Require Crypto.Algebra.Field. Module W. Section WeierstrassCurves. (* Short Weierstrass curves with addition laws. References: * * * See also: * (page 79) *) Context {F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {field:@Algebra.Hierarchy.field F Feq Fzero Fone Fopp Fadd Fsub Fmul Finv Fdiv} {Feq_dec:Decidable.DecidableRel Feq} {char_ge_3:@Ring.char_ge F Feq Fzero Fone Fopp Fadd Fsub Fmul (BinNat.N.succ_pos (BinNat.N.two))}. Local Infix "=" := Feq : type_scope. Local Notation "a <> b" := (not (a = b)) : type_scope. Local Notation "x =? y" := (Decidable.dec (Feq x y)) (at level 70, no associativity) : type_scope. Local Notation "x =? y" := (Sumbool.bool_of_sumbool (Decidable.dec (Feq x y))) : bool_scope. Local Infix "+" := Fadd. Local Infix "*" := Fmul. Local Infix "-" := Fsub. Local Infix "/" := Fdiv. Local Notation "- x" := (Fopp x). Local Notation "x ^ 2" := (x*x) (at level 30). Local Notation "x ^ 3" := (x*x^2) (at level 30). Local Notation "'∞'" := unit : type_scope. Local Notation "'∞'" := (inr tt) : core_scope. Local Notation "( x , y )" := (inl (pair x y)). Local Open Scope core_scope. Context {a b: F}. Definition point := { P | match P with | (x, y) => y^2 = x^3 + a*x + b | ∞ => True end }. Definition coordinates (P:point) : F*F + ∞ := let (xyi,_) := P in xyi. Definition eq (P1 P2:point) := match coordinates P1, coordinates P2 with | (x1, y1), (x2, y2) => x1 = x2 /\ y1 = y2 | ∞, ∞ => True | _, _ => False end. Program Definition zero : point := ∞. Local Notation "0" := Fzero. Local Notation "1" := Fone. Local Notation "2" := (1+1). Local Notation "3" := (1+2). Program Definition add (P1 P2:point) : point := match coordinates P1, coordinates P2 return F*F+∞ with | (x1, y1), (x2, y2) => if x1 =? x2 then if y2 =? -y1 then ∞ else let k := (3*x1^2+a)/(2*y1) in let x3 := k^2-x1-x2 in let y3 := k*(x1-x3)-y1 in (x3, y3) else let k := (y2-y1)/(x2-x1) in let x3 := k^2-x1-x2 in let y3 := k*(x1-x3)-y1 in (x3, y3) | ∞, ∞ => ∞ | ∞, _ => coordinates P2 | _, ∞ => coordinates P1 end. Next Obligation. cbv [coordinates]; BreakMatch.break_match; trivial; Field.fsatz. Qed. Fixpoint mul (n:nat) (P : point) : point := match n with | O => zero | S n' => add P (mul n' P) end. End WeierstrassCurves. End W. Delimit Scope W_scope with W. Infix "+" := W.add : W_scope. Infix "*" := W.mul : W_scope.