(** Typeclass for decidable propositions *) Require Import Coq.Logic.Eqdep_dec. Require Import Coq.Lists.List. Require Import Crypto.Util.FixCoqMistakes. Require Import Crypto.Util.Sigma. Require Import Crypto.Util.HProp. Require Import Coq.ZArith.BinInt Coq.ZArith.ZArith_dec. Require Import Coq.NArith.BinNat. Local Open Scope type_scope. Class Decidable (P : Prop) := dec : {P} + {~P}. Arguments dec _%type_scope {_}. Notation DecidableRel R := (forall x y, Decidable (R x y)). Global Instance hprop_eq_dec {A} `{DecidableRel (@eq A)} : IsHPropRel (@eq A) | 10. Proof. repeat intro; apply UIP_dec; trivial with nocore. Qed. Global Instance eq_dec_hprop {A} {x y : A} {hp : IsHProp A} : Decidable (@eq A x y) | 5. Proof. left; auto. Qed. Ltac no_equalities_about x0 y0 := lazymatch goal with | [ H' : x0 = y0 |- _ ] => fail | [ H' : y0 = x0 |- _ ] => fail | [ H' : x0 <> y0 |- _ ] => fail | [ H' : y0 <> x0 |- _ ] => fail | _ => idtac end. Ltac destruct_decidable_step := match goal with | [ H : Decidable _ |- _ ] => destruct H | [ H : forall x y : ?A, Decidable (x = y), x0 : ?A, y0 : ?A |- _ ] => no_equalities_about x0 y0; destruct (H x0 y0) | [ H : forall a0 (x y : _), Decidable (x = y), x0 : ?A, y0 : ?A |- _ ] => no_equalities_about x0 y0; destruct (H _ x0 y0) end. Ltac destruct_decidable := repeat destruct_decidable_step. Ltac pre_decide_destruct_sigma_step := match goal with | [ H : sigT _ |- _ ] => destruct H | [ H : sig _ |- _ ] => destruct H | [ H : ex _ |- _ ] => destruct H end. Ltac pre_decide_destruct_sigma := repeat pre_decide_destruct_sigma_step. Ltac pre_decide := repeat (intros || destruct_decidable || split || pre_decide_destruct_sigma || unfold Decidable in * || hnf). (** Put the [subst] and reasoning about equalities after the [left] and [right]; opaque equality proofs should not block decidability proofs. *) Ltac post_decide := repeat (intros || subst || pre_hprop). Ltac solve_decidable_transparent_with tac := pre_decide; try solve [ left; abstract (post_decide; tac) | right; abstract (post_decide; tac) | decide equality; eauto with nocore ]. Ltac solve_decidable_transparent := solve_decidable_transparent_with firstorder. Local Hint Extern 0 => solve [ solve_decidable_transparent ] : typeclass_instances. Local Hint Extern 1 => progress inversion_sigma : core. Global Instance dec_True : Decidable True | 10 := left I. Global Instance dec_False : Decidable False | 10 := right (fun x => x). Global Instance dec_or {A B} `{Decidable A, Decidable B} : Decidable (A \/ B) | 10. exact _. Defined. Global Instance dec_and {A B} `{Decidable A, Decidable B} : Decidable (A /\ B) | 10. exact _. Defined. Global Instance dec_impl {A B} `{Decidable (B \/ ~A)} : Decidable (A -> B) | 10. exact _. Defined. Global Instance dec_impl_simple {A B} `{Decidable A, Decidable B} : Decidable (A -> B) | 10. exact _. Defined. Global Instance dec_iff {A B} `{Decidable A, Decidable B} : Decidable (A <-> B) | 10. exact _. Defined. Lemma dec_not {A} `{Decidable A} : Decidable (~A). Proof. solve_decidable_transparent. Defined. (** Disallow infinite loops of dec_not *) Hint Extern 0 (Decidable (~?A)) => apply (@dec_not A) : typeclass_instances. Global Instance dec_eq_unit : DecidableRel (@eq unit) | 10. exact _. Defined. Global Instance dec_eq_bool : DecidableRel (@eq bool) | 10. exact _. Defined. Global Instance dec_eq_Empty_set : DecidableRel (@eq Empty_set) | 10. exact _. Defined. Global Instance dec_eq_prod {A B} `{DecidableRel (@eq A), DecidableRel (@eq B)} : DecidableRel (@eq (A * B)) | 10. exact _. Defined. Global Instance dec_eq_option {A} `{DecidableRel (@eq A)} : DecidableRel (@eq (option A)) | 10. exact _. Defined. Global Instance dec_eq_list {A} `{DecidableRel (@eq A)} : DecidableRel (@eq (list A)) | 10. exact _. Defined. Global Instance dec_eq_list_nil_r {A} {ls} : Decidable (ls = @nil A) | 10. Proof. destruct ls; [ left; reflexivity | right; abstract congruence ]. Defined. Global Instance dec_eq_list_nil_l {A} {ls} : Decidable (@nil A = ls) | 10. Proof. destruct ls; [ left; reflexivity | right; abstract congruence ]. Defined. Global Instance dec_eq_sum {A B} `{DecidableRel (@eq A), DecidableRel (@eq B)} : DecidableRel (@eq (A + B)) | 10. exact _. Defined. Global Instance dec_eq_sigT_hprop {A P} `{DecidableRel (@eq A), forall a : A, IsHProp (P a)} : DecidableRel (@eq (@sigT A P)) | 10. exact _. Defined. Global Instance dec_eq_sig_hprop {A} {P : A -> Prop} `{DecidableRel (@eq A), forall a : A, IsHProp (P a)} : DecidableRel (@eq (@sig A P)) | 10. exact _. Defined. Global Instance dec_eq_comparison : DecidableRel (@eq comparison) | 10. exact _. Defined. Global Instance dec_eq_nat : DecidableRel (@eq nat) | 10. exact _. Defined. Global Instance dec_le_nat : DecidableRel le := Compare_dec.le_dec. Global Instance dec_lt_nat : DecidableRel lt := Compare_dec.lt_dec. Global Instance dec_ge_nat : DecidableRel ge := Compare_dec.ge_dec. Global Instance dec_gt_nat : DecidableRel gt := Compare_dec.gt_dec. Global Instance dec_eq_N : DecidableRel (@eq N) | 10 := N.eq_dec. Global Instance dec_eq_Z : DecidableRel (@eq Z) | 10 := Z.eq_dec. Global Instance dec_lt_Z : DecidableRel BinInt.Z.lt := ZArith_dec.Z_lt_dec. Global Instance dec_le_Z : DecidableRel BinInt.Z.le := ZArith_dec.Z_le_dec. Global Instance dec_gt_Z : DecidableRel BinInt.Z.gt := ZArith_dec.Z_gt_dec. Global Instance dec_ge_Z : DecidableRel BinInt.Z.ge := ZArith_dec.Z_ge_dec. Global Instance dec_Forall {A P} {HD : forall x : A, Decidable (P x)} {ls} : Decidable (Forall P ls) | 10. Proof. induction ls as [|x xs IHxs]; [ left | destruct (HD x), IHxs; [ left | right.. ] ]; [ constructor; assumption | constructor; assumption | intro Hn.. ]; clear HD; try abstract (inversion Hn; subst; tauto). Defined. Global Instance dec_Exists {A P} {HD : forall x : A, Decidable (P x)} {ls} : Decidable (Exists P ls) | 10. Proof. induction ls as [|x xs IHxs]; [ right | destruct (HD x), IHxs; [ left.. | right ] ]; [ intro Hn | constructor; assumption.. | intro Hn ]; clear HD; try abstract (inversion Hn; subst; tauto). Defined. Global Instance dec_match_pair {A B} {P : A -> B -> Prop} {x : A * B} {HD : Decidable (P (fst x) (snd x))} : Decidable (let '(a, b) := x in P a b) | 1. Proof. edestruct (_ : _ * _); assumption. Defined. Global Instance dec_if_bool {b : bool} {A B} {HA : Decidable A} {HB : Decidable B} : Decidable (if b then A else B) | 10 := if b return Decidable (if b then A else B) then HA else HB. Lemma not_not P {d:Decidable P} : not (not P) <-> P. Proof. destruct (dec P); intuition. Qed. Global Instance dec_ex_forall_not : forall T (P:T->Prop) {d:Decidable (exists b, P b)}, Decidable (forall b, ~ P b). Proof. intros T P d. destruct (dec (~ exists b, P b)) as [Hd|Hd]; [left|right]; [abstract eauto | let Hd := Hd in abstract (rewrite not_not in Hd by eauto; destruct Hd; eauto) ]. Defined. Lemma eqsig_eq {T} {U} {Udec:DecidableRel (@eq U)} (f g:T->U) (x x':T) pf pf' : (exist (fun x => f x = g x) x pf) = (exist (fun x => f x = g x) x' pf') <-> (x = x'). Proof. apply path_sig_hprop_iff; auto using UIP_dec, Udec. Qed. Lemma Decidable_respects_iff A B (H : A <-> B) : (Decidable A -> Decidable B) * (Decidable B -> Decidable A). Proof. solve_decidable_transparent. Defined. Lemma Decidable_iff_to_impl A B (H : A <-> B) : Decidable A -> Decidable B. Proof. solve_decidable_transparent. Defined. Lemma Decidable_iff_to_flip_impl A B (H : A <-> B) : Decidable B -> Decidable A. Proof. solve_decidable_transparent. Defined. Global Instance dec_eq_positive : DecidableRel (@eq BinNums.positive) | 10 := BinPos.Pos.eq_dec. Global Instance dec_lt_positive : DecidableRel BinPos.Pos.lt. Proof. eauto using Decidable_iff_to_impl, Pos.ltb_lt with typeclass_instances. Defined. Global Instance dec_le_positive : DecidableRel BinPos.Pos.le. Proof. eauto using Decidable_iff_to_impl, Pos.leb_le with typeclass_instances. Defined. Global Instance dec_gt_positive : DecidableRel BinPos.Pos.gt. Proof. eauto using Decidable_iff_to_flip_impl, Pos.gt_lt_iff with typeclass_instances. Defined. Global Instance dec_ge_positive : DecidableRel BinPos.Pos.ge. Proof. eauto using Decidable_iff_to_flip_impl, Pos.ge_le_iff with typeclass_instances. Defined. Lemma dec_of_semidec {P : Prop} (H : option P) (H_complete : H = None -> ~P) : Decidable P. Proof. destruct H; [ left; assumption | right; apply H_complete, eq_refl ]. Defined. Lemma dec_rel_of_semidec_rel {A} {R : A -> A -> Prop} (H : forall x y, option (R x y)) (H_complete : forall x y, H x y = None -> ~R x y) : DecidableRel R. Proof. eauto using dec_of_semidec. Defined. Lemma dec_of_bool_dec {P : Prop} (b : bool) (Hbl : b = true -> P) (Hlb : P -> b = true) : Decidable P. Proof. destruct b; [ left; apply Hbl; reflexivity | right; intro p; apply Bool.diff_false_true, Hlb, p ]. Defined. Lemma dec_rel_of_bool_dec_rel {A} {R : A -> A -> Prop} (b : A -> A -> bool) (Hbl : forall x y, b x y = true -> R x y) (Hlb : forall x y, R x y -> b x y = true) : DecidableRel R. Proof. eauto using dec_of_bool_dec. Defined. Lemma dec_bool : forall {P} {Pdec:Decidable P}, (if dec P then true else false) = true -> P. Proof. intros. destruct dec; solve [ auto | discriminate ]. Qed. Ltac vm_decide_no_check := apply dec_bool; vm_cast_no_check (eq_refl true). Ltac lazy_decide_no_check := apply dec_bool; exact_no_check (eq_refl true). Ltac vm_decide := abstract vm_decide_no_check. Ltac lazy_decide := abstract lazy_decide_no_check. (** For dubious compatibility with [eauto using]. *) Hint Extern 2 (Decidable _) => progress unfold Decidable : typeclass_instances core. Definition cast_if_eq {T} `{DecidableRel (@eq T)} {P} (t t' : T) (v : P t) : option (P t') := match dec (t = t'), dec (t' = t') with | left pf, left pf' => Some (eq_rect _ P v _ (eq_trans pf (eq_sym pf'))) | _, right pf' => match pf' eq_refl with end | right pf, _ => None end. Lemma cast_if_eq_refl {T H P} t v : @cast_if_eq T H P t t v = Some v. Proof. compute; clear; destruct (H t t) as [ [] |e]; [ reflexivity | destruct (e eq_refl) ]. Qed.