Require Import Coq.ZArith.ZArith Coq.ZArith.BinIntDef. Require Import Coq.Lists.List. Import ListNotations. Require Import Crypto.Arithmetic.Core. Import B. Require Import Crypto.Arithmetic.Saturated.Core. Require Import Crypto.Arithmetic.Saturated.Freeze. Require Import Crypto.Arithmetic.PrimeFieldTheorems. Require Import Crypto.Util.Decidable. Require Import Crypto.Util.LetIn Crypto.Util.ZUtil. Require Import Crypto.Arithmetic.Karatsuba. Require Crypto.Util.Tuple. Require Import Crypto.Util.IdfunWithAlt. Require Import Crypto.Util.QUtil. Require Import Crypto.Util.Tactics.VM. Local Notation tuple := Tuple.tuple. Local Open Scope list_scope. Local Open Scope Z_scope. Local Coercion Z.of_nat : nat >-> Z. (*** Modulus : 2^448-2^224-1 Base: 56 ***) Section Ops51. Local Infix "^" := tuple : type_scope. (* These definitions will need to be passed as Ltac arguments (or cleverly inferred) when things are eventually automated *) Definition sz := 8%nat. Definition bitwidth := 64. Definition s : Z := 2^448. Definition c : list B.limb := [(1, 1); (2^224, 1)]. Definition carry_chain1 := [3;7]%nat. Definition carry_chain2 := [0;4;1;5;2;6;3;7]%nat. Definition carry_chain3 := [4;0]%nat. Definition coef_div_modulus : nat := 2. (* add 2*modulus before subtracting *) (* These definitions are inferred from those above *) Definition m := Eval vm_compute in Z.to_pos (s - Associational.eval c). (* modulus *) Section wt. Import QArith Qround. Local Coercion QArith_base.inject_Z : Z >-> Q. Definition wt (i:nat) : Z := 2^Qceiling((Z.log2_up m/sz)*i). End wt. Definition sz2 := Eval vm_compute in ((sz * 2) - 1)%nat. Definition m_enc := Eval vm_compute in (Positional.encode (modulo:=modulo) (div:=div) (n:=sz) wt (s-Associational.eval c)). Definition coef := (* subtraction coefficient *) Eval vm_compute in ((fix addm (acc: Z^sz) (ctr : nat) : Z^sz := match ctr with | O => acc | S n => addm (Positional.add_cps wt acc m_enc id) n end) (Positional.zeros sz) coef_div_modulus). Definition coef_mod : mod_eq m (Positional.eval (n:=sz) wt coef) 0 := eq_refl. Lemma sz_nonzero : sz <> 0%nat. Proof. vm_decide. Qed. Lemma wt_nonzero i : wt i <> 0. Proof. eapply pow_ceil_mul_nat_nonzero; vm_decide. Qed. Lemma wt_divides i : wt (S i) / wt i > 0. Proof. apply pow_ceil_mul_nat_divide; vm_decide. Qed. Lemma wt_divides' i : wt (S i) / wt i <> 0. Proof. symmetry; apply Z.lt_neq, Z.gt_lt_iff, wt_divides. Qed. Definition wt_divides_chain1 i (H:In i carry_chain1) : wt (S i) / wt i <> 0 := wt_divides' i. Definition wt_divides_chain2 i (H:In i carry_chain2) : wt (S i) / wt i <> 0 := wt_divides' i. Definition wt_divides_chain3 i (H:In i carry_chain3) : wt (S i) / wt i <> 0 := wt_divides' i. Local Ltac solve_constant_sig := lazymatch goal with | [ |- { c : Z^?sz | Positional.Fdecode (m:=?M) ?wt c = ?v } ] => let t := (eval vm_compute in (Positional.encode (n:=sz) (modulo:=modulo) (div:=div) wt (F.to_Z (m:=M) v))) in (exists t; vm_decide) end. Definition zero_sig : { zero : Z^sz | Positional.Fdecode (m:=m) wt zero = 0%F}. Proof. solve_constant_sig. Defined. Definition one_sig : { one : Z^sz | Positional.Fdecode (m:=m) wt one = 1%F}. Proof. solve_constant_sig. Defined. Definition add_sig : { add : (Z^sz -> Z^sz -> Z^sz)%type | forall a b : Z^sz, let eval := Positional.Fdecode (m:=m) wt in eval (add a b) = (eval a + eval b)%F }. Proof. eexists; cbv beta zeta; intros. pose proof wt_nonzero. let x := constr:( Positional.add_cps (n := sz) wt a b id) in solve_op_F wt x. reflexivity. Defined. Definition sub_sig : {sub : (Z^sz -> Z^sz -> Z^sz)%type | forall a b : Z^sz, let eval := Positional.Fdecode (m:=m) wt in eval (sub a b) = (eval a - eval b)%F}. Proof. eexists; cbv beta zeta; intros. pose proof wt_nonzero. let x := constr:( Positional.sub_cps (n:=sz) (coef := coef) wt a b id) in solve_op_F wt x. reflexivity. Defined. Definition opp_sig : {opp : (Z^sz -> Z^sz)%type | forall a : Z^sz, let eval := Positional.Fdecode (m := m) wt in eval (opp a) = F.opp (eval a)}. Proof. eexists; cbv beta zeta; intros. pose proof wt_nonzero. let x := constr:( Positional.opp_cps (n:=sz) (coef := coef) wt a id) in solve_op_F wt x. reflexivity. Defined. Definition half_sz : nat := Eval compute in (sz / 2). Lemma half_sz_nonzero : half_sz <> 0%nat. Proof. cbv; congruence. Qed. Ltac basesystem_partial_evaluation_RHS := let t0 := (match goal with | |- _ _ ?t => t end) in let t := eval cbv delta [Positional.to_associational_cps Positional.to_associational Positional.eval Positional.zeros Positional.add_to_nth_cps Positional.add_to_nth Positional.place_cps Positional.place Positional.from_associational_cps Positional.from_associational Positional.carry_cps Positional.carry Positional.chained_carries_cps Positional.chained_carries Positional.sub_cps Positional.sub Positional.split_cps Positional.scmul_cps Positional.unbalanced_sub_cps Positional.negate_snd_cps Positional.add_cps Positional.opp_cps Associational.eval Associational.multerm Associational.mul_cps Associational.mul Associational.split_cps Associational.split Associational.reduce_cps Associational.reduce Associational.carryterm_cps Associational.carryterm Associational.carry_cps Associational.carry Associational.negate_snd_cps Associational.negate_snd div modulo id_tuple_with_alt id_tuple'_with_alt ] in t0 in let t := eval pattern @runtime_mul in t in let t := (match t with | ?t _ => t end) in let t := eval pattern @runtime_add in t in let t := (match t with | ?t _ => t end) in let t := eval pattern @runtime_opp in t in let t := (match t with | ?t _ => t end) in let t := eval pattern @runtime_shr in t in let t := (match t with | ?t _ => t end) in let t := eval pattern @runtime_and in t in let t := (match t with | ?t _ => t end) in let t := eval pattern @Let_In in t in let t := (match t with | ?t _ => t end) in let t := eval pattern @id_with_alt in t in let t := (match t with | ?t _ => t end) in let t1 := fresh "t1" in pose (t1 := t); transitivity (t1 (@id_with_alt) (@Let_In) (@runtime_and) (@runtime_shr) (@runtime_opp) (@runtime_add) (@runtime_mul)); [ replace_with_vm_compute t1; clear t1 | reflexivity ]. Definition goldilocks_mul_sig : {mul : (Z^sz -> Z^sz -> Z^sz)%type | forall a b : Z^sz, mul a b = goldilocks_mul_cps (n:=half_sz) (n2:=sz) wt (2 ^ 224) a b (fun ab => Positional.reduce_cps (n:=sz) wt s c ab id)}. Proof. eexists; cbv beta zeta; intros. cbv [goldilocks_mul_cps]. repeat autounfold. basesystem_partial_evaluation_RHS. do_replace_match_with_destructuring_match_in_goal. reflexivity. Defined. Definition mul_sig : {mul : (Z^sz -> Z^sz -> Z^sz)%type | forall a b : Z^sz, let eval := Positional.Fdecode (m := m) wt in Positional.Fdecode (m := m) wt (mul a b) = (eval a * eval b)%F}. Proof. eexists; cbv beta zeta; intros. pose proof wt_nonzero. let x := constr:( goldilocks_mul_cps (n:=half_sz) (n2:=sz) wt (2^224) a b (fun ab => Positional.reduce_cps (n:=sz) wt s c ab id)) in F_mod_eq; transitivity (Positional.eval wt x); repeat autounfold; [ | autorewrite with uncps push_id push_basesystem_eval; apply goldilocks_mul_correct; try assumption; cbv; congruence ]. cbv [mod_eq]; apply f_equal2; [ | reflexivity ]. apply f_equal. etransitivity; [|apply (proj2_sig (goldilocks_mul_sig))]. cbv [proj1_sig goldilocks_mul_sig]. reflexivity. Defined. Definition square_sig : {square : (Z^sz -> Z^sz)%type | forall a : Z^sz, let eval := Positional.Fdecode (m := m) wt in Positional.Fdecode (m := m) wt (square a) = (eval a * eval a)%F}. Proof. eexists; cbv beta zeta; intros. rewrite <-(proj2_sig mul_sig). apply f_equal. cbv [proj1_sig mul_sig]. reflexivity. Defined. (* Performs a full carry loop (as specified by carry_chain) *) Definition carry_sig : {carry : (Z^sz -> Z^sz)%type | forall a : Z^sz, let eval := Positional.Fdecode (m := m) wt in eval (carry a) = eval a}. Proof. eexists; cbv beta zeta; intros. pose proof wt_nonzero. pose proof wt_divides_chain1. pose proof div_mod. pose proof wt_divides_chain2. pose proof wt_divides_chain3. let x := constr:( Positional.chained_carries_cps (n:=sz) (div:=div)(modulo:=modulo) wt a carry_chain1 (fun r => Positional.carry_reduce_cps (n:=sz) (div:=div) (modulo:=modulo) wt s c r (fun r => Positional.chained_carries_cps (n:=sz) (div:=div) (modulo:=modulo) wt r carry_chain2 (fun r => Positional.carry_reduce_cps (n:=sz) (div:=div) (modulo:=modulo) wt s c r (fun r => Positional.chained_carries_cps (n:=sz) (div:=div) (modulo:=modulo) wt r carry_chain3 id ))))) in solve_op_F wt x. reflexivity. Defined. (* [freeze] preconditions *) Lemma wt_pos i : wt i > 0. Proof. eapply pow_ceil_mul_nat_pos; vm_decide. Qed. Lemma wt_multiples i : wt (S i) mod (wt i) = 0. Proof. apply pow_ceil_mul_nat_multiples; vm_decide. Qed. Hint Opaque freeze : uncps. Hint Rewrite freeze_id : uncps. Definition freeze_sig : {freeze : (Z^sz -> Z^sz)%type | forall a : Z^sz, (0 <= Positional.eval wt a < 2 * Z.pos m)-> let eval := Positional.Fdecode (m := m) wt in eval (freeze a) = eval a}. Proof. eexists; cbv beta zeta; intros. pose proof wt_nonzero. pose proof wt_pos. pose proof div_mod. pose proof wt_divides. pose proof wt_multiples. pose proof div_correct. pose proof modulo_correct. let x := constr:(freeze (n:=sz) wt (Z.ones bitwidth) m_enc a) in F_mod_eq; transitivity (Positional.eval wt x); repeat autounfold; [ | autorewrite with uncps push_id push_basesystem_eval; rewrite eval_freeze with (c:=c); try eassumption; try omega; try reflexivity; try solve [auto using B.Positional.select_id, B.Positional.eval_select, zselect_correct]; vm_decide]. cbv[mod_eq]; apply f_equal2; [ | reflexivity ]; apply f_equal. cbv - [runtime_opp runtime_add runtime_mul runtime_shr runtime_and Let_In Z.add_get_carry Z.zselect]. reflexivity. Defined. Definition ring_56 := (Ring.ring_by_isomorphism (F := F m) (H := Z^sz) (phi := Positional.Fencode wt) (phi' := Positional.Fdecode wt) (zero := proj1_sig zero_sig) (one := proj1_sig one_sig) (opp := proj1_sig opp_sig) (add := proj1_sig add_sig) (sub := proj1_sig sub_sig) (mul := proj1_sig mul_sig) (phi'_zero := proj2_sig zero_sig) (phi'_one := proj2_sig one_sig) (phi'_opp := proj2_sig opp_sig) (Positional.Fdecode_Fencode_id (sz_nonzero := sz_nonzero) (div_mod := div_mod) wt eq_refl wt_nonzero wt_divides') (Positional.eq_Feq_iff wt) (proj2_sig add_sig) (proj2_sig sub_sig) (proj2_sig mul_sig) ). (* Eval cbv [proj1_sig add_sig] in (proj1_sig add_sig). Eval cbv [proj1_sig sub_sig] in (proj1_sig sub_sig). Eval cbv [proj1_sig opp_sig] in (proj1_sig opp_sig). Eval cbv [proj1_sig mul_sig] in (proj1_sig mul_sig). Eval cbv [proj1_sig carry_sig] in (proj1_sig carry_sig). *) End Ops51.