fold_right_and_True_forall_In_iff : forall {T} (l : list T) (P : T -> Prop), (forall x, In x l -> P x) <-> fold_right and True (map P l). Proof. induction l as [|?? IHl]; intros; simpl; try tauto. rewrite <- IHl. intuition (subst; auto). Qed. Lemma fold_right_invariant : forall {A B} P (f: A -> B -> B) l x, P x -> (forall y, In y l -> forall z, P z -> P (f y z)) -> P (fold_right f x l). Proof. induction l as [|a l IHl]; intros ? ? step; auto. simpl. apply step; try apply in_eq. apply IHl; auto. intros y in_y_l. apply (in_cons a) in in_y_l. auto. Qed. Lemma In_firstn : forall {T} n l (x : T), In x (firstn n l) -> In x l. Proof. induction n; destruct l; boring. Qed. Lemma In_skipn : forall {T} n l (x : T), In x (skipn n l) -> In x l. Proof. induction n; destruct l; boring. Qed. Lemma In_firstn_skipn_split {T} n (x : T) : forall l, In x l <-> In x (firstn n l) \/ In x (skipn n l). Proof. intro l; split; revert l; induction n; destruct l; boring. match goal with | [ IH : forall l, In ?x l -> _ \/ _, H' : In ?x ?ls |- _ ] => destruct (IH _ H') end; auto. Qed. Lemma firstn_firstn_min : forall {A} m n (l : list A), firstn n (firstn m l) = firstn (min n m) l. Proof. induction m as [|? IHm]; destruct n; intros l; try omega; auto. destruct l; auto. simpl. f_equal. apply IHm; omega. Qed. Lemma firstn_firstn : forall {A} m n (l : list A), (n <= m)%nat -> firstn n (firstn m l) = firstn n l. Proof. intros A m n l H; rewrite firstn_firstn_min. apply Min.min_case_strong; intro; [ reflexivity | ]. assert (n = m) by omega; subst; reflexivity. Qed. Hint Rewrite @firstn_firstn using omega : push_firstn. Lemma firstn_succ : forall {A} (d : A) n l, (n < length l)%nat -> firstn (S n) l = (firstn n l) ++ nth_default d l n :: nil. Proof. intros A d; induction n as [|? IHn]; destruct l; rewrite ?(@nil_length0 A); intros; try omega. + rewrite nth_default_cons; auto. + simpl. rewrite nth_default_cons_S. rewrite <-IHn by (rewrite cons_length in *; omega). reflexivity. Qed. Lemma firstn_seq k a b : firstn k (seq a b) = seq a (min k b). Proof. revert k a; induction b as [|? IHb], k; simpl; try reflexivity. intros; rewrite IHb; reflexivity. Qed. Hint Rewrite @firstn_seq : push_firstn. Lemma skipn_seq k a b : skipn k (seq a b) = seq (k + a) (b - k). Proof. revert k a; induction b as [|? IHb], k; simpl; try reflexivity. intros; rewrite IHb; simpl; f_equal; omega. Qed. Lemma update_nth_out_of_bounds : forall {A} n f xs, n >= length xs -> @update_nth A n f xs = xs. Proof. induction n as [|n IHn]; destruct xs; simpl; try congruence; try omega; intros. rewrite IHn by omega; reflexivity. Qed. Hint Rewrite @update_nth_out_of_bounds using omega : simpl_update_nth. Lemma update_nth_nth_default_full : forall {A} (d:A) n f l i, nth_default d (update_nth n f l) i = if lt_dec i (length l) then if (eq_nat_dec i n) then f (nth_default d l i) else nth_default d l i else d. Proof. induction n as [|n IHn]; (destruct l; simpl in *; [ intros i **; destruct i; simpl; try reflexivity; omega | ]); intros i **; repeat break_match; subst; try destruct i; repeat first [ progress break_match | progress subst | progress boring | progress autorewrite with simpl_nth_default | omega ]. Qed. Hint Rewrite @update_nth_nth_default_full : push_nth_default. Lemma update_nth_nth_default : forall {A} (d:A) n f l i, (0 <= i < length l)%nat -> nth_default d (update_nth n f l) i = if (eq_nat_dec i n) then f (nth_default d l i) else nth_default d l i. Proof. intros; rewrite update_nth_nth_default_full; repeat break_match; boring. Qed. Hint Rewrite @update_nth_nth_default using (omega || distr_length; omega) : push_nth_default. Lemma set_nth_nth_default_full : forall {A} (d:A) n v l i, nth_default d (set_nth n v l) i = if lt_dec i (length l) then if (eq_nat_dec i n) then v else nth_default d l i else d. Proof. intros; apply update_nth_nth_default_full; assumption. Qed. Hint Rewrite @set_nth_nth_default_full : push_nth_default. Lemma set_nth_nth_default : forall {A} (d:A) n x l i, (0 <= i < length l)%nat -> nth_default d (set_nth n x l) i = if (eq_nat_dec i n) then x else nth_default d l i. Proof. intros; apply update_nth_nth_default; assumption. Qed. Hint Rewrite @set_nth_nth_default using (omega || distr_length; omega) : push_nth_default. Lemma nth_default_preserves_properties : forall {A} (P : A -> Prop) l n d, (forall x, In x l -> P x) -> P d -> P (nth_default d l n). Proof. intros A P l n d H H0; rewrite nth_default_eq. destruct (nth_in_or_default n l d); auto. congruence. Qed. Lemma nth_default_preserves_properties_length_dep : forall {A} (P : A -> Prop) l n d, (forall x, In x l -> n < (length l) -> P x) -> ((~ n < length l) -> P d) -> P (nth_default d l n). Proof. intros A P l n d H H0. destruct (lt_dec n (length l)). + rewrite nth_default_eq; auto using nth_In. + rewrite nth_default_out_of_bounds by omega. auto. Qed. Lemma nth_error_first : forall {T} (a b : T) l, nth_error (a :: l) 0 = Some b -> a = b. Proof. intros; simpl in *. unfold value in *. congruence. Qed. Lemma nth_error_exists_first : forall {T} l (x : T) (H : nth_error l 0 = Some x), exists l', l = x :: l'. Proof. induction l; try discriminate; intros x H; eexists. apply nth_error_first in H. subst; eauto. Qed. Lemma list_elementwise_eq : forall {T} (l1 l2 : list T), (forall i, nth_error l1 i = nth_error l2 i) -> l1 = l2. Proof. induction l1, l2; intros H; try reflexivity; pose proof (H 0%nat) as Hfirst; simpl in Hfirst; inversion Hfirst. f_equal. apply IHl1. intros i; specialize (H (S i)). boring. Qed. Lemma sum_firstn_all_succ : forall n l, (length l <= n)%nat -> sum_firstn l (S n) = sum_firstn l n. Proof. unfold sum_firstn; intros. autorewrite with push_firstn; reflexivity. Qed. Hint Rewrite @sum_firstn_all_succ using omega : simpl_sum_firstn. Lemma sum_firstn_all : forall n l, (length l <= n)%nat -> sum_firstn l n = sum_firstn l (length l). Proof. unfold sum_firstn; intros. autorewrite with push_firstn; reflexivity. Qed. Hint Rewrite @sum_firstn_all using omega : simpl_sum_firstn. Lemma sum_firstn_succ_default : forall l i, sum_firstn l (S i) = (nth_default 0 l i + sum_firstn l i)%Z. Proof. unfold sum_firstn; induction l as [|a l IHl], i; intros; autorewrite with simpl_nth_default simpl_firstn simpl_fold_right in *; try reflexivity. rewrite IHl; omega. Qed. Hint Rewrite @sum_firstn_succ_default : simpl_sum_firstn. Lemma sum_firstn_0 : forall xs, sum_firstn xs 0 = 0%Z. Proof. destruct xs; reflexivity. Qed. Hint Rewrite @sum_firstn_0 : simpl_sum_firstn. Lemma sum_firstn_succ : forall l i x, nth_error l i = Some x -> sum_firstn l (S i) = (x + sum_firstn l i)%Z. Proof. intros; rewrite sum_firstn_succ_default. erewrite nth_error_value_eq_nth_default by eassumption; reflexivity. Qed. Hint Rewrite @sum_firstn_succ using congruence : simpl_sum_firstn. Lemma sum_firstn_succ_cons : forall x xs i, sum_firstn (x :: xs) (S i) = (x + sum_firstn xs i)%Z. Proof. unfold sum_firstn; simpl; reflexivity. Qed. Hint Rewrite @sum_firstn_succ_cons : simpl_sum_firstn. Lemma sum_firstn_nil : forall i, sum_firstn nil i = 0%Z. Proof. destruct i; reflexivity. Qed. Hint Rewrite @sum_firstn_nil : simpl_sum_firstn. Lemma sum_firstn_succ_default_rev : forall l i, sum_firstn l i = (sum_firstn l (S i) - nth_default 0 l i)%Z. Proof. intros; rewrite sum_firstn_succ_default; omega. Qed. Lemma sum_firstn_succ_rev : forall l i x, nth_error l i = Some x -> sum_firstn l i = (sum_firstn l (S i) - x)%Z. Proof. intros; erewrite sum_firstn_succ by eassumption; omega. Qed. Lemma sum_firstn_nonnegative : forall n l, (forall x, In x l -> 0 <= x)%Z -> (0 <= sum_firstn l n)%Z. Proof. induction n as [|n IHn]; destruct l as [|? l]; autorewrite with simpl_sum_firstn; simpl; try omega. { specialize (IHn l). destruct n; simpl; autorewrite with simpl_sum_firstn simpl_nth_default in *; intuition auto with zarith. } Qed. Hint Resolve sum_firstn_nonnegative : znonzero. Lemma sum_firstn_app : forall xs ys n, sum_firstn (xs ++ ys) n = (sum_firstn xs n + sum_firstn ys (n - length xs))%Z. Proof. induction xs as [|a xs IHxs]; simpl. { intros ys n; autorewrite with simpl_sum_firstn; simpl. f_equal; omega. } { intros ys [|n]; autorewrite with simpl_sum_firstn; simpl; [ reflexivity | ]. rewrite IHxs; omega. } Qed. Lemma sum_firstn_app_sum : forall xs ys n, sum_firstn (xs ++ ys) (length xs + n) = (sum_firstn xs (length xs) + sum_firstn ys n)%Z. Proof. intros; rewrite sum_firstn_app; autorewrite with simpl_sum_firstn. do 2 f_equal; omega. Qed. Hint Rewrite @sum_firstn_app_sum : simpl_sum_firstn. Lemma sum_cons xs x : sum (x :: xs) = (x + sum xs)%Z. Proof. reflexivity. Qed. Hint Rewrite sum_cons : push_sum. Lemma sum_nil : sum nil = 0%Z. Proof. reflexivity. Qed. Hint Rewrite sum_nil : push_sum. Lemma sum_app x y : sum (x ++ y) = (sum x + sum y)%Z. Proof. induction x; rewrite ?app_nil_l, <-?app_comm_cons; autorewrite with push_sum; omega. Qed. Hint Rewrite sum_app : push_sum. Lemma nth_error_skipn : forall {A} n (l : list A) m, nth_error (skipn n l) m = nth_error l (n + m). Proof. induction n as [|n IHn]; destruct l; boring. apply nth_error_nil_error. Qed. Hint Rewrite @nth_error_skipn : push_nth_error. Lemma nth_default_skipn : forall {A} (l : list A) d n m, nth_default d (skipn n l) m = nth_default d l (n + m). Proof. cbv [nth_default]; intros. rewrite nth_error_skipn. reflexivity. Qed. Hint Rewrite @nth_default_skipn : push_nth_default. Lemma sum_firstn_skipn : forall l n m, sum_firstn l (n + m) = (sum_firstn l n + sum_firstn (skipn n l) m)%Z. Proof. induction m; intros. + rewrite sum_firstn_0. autorewrite with natsimplify. omega. + rewrite <-plus_n_Sm, !sum_firstn_succ_default. rewrite nth_default_skipn. omega. Qed. Lemma nth_default_seq_inbounds d s n i (H:(i < n)%nat) : List.nth_default d (List.seq s n) i = (s+i)%nat. Proof. progress cbv [List.nth_default]. rewrite nth_error_seq. break_innermost_match; solve [ trivial | omega ]. Qed. Hint Rewrite @nth_default_seq_inbounds using lia : push_nth_default. Lemma sum_firstn_prefix_le' : forall l n m, (forall x, In x l -> (0 <= x)%Z) -> (sum_firstn l n <= sum_firstn l (n + m))%Z. Proof. intros l n m H. rewrite sum_firstn_skipn. pose proof (sum_firstn_nonnegative m (skipn n l)) as Hskipn_nonneg. match type of Hskipn_nonneg with ?P -> _ => assert P as Q; [ | specialize (Hskipn_nonneg Q); omega ] end. intros x HIn_skipn. apply In_skipn in HIn_skipn. auto. Qed. Lemma sum_firstn_prefix_le : forall l n m, (forall x, In x l -> (0 <= x)%Z) -> (n <= m)%nat -> (sum_firstn l n <= sum_firstn l m)%Z. Proof. intros l n m H H0. replace m with (n + (m - n))%nat by omega. auto using sum_firstn_prefix_le'. Qed. Lemma sum_firstn_pos_lt_succ : forall l n m, (forall x, In x l -> (0 <= x)%Z) -> (n < length l)%nat -> (sum_firstn l n < sum_firstn l (S m))%Z -> (n <= m)%nat. Proof. intros l n m H H0 H1. destruct (le_dec n m); auto. replace n with (m + (n - m))%nat in H1 by omega. rewrite sum_firstn_skipn in H1. rewrite sum_firstn_succ_default in *. match goal with H : (?a + ?b < ?c + ?a)%Z |- _ => assert (H2 : (b < c)%Z) by omega end. destruct (lt_dec m (length l)). { rewrite skipn_nth_default with (d := 0%Z) in H2 by assumption. replace (n - m)%nat with (S (n - S m))%nat in H2 by omega. rewrite sum_firstn_succ_cons in H2. pose proof (sum_firstn_nonnegative (n - S m) (skipn (S m) l)) as H3. match type of H3 with ?P -> _ => assert P as Q; [ | specialize (H3 Q); omega ] end. intros ? A. apply In_skipn in A. apply H in A. omega. } { rewrite skipn_all, nth_default_out_of_bounds in H2 by omega. rewrite sum_firstn_nil in H2; omega. } Qed. Definition NotSum {T} (xs : list T) (v : nat) := True. Ltac NotSum := lazymatch goal with | [ |- NotSum ?xs (length ?xs + _)%nat ] => fail | [ |- NotSum _ _ ] => exact I end. Lemma sum_firstn_app_hint : forall xs ys n, NotSum xs n -> sum_firstn (xs ++ ys) n = (sum_firstn xs n + sum_firstn ys (n - length xs))%Z. Proof. auto using sum_firstn_app. Qed. Hint Rewrite sum_firstn_app_hint using solve [ NotSum ] : simpl_sum_firstn. Lemma nth_default_map2 : forall {A B C} (f : A -> B -> C) ls1 ls2 i d d1 d2, nth_default d (map2 f ls1 ls2) i = if lt_dec i (min (length ls1) (length ls2)) then f (nth_default d1 ls1 i) (nth_default d2 ls2 i) else d. Proof. induction ls1 as [|a ls1 IHls1], ls2. + cbv [map2 length min]. intros. break_match; try omega. apply nth_default_nil. + cbv [map2 length min]. intros. break_match; try omega. apply nth_default_nil. + cbv [map2 length min]. intros. break_match; try omega. apply nth_default_nil. + simpl. destruct i. - intros. rewrite !nth_default_cons. break_match; auto; omega. - intros d d1 d2. rewrite !nth_default_cons_S. rewrite IHls1 with (d1 := d1) (d2 := d2). repeat break_match; auto; omega. Qed. Lemma map2_cons : forall A B C (f : A -> B -> C) ls1 ls2 a b, map2 f (a :: ls1) (b :: ls2) = f a b :: map2 f ls1 ls2. Proof. reflexivity. Qed. Lemma map2_nil_l : forall A B C (f : A -> B -> C) ls2, map2 f nil ls2 = nil. Proof. reflexivity. Qed. Lemma map2_nil_r : forall A B C (f : A -> B -> C) ls1, map2 f ls1 nil = nil. Proof. destruct ls1; reflexivity. Qed. Local Hint Resolve map2_nil_r map2_nil_l. Ltac simpl_list_lengths := repeat match goal with | H : context[length (@nil ?A)] |- _ => rewrite (@nil_length0 A) in H | H : context[length (_ :: _)] |- _ => rewrite length_cons in H | |- context[length (@nil ?A)] => rewrite (@nil_length0 A) | |- context[length (_ :: _)] => rewrite length_cons end. Section OpaqueMap2. Local Opaque map2. Lemma map2_length : forall A B C (f : A -> B -> C) ls1 ls2, length (map2 f ls1 ls2) = min (length ls1) (length ls2). Proof. induction ls1 as [|a ls1 IHls1], ls2; intros; try solve [cbv; auto]. rewrite map2_cons, !length_cons, IHls1. auto. Qed. Hint Rewrite @map2_length : distr_length. Lemma map2_app : forall A B C (f : A -> B -> C) ls1 ls2 ls1' ls2', (length ls1 = length ls2) -> map2 f (ls1 ++ ls1') (ls2 ++ ls2') = map2 f ls1 ls2 ++ map2 f ls1' ls2'. Proof. induction ls1 as [|a ls1 IHls1], ls2; intros; rewrite ?map2_nil_r, ?app_nil_l; try congruence; simpl_list_lengths; try omega. rewrite <-!app_comm_cons, !map2_cons. rewrite IHls1; auto. Qed. End OpaqueMap2. Lemma firstn_update_nth {A} : forall f m n (xs : list A), firstn m (update_nth n f xs) = update_nth n f (firstn m xs). Proof. induction m; destruct n, xs; autorewrite with simpl_firstn simpl_update_nth; congruence. Qed. Hint Rewrite @firstn_update_nth : push_firstn. Hint Rewrite @firstn_update_nth : pull_update_nth. Hint Rewrite <- @firstn_update_nth : pull_firstn. Hint Rewrite <- @firstn_update_nth : push_update_nth. Require Import Coq.Lists.SetoidList. Global Instance Proper_nth_default : forall A eq, Proper (eq==>eqlistA eq==>Logic.eq==>eq) (nth_default (A:=A)). Proof. intros A ee x y H; subst; induction 1. + repeat intro; rewrite !nth_default_nil; assumption. + intros x1 y0 H2; subst; destruct y0; rewrite ?nth_default_cons, ?nth_default_cons_S; auto. Qed. Lemma fold_right_andb_true_map_iff A (ls : list A) f : List.fold_right andb true (List.map f ls) = true <-> forall i, List.In i ls -> f i = true. Proof. induction ls as [|a ls IHls]; simpl; [ | rewrite Bool.andb_true_iff, IHls ]; try tauto. intuition (congruence || eauto). Qed. Lemma fold_right_andb_true_iff_fold_right_and_True (ls : list bool) : List.fold_right andb true ls = true <-> List.fold_right and True (List.map (fun b => b = true) ls). Proof. rewrite <- (map_id ls) at 1. rewrite fold_right_andb_true_map_iff, fold_right_and_True_forall_In_iff; reflexivity. Qed. Lemma Forall2_forall_iff : forall {A B} (R : A -> B -> Prop) (xs : list A) (ys : list B) d1 d2, length xs = length ys -> (Forall2 R xs ys <-> (forall i, (i < length xs)%nat -> R (nth_default d1 xs i) (nth_default d2 ys i))). Proof. intros A B R xs ys d1 d2 H; split; [ intros H0 i H1 | intros H0 ]. + revert xs ys H H0 H1. induction i as [|i IHi]; intros xs ys H H0 H1; destruct H0; distr_length; autorewrite with push_nth_default; auto. eapply IHi; auto. omega. + revert xs ys H H0; induction xs as [|a xs IHxs]; intros ys H H0; destruct ys; distr_length; econstructor. - specialize (H0 0%nat). autorewrite with push_nth_default in *; auto. apply H0; omega. - apply IHxs; try omega. intros i H1. specialize (H0 (S i)). autorewrite with push_nth_default in *; auto. apply H0; omega. Qed. Lemma Forall2_forall_iff' : forall {A} R (xs ys : list A) d, length xs = length ys -> (Forall2 R xs ys <-> (forall i, (i < length xs)%nat -> R (nth_default d xs i) (nth_default d ys i))). Proof. intros; apply Forall2_forall_iff; assumption. Qed. Lemma nth_default_firstn : forall {A} (d : A) l i n, nth_default d (firstn n l) i = if le_dec n (length l) then if lt_dec i n then nth_default d l i else d else nth_default d l i. Proof. intros A d l i; induction n as [|n IHn]; break_match; autorewrite with push_nth_default; auto; try omega. + rewrite (firstn_succ d) by omega. autorewrite with push_nth_default; repeat (break_match_hyps; break_match; distr_length); rewrite Min.min_l in * by omega; try omega. - apply IHn; omega. - replace i with n in * by omega. rewrite Nat.sub_diag. autorewrite with push_nth_default; auto. + rewrite nth_default_out_of_bounds; break_match_hyps; distr_length; auto; lia. + rewrite firstn_all2 by omega. auto. Qed. Hint Rewrite @nth_default_firstn : push_nth_default. Lemma nth_error_repeat {T} x n i v : nth_error (@repeat T x n) i = Some v -> v = x. Proof. revert n x v; induction i as [|i IHi]; destruct n; simpl in *; eauto; congruence. Qed. Hint Rewrite repeat_length : distr_length. Lemma repeat_spec_iff : forall {A} (ls : list A) x n, (length ls = n /\ forall y, In y ls -> y = x) <-> ls = repeat x n. Proof. intros A ls x n; split; [ revert A ls x n | intro; subst; eauto using repeat_length, repeat_spec ]. induction ls as [|a ls IHls], n; simpl; intros; intuition try congruence. f_equal; auto. Qed. Lemma repeat_spec_eq : forall {A} (ls : list A) x n, length ls = n -> (forall y, In y ls -> y = x) -> ls = repeat x n. Proof. intros; apply repeat_spec_iff; auto. Qed. Lemma tl_repeat {A} x n : tl (@repeat A x n) = repeat x (pred n). Proof. destruct n; reflexivity. Qed. Lemma firstn_repeat : forall {A} x n k, firstn k (@repeat A x n) = repeat x (min k n). Proof. induction n, k; boring. Qed. Hint Rewrite @firstn_repeat : push_firstn. Lemma skipn_repeat : forall {A} x n k, skipn k (@repeat A x n) = repeat x (n - k). Proof. induction n, k; boring. Qed. Hint Rewrite @skipn_repeat : push_skipn. Global Instance Proper_map {A B} {RA RB} {Equivalence_RB:Equivalence RB} : Proper ((RA==>RB) ==> eqlistA RA ==> eqlistA RB) (@List.map A B). Proof. repeat intro. match goal with [H:eqlistA _ _ _ |- _ ] => induction H end; [reflexivity|]. cbv [respectful] in *; econstructor; eauto. Qed. Lemma pointwise_map {A B} : Proper ((pointwise_relation _ eq) ==> eq ==> eq) (@List.map A B). Proof. repeat intro; cbv [pointwise_relation] in *; subst. match goal with [H:list _ |- _ ] => induction H as [|? IH IHIH] end; [reflexivity|]. simpl. rewrite IHIH. congruence. Qed. Lemma map_map2 {A B C D} (f:A -> B -> C) (g:C -> D) (xs:list A) (ys:list B) : List.map g (map2 f xs ys) = map2 (fun (a : A) (b : B) => g (f a b)) xs ys. Proof. revert ys; induction xs as [|a xs IHxs]; intros ys; [reflexivity|]. destruct ys; [reflexivity|]. simpl. rewrite IHxs. reflexivity. Qed. Lemma map2_fst {A B C} (f:A -> C) (xs:list A) : forall (ys:list B), length xs = length ys -> map2 (fun (a : A) (_ : B) => f a) xs ys = List.map f xs. Proof. induction xs as [|a xs IHxs]; intros ys **; [reflexivity|]. destruct ys; [simpl in *; discriminate|]. simpl. rewrite IHxs by eauto. reflexivity. Qed. Lemma map2_flip {A B C} (f:A -> B -> C) (xs:list A) : forall (ys: list B), map2 (fun b a => f a b) ys xs = map2 f xs ys. Proof. induction xs as [|a xs IHxs]; destruct ys; try reflexivity; []. simpl. rewrite IHxs. reflexivity. Qed. Lemma map2_snd {A B C} (f:B -> C) (xs:list A) : forall (ys:list B), length xs = length ys -> map2 (fun (_ : A) (b : B) => f b) xs ys = List.map f ys. Proof. intros. rewrite map2_flip. eauto using map2_fst. Qed. Lemma map2_map {A B C A' B'} (f:A -> B -> C) (g:A' -> A) (h:B' -> B) (xs:list A') (ys:list B') : map2 f (List.map g xs) (List.map h ys) = map2 (fun a b => f (g a) (h b)) xs ys. Proof. revert ys; induction xs as [|a xs IHxs]; destruct ys; intros; try reflexivity; []. simpl. rewrite IHxs. reflexivity. Qed. Definition expand_list_helper {A} (default : A) (ls : list A) (n : nat) (idx : nat) : list A := nat_rect (fun _ => nat -> list A) (fun _ => nil) (fun n' rec_call idx => cons (List.nth_default default ls idx) (rec_call (S idx))) n idx. Definition expand_list {A} (default : A) (ls : list A) (n : nat) : list A := expand_list_helper default ls n 0. Lemma expand_list_helper_correct {A} (default : A) (ls : list A) (n idx : nat) (H : (idx + n <= length ls)%nat) : expand_list_helper default ls n idx = List.firstn n (List.skipn idx ls). Proof. cbv [expand_list_helper]; revert idx H. induction n as [|n IHn]; cbn; intros. { reflexivity. } { rewrite IHn by omega. erewrite (@skipn_nth_default _ idx ls) by omega. reflexivity. } Qed. Lemma expand_list_correct (n : nat) {A} (default : A) (ls : list A) (H : List.length ls = n) : expand_list default ls n = ls. Proof. subst; cbv [expand_list]; rewrite expand_list_helper_correct by reflexivity. rewrite skipn_0, firstn_all; reflexivity. Qed. Ltac expand_lists _ := let default_for A := match goal with | _ => (eval lazy in (_ : pointed A)) | _ => constr_fail_with ltac:(fun _ => idtac "Warning: could not infer a default value for list type" A) end in let T := lazymatch goal with |- _ = _ :> ?T => T end in let v := fresh in evar (v : T); transitivity v; [ subst v | repeat match goal with | [ H : @List.length ?A ?f = ?n |- context[?f] ] => let v := default_for A in rewrite <- (@expand_list_correct n A v f H); clear H end; lazymatch goal with | [ H : List.length ?f = _ |- context[?f] ] => fail 0 "Could not expand list" f | _ => idtac end; subst v; reflexivity ]. Lemma single_list_rect_to_match A (P:list A -> Type) (Pnil: P nil) (PS: forall a tl, P (a :: tl)) ls : @list_rect A P Pnil (fun a tl _ => PS a tl) ls = match ls with | cons a tl => PS a tl | nil => Pnil end. Proof. destruct ls; reflexivity. Qed. Lemma partition_app A (f : A -> bool) (a b : list A) : partition f (a ++ b) = (fst (partition f a) ++ fst (partition f b), snd (partition f a) ++ snd (partition f b)). Proof. revert b; induction a, b; cbn; rewrite ?app_nil_r; eta_expand; try reflexivity. rewrite !IHa; cbn; break_match; reflexivity. Qed. Lemma flat_map_map A B C (f : A -> B) (g : B -> list C) (xs : list A) : flat_map g (map f xs) = flat_map (fun x => g (f x)) xs. Proof. induction xs; cbn; congruence. Qed. Lemma flat_map_singleton A B (f : A -> B) (xs : list A) : flat_map (fun x => cons (f x) nil) xs = map f xs. Proof. induction xs; cbn; congruence. Qed. Lemma flat_map_ext A B (f g : A -> list B) xs (H : forall x, In x xs -> f x = g x) : flat_map f xs = flat_map g xs. Proof. induction xs; cbn in *; [ reflexivity | rewrite IHxs; f_equal ]; intros; intuition auto. Qed. Global Instance flat_map_Proper A B : Proper (pointwise_relation _ eq ==> eq ==> eq) (@flat_map A B). Proof. repeat intro; subst; apply flat_map_ext; auto. Qed. Global Instance map_Proper_eq {A B} : Proper ((eq ==> eq) ==> eq ==> eq) (@List.map A B) | 1. Proof. repeat intro; subst; apply pointwise_map; repeat intro; eauto. Qed. Global Instance flat_map_Proper_eq {A B} : Proper ((eq ==> eq) ==> eq ==> eq) (@List.flat_map A B) | 1. Proof. repeat intro; subst; apply flat_map_Proper; repeat intro; eauto. Qed. Global Instance partition_Proper {A} : Proper (pointwise_relation _ eq ==> eq ==> eq) (@List.partition A). Proof. cbv [pointwise_relation]; intros f g Hfg ls ls' ?; subst ls'. induction ls as [|l ls IHls]; cbn [partition]; rewrite ?IHls, ?Hfg; reflexivity. Qed. Global Instance partition_Proper_eq {A} : Proper ((eq ==> eq) ==> eq ==> eq) (@List.partition A) | 1. Proof. repeat intro; subst; apply partition_Proper; repeat intro; eauto. Qed. Global Instance fold_right_Proper {A B} : Proper (pointwise_relation _ (pointwise_relation _ eq) ==> eq ==> eq ==> eq) (@fold_right A B) | 1. Proof. cbv [pointwise_relation]; intros f g Hfg x y ? ls ls' ?; subst y ls'; revert x. induction ls as [|l ls IHls]; cbn [fold_right]; intro; rewrite ?IHls, ?Hfg; reflexivity. Qed. Global Instance fold_right_Proper_eq {A B} : Proper ((eq ==> eq ==> eq) ==> eq ==> eq ==> eq) (@fold_right A B) | 1. Proof. cbv [respectful]; repeat intro; subst; apply fold_right_Proper; repeat intro; eauto. Qed. Lemma partition_map A B (f : B -> bool) (g : A -> B) xs : partition f (map g xs) = (map g (fst (partition (fun x => f (g x)) xs)), map g (snd (partition (fun x => f (g x)) xs))). Proof. induction xs; cbn; [ | rewrite !IHxs ]; break_match; reflexivity. Qed. Lemma map_fst_partition A B (f : B -> bool) (g : A -> B) xs : map g (fst (partition (fun x => f (g x)) xs)) = fst (partition f (map g xs)). Proof. rewrite partition_map; reflexivity. Qed. Lemma map_snd_partition A B (f : B -> bool) (g : A -> B) xs : map g (snd (partition (fun x => f (g x)) xs)) = snd (partition f (map g xs)). Proof. rewrite partition_map; reflexivity. Qed. Lemma partition_In A (f:A -> bool) xs : forall x, @In A x xs <-> @In A x (if f x then fst (partition f xs) else snd (partition f xs)). Proof. intro x; destruct (f x) eqn:?; split; intros; repeat apply conj; revert dependent x; (induction xs as [|x' xs IHxs]; cbn; [ | destruct (f x') eqn:?, (partition f xs) ]; cbn in *; subst; intuition (subst; auto)); congruence. Qed. Lemma fst_partition_In A f xs : forall x, @In A x (fst (partition f xs)) <-> f x = true /\ @In A x xs. Proof. intro x; split; intros; repeat apply conj; revert dependent x; (induction xs as [|x' xs IHxs]; cbn; [ | destruct (f x') eqn:?, (partition f xs) ]; cbn in *; subst; intuition (subst; auto)); congruence. Qed. Lemma snd_partition_In A f xs : forall x, @In A x (snd (partition f xs)) <-> f x = false /\ @In A x xs. Proof. intro x; split; intros; repeat apply conj; revert dependent x; (induction xs as [|x' xs IHxs]; cbn; [ | destruct (f x') eqn:?, (partition f xs) ]; cbn in *; subst; intuition (subst; auto)); congruence. Qed. Lemma list_rect_map A B P (f : A -> B) N C ls : @list_rect B P N C (map f ls) = @list_rect A (fun ls => P (map f ls)) N (fun x xs rest => C (f x) (map f xs) rest) ls. Proof. induction ls as [|x xs IHxs]; cbn; [ | rewrite IHxs ]; reflexivity. Qed. Lemma flat_map_app A B (f : A -> list B) xs ys : flat_map f (xs ++ ys) = flat_map f xs ++ flat_map f ys. Proof. induction xs as [|x xs IHxs]; cbn; rewrite ?IHxs, <- ?app_assoc; reflexivity. Qed. Hint Rewrite flat_map_app : push_flat_map. Lemma map_flat_map A B C (f : A -> list B) (g : B -> C) xs : map g (flat_map f xs) = flat_map (fun x => map g (f x)) xs. Proof. induction xs as [|x xs IHxs]; cbn; rewrite ?map_app; congruence. Qed. Lemma combine_map_map A B C D (f : A -> B) (g : C -> D) xs ys : combine (map f xs) (map g ys) = map (fun ab => (f (fst ab), g (snd ab))) (combine xs ys). Proof. revert ys; induction xs, ys; cbn; congruence. Qed. Lemma combine_map_l A B C (f : A -> B) xs ys : @combine B C (map f xs) ys = map (fun ab => (f (fst ab), snd ab)) (combine xs ys). Proof. rewrite <- combine_map_map with (f:=f) (g:=fun x => x), map_id; reflexivity. Qed. Lemma combine_map_r A B C (f : B -> C) xs ys : @combine A C xs (map f ys) = map (fun ab => (fst ab, f (snd ab))) (combine xs ys). Proof. rewrite <- combine_map_map with (g:=f) (f:=fun x => x), map_id; reflexivity. Qed. Lemma combine_same A xs : @combine A A xs xs = map (fun x => (x, x)) xs. Proof. induction xs; cbn; congruence. Qed. Lemma if_singleton A (b:bool) (x y : A) : (if b then x::nil else y::nil) = (if b then x else y)::nil. Proof. now case b. Qed. Lemma flat_map_if_In A B (b : A -> bool) (f g : A -> list B) xs (b' : bool) : (forall v, In v xs -> b v = b') -> flat_map (fun x => if b x then f x else g x) xs = if b' then flat_map f xs else flat_map g xs. Proof. induction xs as [|x xs IHxs]; cbn; [ | intro H; rewrite IHxs, H by eauto ]; case b'; reflexivity. Qed. Lemma flat_map_if_In_sumbool A B X Y (b : forall a : A, sumbool (X a) (Y a)) (f g : A -> list B) xs (b' : bool) : (forall v, In v xs -> (if b v then true else false) = b') -> flat_map (fun x => if b x then f x else g x) xs = if b' then flat_map f xs else flat_map g xs. Proof. intro H; erewrite <- flat_map_if_In by refine H. apply flat_map_Proper; [ intro | reflexivity ]; break_innermost_match; reflexivity. Qed. Lemma map_if_In A B (b : A -> bool) (f g : A -> B) xs (b' : bool) : (forall v, In v xs -> b v = b') -> map (fun x => if b x then f x else g x) xs = if b' then map f xs else map g xs. Proof. induction xs as [|x xs IHxs]; cbn; [ | intro H; rewrite IHxs, H by eauto ]; case b'; reflexivity. Qed. Lemma map_if_In_sumbool A B X Y (b : forall a : A, sumbool (X a) (Y a)) (f g : A -> B) xs (b' : bool) : (forall v, In v xs -> (if b v then true else false) = b') -> map (fun x => if b x then f x else g x) xs = if b' then map f xs else map g xs. Proof. intro H; erewrite <- map_if_In by refine H. apply map_ext_in; intro; break_innermost_match; reflexivity. Qed. Lemma fold_right_map A B C (f : A -> B) xs (F : _ -> _ -> C) v : fold_right F v (map f xs) = fold_right (fun x y => F (f x) y) v xs. Proof. revert v; induction xs; cbn; intros; congruence. Qed. Lemma fold_right_flat_map A B C (f : A -> list B) xs (F : _ -> _ -> C) v : fold_right F v (flat_map f xs) = fold_right (fun x y => fold_right F y (f x)) v xs. Proof. revert v; induction xs; cbn; intros; rewrite ?fold_right_app; congruence. Qed. Lemma fold_right_id_ext A B f v xs : (forall x y, f x y = y) -> @fold_right A B f v xs = v. Proof. induction xs; cbn; intro H; rewrite ?H; auto. Qed. Lemma nth_default_repeat A (v:A) n (d:A) i : nth_default d (repeat v n) i = if dec (i < n)%nat then v else d. Proof. revert i; induction n as [|n IHn], i; cbn; try reflexivity. rewrite nth_default_cons_S, IHn; do 2 edestruct dec; try reflexivity; omega. Qed. Lemma fold_right_if_dec_eq_seq A start len i f (x v : A) : ((start <= i < start + len)%nat -> f i v = x) -> (forall j v, (i <> j)%nat -> f j v = v) -> fold_right f v (seq start len) = if dec (start <= i < start + len)%nat then x else v. Proof. revert start v; induction len as [|len IHlen]; intros start v H H'; [ | rewrite seq_snoc, fold_right_app; cbn [fold_right] ]. { edestruct dec; try reflexivity; omega. } { destruct (dec (i = (start + len)%nat)); subst; [ | rewrite H' by omega ]; rewrite IHlen; eauto; intros; clear IHlen; repeat match goal with | _ => reflexivity | _ => omega | _ => progress subst | _ => progress specialize_by omega | [ H : context[dec ?P] |- _ ] => destruct (dec P) | [ |- context[dec ?P] ] => destruct (dec P) | [ H : f _ _ = _ |- _ ] => rewrite H | [ H : forall j, f j ?v = _ |- context[f _ ?v] ] => rewrite H end. } Qed. Lemma fold_left_push A (x y : A) (f : A -> A -> A) (f_assoc : forall x y z, f (f x y) z = f x (f y z)) ls : f x (fold_left f ls y) = fold_left f ls (f x y). Proof. revert x y; induction ls as [|l ls IHls]; cbn; [ reflexivity | ]. intros; rewrite IHls; f_equal; auto. Qed. Lemma fold_right_push A (x y : A) (f : A -> A -> A) (f_assoc : forall x y z, f (f x y) z = f x (f y z)) ls : f (fold_right f x ls) y = fold_right f (f x y) ls. Proof. rewrite <- (rev_involutive ls), !fold_left_rev_right, fold_left_push with (f:=fun x y => f y x); auto. Qed. Lemma nth_error_combine {A B} n (ls1 : list A) (ls2 : list B) : nth_error (combine ls1 ls2) n = match nth_error ls1 n, nth_error ls2 n with | Some v1, Some v2 => Some (v1, v2) | _, _ => None end. Proof. revert ls2 n; induction ls1 as [|l1 ls1 IHls1], ls2, n; cbn [combine nth_error]; try reflexivity; auto. edestruct nth_error; reflexivity. Qed. Lemma combine_repeat {A B} (a : A) (b : B) n : combine (repeat a n) (repeat b n) = repeat (a, b) n. Proof. induction n; cbn; congruence. Qed. Lemma combine_rev_rev_samelength {A B} ls1 ls2 : length ls1 = length ls2 -> @combine A B (rev ls1) (rev ls2) = rev (combine ls1 ls2). Proof. revert ls2; induction ls1 as [|? ? IHls1], ls2; cbn in *; try congruence; intros. rewrite combine_app_samelength, IHls1 by (rewrite ?rev_length; congruence); cbn [combine]. reflexivity. Qed. Lemma map_nth_default_seq {A} (d:A) n ls : length ls = n -> List.map (List.nth_default d ls) (List.seq 0 n) = ls. Proof. intro; subst. rewrite <- (List.rev_involutive ls); generalize (List.rev ls); clear ls; intro ls. rewrite List.rev_length. induction ls; cbn [length List.rev]; [ reflexivity | ]. rewrite seq_snoc, List.map_app. apply f_equal2; [ | cbn; rewrite nth_default_app, List.rev_length, Nat.sub_diag ]; [ etransitivity; [ | eassumption ]; apply List.map_ext_in; intro; rewrite Lists.List.in_seq; rewrite nth_default_app, List.rev_length; intros | ]. all: edestruct lt_dec; try (exfalso; lia). all: reflexivity. Qed. Lemma nth_error_firstn A ls n i : List.nth_error (@List.firstn A n ls) i = if lt_dec i n then List.nth_error ls i else None. Proof. revert ls i; induction n, ls, i; cbn; try reflexivity; destruct lt_dec; try reflexivity; rewrite IHn. all: destruct lt_dec; try reflexivity; omega. Qed. Lemma nth_error_rev A n ls : List.nth_error (@List.rev A ls) n = if lt_dec n (length ls) then List.nth_error ls (length ls - S n) else None. Proof. destruct lt_dec; [ | rewrite nth_error_length_error; rewrite ?List.rev_length; try reflexivity; omega ]. revert dependent n; induction ls as [|x xs IHxs]; cbn [length List.rev]; try omega; try reflexivity; intros. { destruct n; reflexivity. } { rewrite nth_error_app, List.rev_length, Nat.sub_succ. destruct lt_dec. { rewrite IHxs by omega. rewrite <- (Nat.succ_pred_pos (length xs - n)) by omega. cbn [List.nth_error]. f_equal; omega. } { assert (n = length xs) by omega; subst. rewrite Nat.sub_diag. reflexivity. } } Qed. Lemma concat_fold_right_app A ls : @List.concat A ls = List.fold_right (@List.app A) nil ls. Proof. induction ls; cbn; eauto. Qed. Lemma map_update_nth_ext {A B n} f1 f2 f3 ls1 ls2 : map f3 ls1 = ls2 -> (forall x, List.In x ls1 -> f3 (f2 x) = f1 (f3 x)) -> map f3 (@update_nth A n f2 ls1) = @update_nth B n f1 ls2. Proof. revert ls1 ls2; induction n as [|n IHn], ls1 as [|x1 xs1], ls2 as [|x2 xs2]; cbn; intros H0 H1; try discriminate; try reflexivity. all: inversion H0; clear H0; subst. all: f_equal; eauto using or_introl. Qed. Lemma push_f_list_rect {P P'} (f : P -> P') {A} Pnil Pcons Pcons' ls (Hcons : forall x xs rec, f (Pcons x xs rec) = Pcons' x xs (f rec)) : f (list_rect (fun _ : list A => P) Pnil Pcons ls) = list_rect (fun _ => _) (f Pnil) Pcons' ls. Proof. induction ls as [|x xs IHxs]; cbn [list_rect]; [ reflexivity | ]. rewrite Hcons, IHxs; reflexivity. Qed. Lemma eq_app_list_rect {A} (ls1 ls2 : list A) : List.app ls1 ls2 = list_rect _ ls2 (fun x _ rec => x :: rec) ls1. Proof. revert ls2; induction ls1, ls2; cbn; f_equal; eauto. Qed. Lemma eq_flat_map_list_rect {A B} f (ls : list A) : @flat_map A B f ls = list_rect _ nil (fun x _ rec => f x ++ rec) ls. Proof. induction ls; cbn; eauto. Qed. Lemma eq_partition_list_rect {A} f (ls : list A) : @partition A f ls = list_rect _ (nil, nil) (fun x _ '(a, b) => bool_rect (fun _ => _) (x :: a, b) (a, x :: b) (f x)) ls. Proof. induction ls; cbn; eauto. Qed. Lemma eq_fold_right_list_rect {A B} f v (ls : list _) : @fold_right A B f v ls = list_rect _ v (fun x _ rec => f x rec) ls. Proof. induction ls; cbn; eauto. Qed. Lemma eq_map_list_rect {A B} f (ls : list _) : @List.map A B f ls = list_rect _ nil (fun x _ rec => f x :: rec) ls. Proof. induction ls; cbn; eauto. Qed. Lemma map_repeat {A B} (f : A -> B) v k : List.map f (List.repeat v k) = List.repeat (f v) k. Proof. induction k; cbn; f_equal; assumption. Qed. Lemma map_const {A B} (v : B) (ls : list A) : List.map (fun _ => v) ls = List.repeat v (List.length ls). Proof. induction ls; cbn; f_equal; assumption. Qed. Lemma Forall2_update_nth {A B f g n R ls1 ls2} : @List.Forall2 A B R ls1 ls2 -> (forall v1, nth_error ls1 n = Some v1 -> forall v2, nth_error ls2 n = Some v2 -> R v1 v2 -> R (f v1) (g v2)) -> @List.Forall2 A B R (update_nth n f ls1) (update_nth n g ls2). Proof using Type. intro H; revert n; induction H, n; cbn [nth_error update_nth]. all: repeat first [ progress intros | progress specialize_by_assumption | assumption | match goal with | [ |- List.Forall2 _ _ _ ] => constructor | [ H : forall x, Some _ = Some x -> _ |- _ ] => specialize (H _ eq_refl) | [ IH : forall n : nat, _, H : forall v1, nth_error ?l ?n = Some v1 -> _ |- _ ] => specialize (IH n H) end ]. Qed. Fixpoint remove_duplicates' {A} (beq : A -> A -> bool) (ls : list A) : list A := match ls with | nil => nil | cons x xs => if existsb (beq x) xs then @remove_duplicates' A beq xs else x :: @remove_duplicates' A beq xs end. Definition remove_duplicates {A} (beq : A -> A -> bool) (ls : list A) : list A := List.rev (remove_duplicates' beq (List.rev ls)). Lemma InA_remove_duplicates' {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) {R_Transitive : Transitive R} (A_bl : forall x y, A_beq x y = true -> R x y) (ls : list A) : forall x, InA R x (remove_duplicates' A_beq ls) <-> InA R x ls. Proof using Type. induction ls as [|x xs IHxs]; intro y; [ reflexivity | ]. cbn [remove_duplicates']; break_innermost_match; rewrite ?InA_cons, IHxs; [ | reflexivity ]. split; [ now auto | ]. intros [?|?]; subst; auto; []. rewrite existsb_exists in *. destruct_head'_ex; destruct_head'_and. match goal with H : _ |- _ => apply A_bl in H end. rewrite InA_alt. eexists; split; [ | eassumption ]. etransitivity; eassumption. Qed. Lemma InA_remove_duplicates {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) {R_Transitive : Transitive R} (A_bl : forall x y, A_beq x y = true -> R x y) (ls : list A) : forall x, InA R x (remove_duplicates A_beq ls) <-> InA R x ls. Proof using Type. cbv [remove_duplicates]; intro. rewrite InA_rev, InA_remove_duplicates', InA_rev; auto; reflexivity. Qed. Lemma InA_eq_In_iff {A} x ls : InA eq x ls <-> @List.In A x ls. Proof using Type. rewrite InA_alt. repeat first [ progress destruct_head'_and | progress destruct_head'_ex | progress subst | solve [ eauto ] | apply conj | progress intros ]. Qed. Lemma NoDupA_eq_NoDup {A} ls : @NoDupA A eq ls <-> NoDup ls. Proof using Type. split; intro H; induction H; constructor; eauto; (idtac + rewrite <- InA_eq_In_iff + rewrite InA_eq_In_iff); assumption. Qed. Lemma in_remove_duplicates' {A} (A_beq : A -> A -> bool) (A_bl : forall x y, A_beq x y = true -> x = y) (ls : list A) : forall x, List.In x (remove_duplicates' A_beq ls) <-> List.In x ls. Proof using Type. intro x; rewrite <- !InA_eq_In_iff; apply InA_remove_duplicates'; eauto; exact _. Qed. Lemma in_remove_duplicates {A} (A_beq : A -> A -> bool) (A_bl : forall x y, A_beq x y = true -> x = y) (ls : list A) : forall x, List.In x (remove_duplicates A_beq ls) <-> List.In x ls. Proof using Type. intro x; rewrite <- !InA_eq_In_iff; apply InA_remove_duplicates; eauto; exact _. Qed. Lemma NoDupA_remove_duplicates' {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) {R_Transitive : Transitive R} (A_lb : forall x y, A_beq x y = true -> R x y) (A_bl : forall x y, R x y -> A_beq x y = true) (ls : list A) : NoDupA R (remove_duplicates' A_beq ls). Proof using Type. induction ls as [|x xs IHxs]; [ now constructor | ]. cbn [remove_duplicates']; break_innermost_match; [ assumption | constructor; auto ]; []. intro H'. cut (false = true); [ discriminate | ]. match goal with H : _ = false |- _ => rewrite <- H end. rewrite existsb_exists in *. rewrite InA_remove_duplicates' in H' by eauto. rewrite InA_alt in H'. destruct_head'_ex; destruct_head'_and. eauto. Qed. Lemma NoDupA_remove_duplicates {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) {R_Equivalence : Equivalence R} (A_lb : forall x y, A_beq x y = true -> R x y) (A_bl : forall x y, R x y -> A_beq x y = true) (ls : list A) : NoDupA R (remove_duplicates A_beq ls). Proof using Type. cbv [remove_duplicates]. apply NoDupA_rev; [ assumption | ]. apply NoDupA_remove_duplicates'; auto; exact _. Qed. Lemma NoDup_remove_duplicates' {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) (A_lb : forall x y, A_beq x y = true -> x = y) (A_bl : forall x y, x = y -> A_beq x y = true) (ls : list A) : NoDup (remove_duplicates' A_beq ls). Proof using Type. apply NoDupA_eq_NoDup, NoDupA_remove_duplicates'; auto; exact _. Qed. Lemma NoDup_remove_duplicates {A} (A_beq : A -> A -> bool) (A_lb : forall x y, A_beq x y = true -> x = y) (A_bl : forall x y, x = y -> A_beq x y = true) (ls : list A) : NoDup (remove_duplicates A_beq ls). Proof using Type. apply NoDupA_eq_NoDup, NoDupA_remove_duplicates; auto; exact _. Qed. Lemma remove_duplicates'_eq_NoDupA {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) (A_lb : forall x y, A_beq x y = true -> R x y) (ls : list A) : NoDupA R ls -> remove_duplicates' A_beq ls = ls. Proof using Type. intro H; induction H as [|x xs H0 H1 IHxs]; [ reflexivity | ]. cbn [remove_duplicates']. rewrite IHxs. repeat first [ break_innermost_match_step | reflexivity | progress destruct_head'_ex | progress destruct_head'_and | progress rewrite existsb_exists in * | progress rewrite InA_alt in * | match goal with | [ H : ~(exists x, and _ _) |- _ ] => specialize (fun x H0 H1 => H (ex_intro _ x (conj H0 H1))) end | solve [ exfalso; eauto ] ]. Qed. Lemma remove_duplicates_eq_NoDupA {A} (A_beq : A -> A -> bool) (R : A -> A -> Prop) {R_equiv : Equivalence R} (A_lb : forall x y, A_beq x y = true -> R x y) (ls : list A) : NoDupA R ls -> remove_duplicates A_beq ls = ls. Proof using Type. cbv [remove_duplicates]; intro. erewrite remove_duplicates'_eq_NoDupA by (eauto + apply NoDupA_rev; eauto). rewrite rev_involutive; reflexivity. Qed. Lemma remove_duplicates'_eq_NoDup {A} (A_beq : A -> A -> bool) (A_lb : forall x y, A_beq x y = true -> x = y) (ls : list A) : NoDup ls -> remove_duplicates' A_beq ls = ls. Proof using Type. intro H; apply remove_duplicates'_eq_NoDupA with (R:=eq); eauto. now apply NoDupA_eq_NoDup. Qed. Lemma remove_duplicates_eq_NoDup {A} (A_beq : A -> A -> bool) (A_lb : forall x y, A_beq x y = true -> x = y) (ls : list A) : NoDup ls -> remove_duplicates A_beq ls = ls. Proof using Type. intro H; apply remove_duplicates_eq_NoDupA with (R:=eq); eauto; try exact _. now apply NoDupA_eq_NoDup. Qed. Lemma eq_repeat_nat_rect {A} x n : @List.repeat A x n = nat_rect _ nil (fun k repeat_k => x :: repeat_k) n. Proof using Type. induction n; cbn; f_equal; assumption. Qed. Lemma eq_firstn_nat_rect {A} n ls : @List.firstn A n ls = nat_rect _ (fun _ => nil) (fun n' firstn_n' ls => match ls with | nil => nil | cons x xs => x :: firstn_n' xs end) n ls. Proof using Type. revert ls; induction n, ls; cbn; f_equal; auto. Qed. Lemma eq_skipn_nat_rect {A} n ls : @List.skipn A n ls = nat_rect _ (fun ls => ls) (fun n' skipn_n' ls => match ls with | nil => nil | cons x xs => skipn_n' xs end) n ls. Proof using Type. revert ls; induction n, ls; cbn; f_equal; auto. Qed. Lemma eq_combine_list_rect {A B} xs ys : @List.combine A B xs ys = list_rect _ (fun _ => nil) (fun x xs combine_xs ys => match ys with | nil => nil | y :: ys => (x, y) :: combine_xs ys end) xs ys. Proof using Type. revert ys; induction xs, ys; cbn; f_equal; auto. Qed. Lemma eq_length_list_rect {A} xs : @List.length A xs = (list_rect _) 0%nat (fun _ xs length_xs => S length_xs) xs. Proof using Type. induction xs; cbn; f_equal; auto. Qed. Lemma eq_rev_list_rect {A} xs : @List.rev A xs = (list_rect _) nil (fun x xs rev_xs => rev_xs ++ [x]) xs. Proof using Type. induction xs; cbn; f_equal; auto. Qed. Lemma eq_update_nth_nat_rect {A} n f xs : @update_nth A n f xs = (nat_rect _) (fun xs => match xs with | nil => nil | x' :: xs' => f x' :: xs' end) (fun n' update_nth_n' xs => match xs with | nil => nil | x' :: xs' => x' :: update_nth_n' xs' end) n xs. Proof using Type. revert xs; induction n, xs; cbn; f_equal; auto. Qed.