Require Import Coq.ZArith.BinIntDef. Require Import Coq.NArith.BinNatDef. Require Import Coq.PArith.BinPosDef. Require Coq.ZArith.Znumtheory Coq.Numbers.BinNums. Require Crypto.Arithmetic.ModularArithmeticPre. Delimit Scope positive_scope with positive. Bind Scope positive_scope with BinPos.positive. Infix "+" := BinPos.Pos.add : positive_scope. Infix "*" := BinPos.Pos.mul : positive_scope. Infix "-" := BinPos.Pos.sub : positive_scope. Infix "^" := BinPos.Pos.pow : positive_scope. Delimit Scope N_scope with N. Bind Scope N_scope with BinNums.N. Infix "+" := BinNat.N.add : N_scope. Infix "*" := BinNat.N.mul : N_scope. Infix "-" := BinNat.N.sub : N_scope. Infix "/" := BinNat.N.div : N_scope. Infix "^" := BinNat.N.pow : N_scope. Delimit Scope Z_scope with Z. Bind Scope Z_scope with BinInt.Z. Infix "+" := BinInt.Z.add : Z_scope. Infix "*" := BinInt.Z.mul : Z_scope. Infix "-" := BinInt.Z.sub : Z_scope. Infix "/" := BinInt.Z.div : Z_scope. Infix "^" := BinInt.Z.pow : Z_scope. Infix "mod" := BinInt.Z.modulo (at level 40, no associativity) : Z_scope. Local Open Scope Z_scope. Global Coercion BinInt.Z.pos : BinPos.positive >-> BinInt.Z. Global Coercion BinInt.Z.of_N : BinNums.N >-> BinInt.Z. Global Set Printing Coercions. Module F. Definition F (m : BinPos.positive) := { z : BinInt.Z | z = z mod m }. Local Obligation Tactic := cbv beta; auto using ModularArithmeticPre.Z_mod_mod. Program Definition of_Z m (a:BinNums.Z) : F m := a mod m. Definition to_Z {m} (a:F m) : BinNums.Z := proj1_sig a. Section FieldOperations. Context {m : BinPos.positive}. Definition zero : F m := of_Z m 0. Definition one : F m := of_Z m 1. Definition add (a b:F m) : F m := of_Z m (to_Z a + to_Z b). Definition mul (a b:F m) : F m := of_Z m (to_Z a * to_Z b). Definition opp (a : F m) : F m := of_Z m (0 - to_Z a). Definition sub (a b:F m) : F m := add a (opp b). Definition inv_with_spec : { inv : F m -> F m | inv zero = zero /\ ( Znumtheory.prime m -> forall a, a <> zero -> mul (inv a) a = one ) } := ModularArithmeticPre.inv_impl. Definition inv : F m -> F m := Eval hnf in proj1_sig inv_with_spec. Definition div (a b:F m) : F m := mul a (inv b). Definition pow_with_spec : { pow : F m -> BinNums.N -> F m | forall a, pow a 0%N = one /\ forall x, pow a (1 + x)%N = mul a (pow a x) } := ModularArithmeticPre.pow_impl. Definition pow : F m -> BinNums.N -> F m := Eval hnf in proj1_sig pow_with_spec. End FieldOperations. Definition of_nat m (n:nat) := F.of_Z m (BinInt.Z.of_nat n). Definition to_nat {m} (x:F m) := BinInt.Z.to_nat (F.to_Z x). Notation nat_mod := of_nat (only parsing). Definition of_N m n := F.of_Z m (BinInt.Z.of_N n). Definition to_N {m} (x:F m) := BinInt.Z.to_N (F.to_Z x). Notation N_mod := of_N (only parsing). Notation Z_mod := of_Z (only parsing). End F. Notation F := F.F. Delimit Scope F_scope with F. Bind Scope F_scope with F.F. Infix "+" := F.add : F_scope. Infix "*" := F.mul : F_scope. Infix "-" := F.sub : F_scope. Infix "/" := F.div : F_scope. Infix "^" := F.pow : F_scope. Notation "0" := F.zero : F_scope. Notation "1" := F.one : F_scope.