Require Import Crypto.ModularArithmetic.ModularBaseSystem. Require Import Crypto.ModularArithmetic.ModularBaseSystemOpt. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParams. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseParamProofs. Require Import Crypto.ModularArithmetic.PseudoMersenneBaseRep. Require Import Coq.Lists.List Crypto.Util.ListUtil. Require Import Crypto.ModularArithmetic.PrimeFieldTheorems. Require Import Crypto.Tactics.VerdiTactics. Require Import Crypto.BaseSystem. Import ListNotations. Require Import Coq.ZArith.ZArith Coq.ZArith.Zpower Coq.ZArith.ZArith Coq.ZArith.Znumtheory. Local Open Scope Z. (* BEGIN PseudoMersenneBaseParams instance construction. *) Definition modulus : Z := 2^130 - 5. Lemma prime_modulus : prime modulus. Admitted. Definition int_width := 32%Z. Instance params1305 : PseudoMersenneBaseParams modulus. construct_params prime_modulus 5%nat 130. Defined. Definition mul2modulus := Eval compute in (construct_mul2modulus params1305). Instance subCoeff : SubtractionCoefficient modulus params1305. apply Build_SubtractionCoefficient with (coeff := mul2modulus); cbv; auto. Defined. Definition freezePreconditions1305 : freezePreconditions params1305 int_width. Proof. constructor; compute_preconditions. Defined. (* END PseudoMersenneBaseParams instance construction. *) (* Precompute k and c *) Definition k_ := Eval compute in k. Definition c_ := Eval compute in c. Definition c_subst : c = c_ := eq_refl c_. (* Makes Qed not take forever *) Opaque Z.shiftr Pos.iter Z.div2 Pos.div2 Pos.div2_up Pos.succ Z.land Z.of_N Pos.land N.ldiff Pos.pred_N Pos.pred_double Z.opp Z.mul Pos.mul Let_In digits Z.add Pos.add Z.pos_sub andb Z.eqb Z.ltb. Local Open Scope nat_scope. Lemma GF1305Base26_mul_reduce_formula : forall f0 f1 f2 f3 f4 g0 g1 g2 g3 g4, {ls | forall f g, rep [f0;f1;f2;f3;f4] f -> rep [g0;g1;g2;g3;g4] g -> rep ls (f*g)%F}. Proof. eexists; intros ? ? Hf Hg. pose proof (carry_mul_opt_rep k_ c_ (eq_refl k) c_subst _ _ _ _ Hf Hg) as Hfg. compute_formula. exact Hfg. Defined. Lemma GF1305Base26_add_formula : forall f0 f1 f2 f3 f4 g0 g1 g2 g3 g4, {ls | forall f g, rep [f0;f1;f2;f3;f4] f -> rep [g0;g1;g2;g3;g4] g -> rep ls (f + g)%F}. Proof. eexists; intros ? ? Hf Hg. pose proof (add_opt_rep _ _ _ _ Hf Hg) as Hfg. compute_formula. exact Hfg. Defined. Lemma GF1305Base26_sub_formula : forall f0 f1 f2 f3 f4 g0 g1 g2 g3 g4, {ls | forall f g, rep [f0;f1;f2;f3;f4] f -> rep [g0;g1;g2;g3;g4] g -> rep ls (f - g)%F}. Proof. eexists. intros f g Hf Hg. pose proof (sub_opt_rep _ _ _ _ Hf Hg) as Hfg. compute_formula. exact Hfg. Defined. Lemma GF1305Base26_freeze_formula : forall f0 f1 f2 f3 f4, {ls | forall x, rep [f0;f1;f2;f3;f4] x -> rep ls x}. Proof. eexists. intros x Hf. pose proof (freeze_opt_preserves_rep _ c_subst freezePreconditions1305 _ _ Hf) as Hfreeze_rep. compute_formula. exact Hfreeze_rep. Defined.