Require Import Crypto.Spec.ModularArithmetic. Require Import Crypto.Spec.CompleteEdwardsCurve. Require Import Crypto.Spec.EdDSA. Require ModularArithmetic.PrimeFieldTheorems. (* to know that Z mod p is a field *) (* TODO: move this to a separate file *) Require Crypto.Util.Decidable. Require Crypto.Util.Tactics.SpecializeBy. Module Pre. Local Open Scope F_scope. Lemma curve25519_params_ok {prime_q:Znumtheory.prime (2^255-19)} : @E.twisted_edwards_params (F (2 ^ 255 - 19)) (@eq (F (2 ^ 255 - 19))) (@F.zero (2 ^ 255 - 19)) (@F.one (2 ^ 255 - 19)) (@F.add (2 ^ 255 - 19)) (@F.mul (2 ^ 255 - 19)) (@F.opp (2 ^ 255 - 19) 1) (@F.opp (2 ^ 255 - 19) (F.of_Z (2 ^ 255 - 19) 121665) / F.of_Z (2 ^ 255 - 19) 121666). Proof. pose (@PrimeFieldTheorems.F.Decidable_square (2^255-19) _); SpecializeBy.specialize_by Decidable.vm_decide; split; Decidable.vm_decide_no_check. Qed. End Pre. (* these 2 proofs can be generated using https://github.com/andres-erbsen/safecurves-primes *) Axiom prime_q : Znumtheory.prime (2^255-19). Global Existing Instance prime_q. Axiom prime_l : Znumtheory.prime (2^252 + 27742317777372353535851937790883648493). Global Existing Instance prime_l. Section Ed25519. Local Open Scope Z_scope. Definition q : BinNums.Z := 2^255 - 19. Definition Fq : Type := F q. Definition l : BinNums.Z := 2^252 + 27742317777372353535851937790883648493. Definition Fl : Type := F l. Local Open Scope F_scope. Definition a : Fq := F.opp 1. Definition d : Fq := F.opp (F.of_Z _ 121665) / (F.of_Z _ 121666). Local Open Scope nat_scope. Definition b : nat := 256. Definition n : nat := b - 2. Definition c : nat := 3. Context {H: forall n : nat, Word.word n -> Word.word (b + b)}. Global Instance curve_params : E.twisted_edwards_params (F:=Fq) (Feq:=Logic.eq) (Fzero:=F.zero) (Fone:=F.one) (Fadd:=F.add) (Fmul:=F.mul) (a:=a) (d:=d). Proof Pre.curve25519_params_ok. Definition E : Type := E.point (F:=Fq) (Feq:=Logic.eq) (Fone:=F.one) (Fadd:=F.add) (Fmul:=F.mul) (a:=a) (d:=d). Local Obligation Tactic := Decidable.vm_decide. (* to prove that B is on curve *) Program Definition B : E := (F.of_Z q 15112221349535400772501151409588531511454012693041857206046113283949847762202, F.of_Z q 4 / F.of_Z q 5). Local Infix "++" := Word.combine. Local Notation bit b := (Word.WS b Word.WO : Word.word 1). Definition Fencode {len} {m} : F m -> Word.word len := fun x : F m => (Word.NToWord _ (BinIntDef.Z.to_N (F.to_Z x))). Definition sign (x : F q) : bool := BinIntDef.Z.testbit (F.to_Z x) 0. Definition Eenc : E -> Word.word b := fun P => let '(x,y) := E.coordinates P in Fencode (len:=b-1) y ++ bit (sign x). Definition Senc : Fl -> Word.word b := Fencode (len:=b). Require Import Crypto.Util.Decidable. Definition ed25519 : CompleteEdwardsCurveTheorems.E.eq (BinInt.Z.to_nat l * B)%E E.zero -> (* TODO: prove this earlier than Experiments/Ed25519? *) EdDSA (E:=E) (Eadd:=E.add) (Ezero:=E.zero) (EscalarMult:=E.mul) (B:=B) (Eopp:=Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.E.opp) (* TODO: move defn *) (Eeq:=Crypto.CompleteEdwardsCurve.CompleteEdwardsCurveTheorems.E.eq) (* TODO: move defn *) (l:=l) (b:=b) (n:=n) (c:=c) (Eenc:=Eenc) (Senc:=Senc) (H:=H). Proof. split; try (assumption || exact _); vm_decide. Qed. End Ed25519.