Require Import Crypto.BaseSystem. Require Import Crypto.ModularArithmetic.PrimeFieldTheorems. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParams. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParamProofs. Require Import Crypto.ModularArithmetic.ModularBaseSystem. Require Import Crypto.ModularArithmetic.ModularBaseSystemProofs. Require Import Crypto.ModularArithmetic.ModularBaseSystemOpt. Require Import Coq.Lists.List Crypto.Util.ListUtil. Require Import Crypto.Tactics.VerdiTactics. Require Import Crypto.Util.ZUtil. Require Import Crypto.Util.Tuple. Require Import Crypto.Util.Tactics. Require Import Crypto.Util.LetIn. Require Import Crypto.Util.Tower. Require Import Crypto.Util.Notations. Require Import Crypto.Util.Decidable. Require Import Crypto.Algebra. Import ListNotations. Require Import Coq.ZArith.ZArith Coq.ZArith.Zpower Coq.ZArith.ZArith Coq.ZArith.Znumtheory. Local Open Scope Z. (* BEGIN precomputation. *) Definition modulus : Z := Eval compute in 2^{{{k}}} - {{{c}}}. Lemma prime_modulus : prime modulus. Admitted. Definition int_width := Eval compute in (2 * {{{w}}})%Z. Definition freeze_input_bound := {{{w}}}%Z. Instance params{{{k}}}{{{c}}}_{{{w}}} : PseudoMersenneBaseParams modulus. construct_params prime_modulus {{{n}}}%nat {{{k}}}. Defined. Definition length_fe{{{k}}}{{{c}}}_{{{w}}} := Eval compute in length limb_widths. Definition fe{{{k}}}{{{c}}}_{{{w}}} := Eval compute in (tuple Z length_fe{{{k}}}{{{c}}}_{{{w}}}). Definition mul2modulus : fe{{{k}}}{{{c}}}_{{{w}}} := Eval compute in (from_list_default 0%Z (length limb_widths) (construct_mul2modulus params{{{k}}}{{{c}}}_{{{w}}})). Instance subCoeff : SubtractionCoefficient. apply Build_SubtractionCoefficient with (coeff := mul2modulus). vm_decide. Defined. Instance carryChain : CarryChain limb_widths. apply Build_CarryChain with (carry_chain := (rev {{{ch}}})%nat). intros. repeat (destruct H as [|H]; [subst; vm_compute; repeat constructor | ]). contradiction H. Defined. Definition freezePreconditions : FreezePreconditions freeze_input_bound int_width. Proof. constructor; compute_preconditions. Defined. (* Wire format for [pack] and [unpack] *) Definition wire_widths := Eval compute in (repeat {{{w}}} {{{kdivw}}} ++ {{{kmodw}}} :: nil). Definition wire_digits := Eval compute in (tuple Z (length wire_widths)). Lemma wire_widths_nonneg : forall w, In w wire_widths -> 0 <= w. Proof. intros. repeat (destruct H as [|H]; [subst; vm_compute; congruence | ]). contradiction H. Qed. Lemma bits_eq : sum_firstn limb_widths (length limb_widths) = sum_firstn wire_widths (length wire_widths). Proof. reflexivity. Qed. Lemma modulus_gt_2 : 2 < modulus. Proof. cbv; congruence. Qed. (* Temporarily, we'll use addition chains equivalent to double-and-add. This is pending finding the real, more optimal chains from previous work. *) Fixpoint pow2Chain'' p (pow2_index acc_index : nat) chain_acc : list (nat * nat) := match p with | xI p' => pow2Chain'' p' 1 0 (chain_acc ++ (pow2_index, pow2_index) :: (0%nat, S acc_index) :: nil) | xO p' => pow2Chain'' p' 0 (S acc_index) (chain_acc ++ (pow2_index, pow2_index)::nil) | xH => (chain_acc ++ (pow2_index, pow2_index) :: (0%nat, S acc_index) :: nil) end. Fixpoint pow2Chain' p index := match p with | xI p' => pow2Chain'' p' 0 0 (repeat (0,0)%nat index) | xO p' => pow2Chain' p' (S index) | xH => repeat (0,0)%nat index end. Definition pow2_chain p := match p with | xH => nil | _ => pow2Chain' p 0 end. Definition invChain := Eval compute in pow2_chain (Z.to_pos (modulus - 2)). Instance inv_ec : ExponentiationChain (modulus - 2). apply Build_ExponentiationChain with (chain := invChain). reflexivity. Defined. (* Note : use caution copying square root code to other primes. The (modulus / 8 + 1) chains are for primes that are 5 mod 8; if the prime is 3 mod 4 then use (modulus / 4 + 1). *) Definition sqrtChain := Eval compute in pow2_chain (Z.to_pos (modulus / 4 + 1)). Instance sqrt_ec : ExponentiationChain (modulus / 4 + 1). apply Build_ExponentiationChain with (chain := sqrtChain). reflexivity. Defined. Arguments chain {_ _ _} _. (* END precomputation *) (* Precompute constants *) Definition k_ := Eval compute in k. Definition k_subst : k = k_ := eq_refl k_. Definition c_ := Eval compute in c. Definition c_subst : c = c_ := eq_refl c_. Definition one_ := Eval compute in one. Definition one_subst : one = one_ := eq_refl one_. Definition zero_ := Eval compute in zero. Definition zero_subst : zero = zero_ := eq_refl zero_. Definition modulus_digits_ := Eval compute in ModularBaseSystemList.modulus_digits. Definition modulus_digits_subst : ModularBaseSystemList.modulus_digits = modulus_digits_ := eq_refl modulus_digits_. Local Opaque Z.shiftr Z.shiftl Z.land Z.mul Z.add Z.sub Z.lor Let_In Z.eqb Z.ltb Z.leb ModularBaseSystemListZOperations.neg ModularBaseSystemListZOperations.cmovl ModularBaseSystemListZOperations.cmovne. Definition app_n2 {T} (f : wire_digits) (P : wire_digits -> T) : T. Proof. cbv [wire_digits] in *. set (f0 := f). repeat (let g := fresh "g" in destruct f as [f g]). apply P. apply f0. Defined. Definition app_n2_correct {T} f (P : wire_digits -> T) : app_n2 f P = P f. Proof. intros. cbv [wire_digits] in *. repeat match goal with [p : (_*Z)%type |- _ ] => destruct p end. reflexivity. Qed. Definition app_n {T} (f : fe{{{k}}}{{{c}}}_{{{w}}}) (P : fe{{{k}}}{{{c}}}_{{{w}}} -> T) : T. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. set (f0 := f). repeat (let g := fresh "g" in destruct f as [f g]). apply P. apply f0. Defined. Definition app_n_correct {T} f (P : fe{{{k}}}{{{c}}}_{{{w}}} -> T) : app_n f P = P f. Proof. intros. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with [p : (_*Z)%type |- _ ] => destruct p end. reflexivity. Qed. Definition appify2 {T} (op : fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> T) (f g : fe{{{k}}}{{{c}}}_{{{w}}}) := app_n f (fun f0 => (app_n g (fun g0 => op f0 g0))). Lemma appify2_correct : forall {T} op f g, @appify2 T op f g = op f g. Proof. intros. cbv [appify2]. etransitivity; apply app_n_correct. Qed. Definition appify9 {T} (op : fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> T) (x0 x1 x2 x3 x4 x5 x6 x7 x8 : fe{{{k}}}{{{c}}}_{{{w}}}) := app_n x0 (fun x0' => app_n x1 (fun x1' => app_n x2 (fun x2' => app_n x3 (fun x3' => app_n x4 (fun x4' => app_n x5 (fun x5' => app_n x6 (fun x6' => app_n x7 (fun x7' => app_n x8 (fun x8' => op x0' x1' x2' x3' x4' x5' x6' x7' x8'))))))))). Lemma appify9_correct : forall {T} op x0 x1 x2 x3 x4 x5 x6 x7 x8, @appify9 T op x0 x1 x2 x3 x4 x5 x6 x7 x8 = op x0 x1 x2 x3 x4 x5 x6 x7 x8. Proof. intros. cbv [appify9]. repeat (etransitivity; [ apply app_n_correct | ]); reflexivity. Qed. Definition uncurry_unop_fe{{{k}}}{{{c}}}_{{{w}}} {T} (op : fe{{{k}}}{{{c}}}_{{{w}}} -> T) := Eval compute in Tuple.uncurry (n:=length_fe{{{k}}}{{{c}}}_{{{w}}}) op. Definition curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} {T} op : fe{{{k}}}{{{c}}}_{{{w}}} -> T := Eval compute in fun f => app_n f (Tuple.curry (n:=length_fe{{{k}}}{{{c}}}_{{{w}}}) op). Fixpoint uncurry_n_op_fe{{{k}}}{{{c}}}_{{{w}}} {T} n : forall (op : Tower.tower_nd fe{{{k}}}{{{c}}}_{{{w}}} T n), Tower.tower_nd Z T (n * length_fe{{{k}}}{{{c}}}_{{{w}}}) := match n return (forall (op : Tower.tower_nd fe{{{k}}}{{{c}}}_{{{w}}} T n), Tower.tower_nd Z T (n * length_fe{{{k}}}{{{c}}}_{{{w}}})) with | O => fun x => x | S n' => fun f => uncurry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (fun x => @uncurry_n_op_fe{{{k}}}{{{c}}}_{{{w}}} _ n' (f x)) end. Definition uncurry_binop_fe{{{k}}}{{{c}}}_{{{w}}} {T} (op : fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> T) := Eval compute in uncurry_n_op_fe{{{k}}}{{{c}}}_{{{w}}} 2 op. Definition curry_binop_fe{{{k}}}{{{c}}}_{{{w}}} {T} op : fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> T := Eval compute in appify2 (fun f => curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} op f)). Definition uncurry_unop_wire_digits {T} (op : wire_digits -> T) := Eval compute in Tuple.uncurry (n:=length wire_widths) op. Definition curry_unop_wire_digits {T} op : wire_digits -> T := Eval compute in fun f => app_n2 f (Tuple.curry (n:=length wire_widths) op). Definition uncurry_9op_fe{{{k}}}{{{c}}}_{{{w}}} {T} (op : fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> T) := Eval compute in uncurry_n_op_fe{{{k}}}{{{c}}}_{{{w}}} 9 op. Definition curry_9op_fe{{{k}}}{{{c}}}_{{{w}}} {T} op : fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> fe{{{k}}}{{{c}}}_{{{w}}} -> T := Eval compute in appify9 (fun x0 x1 x2 x3 x4 x5 x6 x7 x8 => curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} (curry_unop_fe{{{k}}}{{{c}}}_{{{w}}} op x0) x1) x2) x3) x4) x5) x6) x7) x8). Definition add_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { fg : fe{{{k}}}{{{c}}}_{{{w}}} | fg = add_opt f g}. Proof. eexists. rewrite <-(@appify2_correct fe{{{k}}}{{{c}}}_{{{w}}}). cbv. reflexivity. Defined. Definition add (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig add_sig] in proj1_sig (add_sig f g). Definition add_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : add f g = add_opt f g := Eval cbv beta iota delta [proj1_sig add_sig] in proj2_sig (add_sig f g). Definition carry_add_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { fg : fe{{{k}}}{{{c}}}_{{{w}}} | fg = carry_add_opt f g}. Proof. eexists. rewrite <-(@appify2_correct fe{{{k}}}{{{c}}}_{{{w}}}). cbv. autorewrite with zsimplify_fast zsimplify_Z_to_pos; cbv. autorewrite with zsimplify_Z_to_pos; cbv. reflexivity. Defined. Definition carry_add (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig carry_add_sig] in proj1_sig (carry_add_sig f g). Definition carry_add_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : carry_add f g = carry_add_opt f g := Eval cbv beta iota delta [proj1_sig carry_add_sig] in proj2_sig (carry_add_sig f g). Definition sub_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { fg : fe{{{k}}}{{{c}}}_{{{w}}} | fg = sub_opt f g}. Proof. eexists. rewrite <-(@appify2_correct fe{{{k}}}{{{c}}}_{{{w}}}). cbv. reflexivity. Defined. Definition sub (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig sub_sig] in proj1_sig (sub_sig f g). Definition sub_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : sub f g = sub_opt f g := Eval cbv beta iota delta [proj1_sig sub_sig] in proj2_sig (sub_sig f g). Definition carry_sub_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { fg : fe{{{k}}}{{{c}}}_{{{w}}} | fg = carry_sub_opt f g}. Proof. eexists. rewrite <-(@appify2_correct fe{{{k}}}{{{c}}}_{{{w}}}). cbv. autorewrite with zsimplify_fast zsimplify_Z_to_pos; cbv. autorewrite with zsimplify_Z_to_pos; cbv. reflexivity. Defined. Definition carry_sub (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig carry_sub_sig] in proj1_sig (carry_sub_sig f g). Definition carry_sub_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : carry_sub f g = carry_sub_opt f g := Eval cbv beta iota delta [proj1_sig carry_sub_sig] in proj2_sig (carry_sub_sig f g). (* For multiplication, we add another layer of definition so that we can rewrite under the [let] binders. *) Definition mul_simpl_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { fg : fe{{{k}}}{{{c}}}_{{{w}}} | fg = carry_mul_opt k_ c_ f g}. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists. cbv. (* N.B. The slow part of this is computing with [Z_div_opt]. It would be much faster if we could take advantage of the form of [base_from_limb_widths] when doing division, so we could do subtraction instead. *) autorewrite with zsimplify_fast. reflexivity. Defined. Definition mul_simpl (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig mul_simpl_sig] in let '{{{enum f}}} := f in let '{{{enum g}}} := g in proj1_sig (mul_simpl_sig {{{enum f}}} {{{enum g}}}). Definition mul_simpl_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : mul_simpl f g = carry_mul_opt k_ c_ f g. Proof. pose proof (proj2_sig (mul_simpl_sig f g)). cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. assumption. Qed. Definition mul_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { fg : fe{{{k}}}{{{c}}}_{{{w}}} | fg = carry_mul_opt k_ c_ f g}. Proof. eexists. rewrite <-mul_simpl_correct. rewrite <-(@appify2_correct fe{{{k}}}{{{c}}}_{{{w}}}). cbv. autorewrite with zsimplify_fast zsimplify_Z_to_pos; cbv. autorewrite with zsimplify_Z_to_pos; cbv. reflexivity. Defined. Definition mul (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig mul_sig] in proj1_sig (mul_sig f g). Definition mul_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : mul f g = carry_mul_opt k_ c_ f g := Eval cbv beta iota delta [proj1_sig add_sig] in proj2_sig (mul_sig f g). Definition opp_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { g : fe{{{k}}}{{{c}}}_{{{w}}} | g = opp_opt f }. Proof. eexists. cbv [opp_opt]. rewrite <-sub_correct. rewrite zero_subst. cbv [sub]. reflexivity. Defined. Definition opp (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig opp_sig] in proj1_sig (opp_sig f). Definition opp_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : opp f = opp_opt f := Eval cbv beta iota delta [proj2_sig add_sig] in proj2_sig (opp_sig f). Definition carry_opp_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { g : fe{{{k}}}{{{c}}}_{{{w}}} | g = carry_opp_opt f }. Proof. eexists. cbv [carry_opp_opt]. rewrite <-carry_sub_correct. rewrite zero_subst. cbv [carry_sub]. reflexivity. Defined. Definition carry_opp (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig carry_opp_sig] in proj1_sig (carry_opp_sig f). Definition carry_opp_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : carry_opp f = carry_opp_opt f := Eval cbv beta iota delta [proj2_sig add_sig] in proj2_sig (carry_opp_sig f). Definition pow (f : fe{{{k}}}{{{c}}}_{{{w}}}) chain := fold_chain_opt one_ mul chain [f]. Lemma pow_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : forall chain, pow f chain = pow_opt k_ c_ one_ f chain. Proof. cbv [pow pow_opt]; intros. rewrite !fold_chain_opt_correct. apply Proper_fold_chain; try reflexivity. intros; subst; apply mul_correct. Qed. (* Now that we have [pow], we can compute sqrt of -1 for use in sqrt function (this is not needed unless the prime is 5 mod 8) *) Local Transparent Z.shiftr Z.shiftl Z.land Z.mul Z.add Z.sub Z.lor Let_In Z.eqb Z.ltb andb. Definition sqrt_m1 := Eval vm_compute in (pow (encode (F.of_Z _ 2)) (pow2_chain (Z.to_pos ((modulus - 1) / 4)))). Local Opaque Z.shiftr Z.shiftl Z.land Z.mul Z.add Z.sub Z.lor Let_In Z.eqb Z.ltb andb. Definition inv_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { g : fe{{{k}}}{{{c}}}_{{{w}}} | g = inv_opt k_ c_ one_ f }. Proof. eexists; cbv [inv_opt]. rewrite <-pow_correct. cbv - [mul]. reflexivity. Defined. Definition inv (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig inv_sig] in proj1_sig (inv_sig f). Definition inv_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : inv f = inv_opt k_ c_ one_ f := Eval cbv beta iota delta [proj2_sig inv_sig] in proj2_sig (inv_sig f). Definition mbs_field := modular_base_system_field modulus_gt_2. Import Morphisms. Local Existing Instance prime_modulus. Lemma field_and_homomorphisms : @field fe{{{k}}}{{{c}}}_{{{w}}} eq zero_ one_ opp add sub mul inv div /\ @Ring.is_homomorphism (F modulus) Logic.eq F.one F.add F.mul fe{{{k}}}{{{c}}}_{{{w}}} eq one_ add mul encode /\ @Ring.is_homomorphism fe{{{k}}}{{{c}}}_{{{w}}} eq one_ add mul (F modulus) Logic.eq F.one F.add F.mul decode. Proof. eapply @Field.field_and_homomorphism_from_redundant_representation. { exact (F.field_modulo _). } { apply encode_rep. } { reflexivity. } { reflexivity. } { reflexivity. } { intros; rewrite opp_correct, opp_opt_correct; apply opp_rep; reflexivity. } { intros; rewrite add_correct, add_opt_correct; apply add_rep; reflexivity. } { intros; rewrite sub_correct, sub_opt_correct; apply sub_rep; reflexivity. } { intros; rewrite mul_correct, carry_mul_opt_correct by reflexivity; apply carry_mul_rep; reflexivity. } { intros; rewrite inv_correct, inv_opt_correct by reflexivity; apply inv_rep; reflexivity. } { intros; apply encode_rep. } Qed. Definition field{{{k}}}{{{c}}}_{{{w}}} : @field fe{{{k}}}{{{c}}}_{{{w}}} eq zero_ one_ opp add sub mul inv div := proj1 field_and_homomorphisms. Lemma carry_field_and_homomorphisms : @field fe{{{k}}}{{{c}}}_{{{w}}} eq zero_ one_ carry_opp carry_add carry_sub mul inv div /\ @Ring.is_homomorphism (F modulus) Logic.eq F.one F.add F.mul fe{{{k}}}{{{c}}}_{{{w}}} eq one_ carry_add mul encode /\ @Ring.is_homomorphism fe{{{k}}}{{{c}}}_{{{w}}} eq one_ carry_add mul (F modulus) Logic.eq F.one F.add F.mul decode. Proof. eapply @Field.field_and_homomorphism_from_redundant_representation. { exact (F.field_modulo _). } { apply encode_rep. } { reflexivity. } { reflexivity. } { reflexivity. } { intros; rewrite carry_opp_correct, carry_opp_opt_correct, carry_opp_rep; apply opp_rep; reflexivity. } { intros; rewrite carry_add_correct, carry_add_opt_correct, carry_add_rep; apply add_rep; reflexivity. } { intros; rewrite carry_sub_correct, carry_sub_opt_correct, carry_sub_rep; apply sub_rep; reflexivity. } { intros; rewrite mul_correct, carry_mul_opt_correct by reflexivity; apply carry_mul_rep; reflexivity. } { intros; rewrite inv_correct, inv_opt_correct by reflexivity; apply inv_rep; reflexivity. } { intros; apply encode_rep. } Qed. Definition carry_field{{{k}}}{{{c}}}_{{{w}}} : @field fe{{{k}}}{{{c}}}_{{{w}}} eq zero_ one_ carry_opp carry_add carry_sub mul inv div := proj1 carry_field_and_homomorphisms. Lemma homomorphism_F{{{k}}}{{{c}}}_{{{w}}}_encode : @Ring.is_homomorphism (F modulus) Logic.eq F.one F.add F.mul fe{{{k}}}{{{c}}}_{{{w}}} eq one add mul encode. Proof. apply field_and_homomorphisms. Qed. Lemma homomorphism_F{{{k}}}{{{c}}}_{{{w}}}_decode : @Ring.is_homomorphism fe{{{k}}}{{{c}}}_{{{w}}} eq one add mul (F modulus) Logic.eq F.one F.add F.mul decode. Proof. apply field_and_homomorphisms. Qed. Lemma homomorphism_carry_F{{{k}}}{{{c}}}_{{{w}}}_encode : @Ring.is_homomorphism (F modulus) Logic.eq F.one F.add F.mul fe{{{k}}}{{{c}}}_{{{w}}} eq one carry_add mul encode. Proof. apply carry_field_and_homomorphisms. Qed. Lemma homomorphism_carry_F{{{k}}}{{{c}}}_{{{w}}}_decode : @Ring.is_homomorphism fe{{{k}}}{{{c}}}_{{{w}}} eq one carry_add mul (F modulus) Logic.eq F.one F.add F.mul decode. Proof. apply carry_field_and_homomorphisms. Qed. Definition ge_modulus_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { b : Z | b = ge_modulus_opt (to_list {{{n}}} f) }. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists; cbv [ge_modulus_opt]. rewrite !modulus_digits_subst. cbv. reflexivity. Defined. Definition ge_modulus (f : fe{{{k}}}{{{c}}}_{{{w}}}) : Z := Eval cbv beta iota delta [proj1_sig ge_modulus_sig] in let '{{{enum f}}} := f in proj1_sig (ge_modulus_sig {{{enum f}}}). Definition ge_modulus_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : ge_modulus f = ge_modulus_opt (to_list {{{n}}} f). Proof. pose proof (proj2_sig (ge_modulus_sig f)). cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. assumption. Defined. Definition prefreeze_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { f' : fe{{{k}}}{{{c}}}_{{{w}}} | f' = from_list_default 0 {{{n}}} (carry_full_3_opt c_ (to_list {{{n}}} f)) }. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists. cbv - [from_list_default]. (* TODO(jgross,jadep): use Reflective linearization here? *) repeat ( set_evars; rewrite app_Let_In_nd; subst_evars; eapply Proper_Let_In_nd_changebody; [reflexivity|intro]). cbv [from_list_default from_list_default']. reflexivity. Defined. Definition prefreeze (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig prefreeze_sig] in let '{{{enum f}}} := f in proj1_sig (prefreeze_sig {{{enum f}}}). Definition prefreeze_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : prefreeze f = from_list_default 0 {{{n}}} (carry_full_3_opt c_ (to_list {{{n}}} f)). Proof. pose proof (proj2_sig (prefreeze_sig f)). cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. assumption. Defined. Definition postfreeze_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { f' : fe{{{k}}}{{{c}}}_{{{w}}} | f' = from_list_default 0 {{{n}}} (conditional_subtract_modulus_opt (int_width := int_width) (to_list {{{n}}} f)) }. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists; cbv [freeze_opt int_width]. cbv [to_list to_list']. cbv [conditional_subtract_modulus_opt]. rewrite !modulus_digits_subst. cbv - [from_list_default]. (* TODO(jgross,jadep): use Reflective linearization here? *) repeat ( set_evars; rewrite app_Let_In_nd; subst_evars; eapply Proper_Let_In_nd_changebody; [reflexivity|intro]). cbv [from_list_default from_list_default']. reflexivity. Defined. Definition postfreeze (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig postfreeze_sig] in let '{{{enum f}}} := f in proj1_sig (postfreeze_sig {{{enum f}}}). Definition postfreeze_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : postfreeze f = from_list_default 0 {{{n}}} (conditional_subtract_modulus_opt (int_width := int_width) (to_list {{{n}}} f)). Proof. pose proof (proj2_sig (postfreeze_sig f)). cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. assumption. Defined. Definition freeze (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := dlet x := prefreeze f in postfreeze x. Local Transparent Let_In. Definition freeze_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : freeze f = from_list_default 0 {{{n}}} (freeze_opt (int_width := int_width) c_ (to_list {{{n}}} f)). Proof. cbv [freeze_opt freeze Let_In]. rewrite prefreeze_correct. rewrite postfreeze_correct. match goal with |- appcontext [to_list _ (from_list_default _ ?n ?xs)] => assert (length xs = n) as pf; [ | rewrite from_list_default_eq with (pf0 := pf) ] end. { rewrite carry_full_3_opt_correct; repeat rewrite ModularBaseSystemListProofs.length_carry_full; auto using length_to_list. } rewrite to_list_from_list. reflexivity. Qed. Local Opaque Let_In. Definition fieldwiseb_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { b | b = @fieldwiseb Z Z {{{n}}} Z.eqb f g }. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists. cbv. reflexivity. Defined. Definition fieldwiseb (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : bool := Eval cbv beta iota delta [proj1_sig fieldwiseb_sig] in let '{{{enum f}}} := f in let '{{{enum g}}} := g in proj1_sig (fieldwiseb_sig {{{enum f}}} {{{enum g}}}). Lemma fieldwiseb_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : fieldwiseb f g = @Tuple.fieldwiseb Z Z {{{n}}} Z.eqb f g. Proof. set (f' := f); set (g' := g). hnf in f, g; destruct_head' prod. exact (proj2_sig (fieldwiseb_sig f' g')). Qed. Definition eqb_sig (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : { b | b = eqb int_width f g }. Proof. cbv [eqb]. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists. cbv [ModularBaseSystem.freeze int_width]. rewrite <-!from_list_default_eq with (d := 0). rewrite <-!(freeze_opt_correct c_) by auto using length_to_list. rewrite <-!freeze_correct. rewrite <-fieldwiseb_correct. reflexivity. Defined. Definition eqb (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : bool := Eval cbv beta iota delta [proj1_sig eqb_sig] in let '{{{enum f}}} := f in let '{{{enum g}}} := g in proj1_sig (eqb_sig {{{enum f}}} {{{enum g}}}). Lemma eqb_correct (f g : fe{{{k}}}{{{c}}}_{{{w}}}) : eqb f g = ModularBaseSystem.eqb int_width f g. Proof. set (f' := f); set (g' := g). hnf in f, g; destruct_head' prod. exact (proj2_sig (eqb_sig f' g')). Qed. Definition sqrt_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { f' : fe{{{k}}}{{{c}}}_{{{w}}} | f' = sqrt_3mod4_opt k_ c_ one_ f}. Proof. eexists. cbv [sqrt_3mod4_opt int_width]. rewrite <- pow_correct. reflexivity. Defined. Definition sqrt (f : fe{{{k}}}{{{c}}}_{{{w}}}) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig sqrt_sig] in proj1_sig (sqrt_sig f). Definition sqrt_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : sqrt f = sqrt_3mod4_opt k_ c_ one_ f := Eval cbv beta iota delta [proj2_sig sqrt_sig] in proj2_sig (sqrt_sig f). Definition pack_simpl_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { f' | f' = pack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f }. Proof. cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists. cbv [pack_opt]. repeat (rewrite <-convert'_opt_correct; cbv - [from_list_default_opt Conversion.convert']). repeat progress rewrite ?Z.shiftl_0_r, ?Z.shiftr_0_r, ?Z.land_0_l, ?Z.lor_0_l, ?Z.land_same_r. cbv [from_list_default_opt]. reflexivity. Defined. Definition pack_simpl (f : fe{{{k}}}{{{c}}}_{{{w}}}) := Eval cbv beta iota delta [proj1_sig pack_simpl_sig] in let '{{{enum f}}} := f in proj1_sig (pack_simpl_sig {{{enum f}}}). Definition pack_simpl_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : pack_simpl f = pack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f. Proof. pose proof (proj2_sig (pack_simpl_sig f)). cbv [fe{{{k}}}{{{c}}}_{{{w}}}] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. assumption. Qed. Definition pack_sig (f : fe{{{k}}}{{{c}}}_{{{w}}}) : { f' | f' = pack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f }. Proof. eexists. rewrite <-pack_simpl_correct. rewrite <-(@app_n_correct wire_digits). cbv. reflexivity. Defined. Definition pack (f : fe{{{k}}}{{{c}}}_{{{w}}}) : wire_digits := Eval cbv beta iota delta [proj1_sig pack_sig] in proj1_sig (pack_sig f). Definition pack_correct (f : fe{{{k}}}{{{c}}}_{{{w}}}) : pack f = pack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f := Eval cbv beta iota delta [proj2_sig pack_sig] in proj2_sig (pack_sig f). Definition unpack_simpl_sig (f : wire_digits) : { f' | f' = unpack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f }. Proof. cbv [wire_digits] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. eexists. cbv [unpack_opt]. repeat ( rewrite <-convert'_opt_correct; cbv - [from_list_default_opt Conversion.convert']). repeat progress rewrite ?Z.shiftl_0_r, ?Z.shiftr_0_r, ?Z.land_0_l, ?Z.lor_0_l, ?Z.land_same_r. cbv [from_list_default_opt]. reflexivity. Defined. Definition unpack_simpl (f : wire_digits) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig unpack_simpl_sig] in let '{{{enumw f}}} := f in proj1_sig (unpack_simpl_sig {{{enumw f}}}). Definition unpack_simpl_correct (f : wire_digits) : unpack_simpl f = unpack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f. Proof. pose proof (proj2_sig (unpack_simpl_sig f)). cbv [wire_digits] in *. repeat match goal with p : (_ * Z)%type |- _ => destruct p end. assumption. Qed. Definition unpack_sig (f : wire_digits) : { f' | f' = unpack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f }. Proof. eexists. rewrite <-unpack_simpl_correct. rewrite <-(@app_n2_correct fe{{{k}}}{{{c}}}_{{{w}}}). cbv. reflexivity. Defined. Definition unpack (f : wire_digits) : fe{{{k}}}{{{c}}}_{{{w}}} := Eval cbv beta iota delta [proj1_sig unpack_sig] in proj1_sig (unpack_sig f). Definition unpack_correct (f : wire_digits) : unpack f = unpack_opt params{{{k}}}{{{c}}}_{{{w}}} wire_widths_nonneg bits_eq f := Eval cbv beta iota delta [proj2_sig pack_sig] in proj2_sig (unpack_sig f).