Require Import Coq.micromega.Lia. Require Import Coq.ZArith.ZArith. Require Import Crypto.Util.ListUtil Coq.Lists.List Crypto.Util.ListUtil.FoldBool. (* Require Import Crypto.Util.Option. Require Import Crypto.Util.OptionList. Require Import Crypto.Util.CPSNotations. Require Import Crypto.Util.Bool.Reflect. *) Require Import Crypto.Util.ZRange. Require Import Crypto.Util.ZRange.Operations. Require Import Crypto.Util.ZUtil.Definitions. Require Import Crypto.Util.ZUtil.Notations. Require Import Crypto.Util.ZUtil.Tactics.LtbToLt. Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem. Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo. Require Import Crypto.Util.ZUtil.Hints. Require Import Crypto.Util.ZUtil.Hints.Core. Require Import Crypto.Util.ZUtil.ZSimplify.Core. Require Import Crypto.Util.ZUtil.ZSimplify. Require Import Crypto.Util.ZUtil.ZSimplify.Simple. Require Import Crypto.Util.ZUtil.Definitions. Require Import Crypto.Util.ZUtil.AddGetCarry. Require Import Crypto.Util.ZUtil.MulSplit. Require Import Crypto.Util.ZUtil.Zselect. Require Import Crypto.Util.ZUtil.Div. Require Import Crypto.Util.ZUtil.Modulo. Require Import Crypto.Util.ZRange. Require Import Crypto.Util.ZRange.Operations. Require Import Crypto.Util.ZRange.BasicLemmas. Require Import Crypto.Util.ZRange.OperationsBounds. Require Import Crypto.Util.Tactics.NormalizeCommutativeIdentifier. Require Import Crypto.Util.Tactics.BreakMatch. Require Import Crypto.Util.Tactics.SplitInContext. Require Import Crypto.Util.Tactics.SpecializeAllWays. Require Import Crypto.Util.Tactics.SpecializeBy. Require Import Crypto.Util.Tactics.RewriteHyp. Require Import Crypto.Util.Tactics.Head. Require Import Crypto.Util.Tactics.SetEvars. Require Import Crypto.Util.Tactics.SubstEvars. Require Import Crypto.Util.Prod. Require Import Crypto.Util.Bool. Require Import Crypto.Util.ListUtil. Require Import Crypto.Util.ListUtil.Forall. Require Import Crypto.Util.ListUtil.ForallIn. Require Import Crypto.Util.NatUtil. Require Import Crypto.Util.Option. Require Import Crypto.Util.CPSNotations. Require Import Crypto.Util.HProp. Require Import Crypto.Util.Decidable. Require Crypto.Util.PrimitiveProd. Require Crypto.Util.PrimitiveHList. Require Import Crypto.Language. Require Import Crypto.LanguageWf. Require Import Crypto.RewriterRules. Require Import Crypto.Util.LetIn. Require Import Crypto.Util.Tactics.Head. Require Import Crypto.Util.Notations. Import ListNotations. Local Open Scope bool_scope. Local Open Scope Z_scope. Local Definition mymap {A B} := Eval cbv in @List.map A B. Local Definition myapp {A} := Eval cbv in @List.app A. Local Definition myflatten {A} := Eval cbv in List.fold_right myapp (@nil A). Local Notation dont_do_again := (pair false) (only parsing). Local Notation do_again := (pair true) (only parsing). Import Language.Compilers. Import LanguageWf.Compilers. Local Ltac start_proof := cbv [snd]; hnf; cbv [PrimitiveHList.hlist ident.eagerly ident.literal ident.interp ident.fancy.interp ident.fancy.interp_with_wordmax Let_In ident.to_fancy invert_Some ident.cast2]; repeat apply PrimitiveProd.Primitive.pair; try exact tt. Local Hint Resolve eq_repeat_nat_rect eq_app_list_rect eq_combine_list_rect eq_firstn_nat_rect eq_skipn_nat_rect eq_update_nth_nat_rect : core. Lemma nbe_rewrite_rules_proofs : PrimitiveHList.hlist (@snd bool Prop) nbe_rewrite_rulesT. Proof using Type. start_proof; auto. Qed. Definition nbe_rewrite_rules_with_proofs := Eval cbv [PrimitiveHList.combine_hlist nbe_rewrite_rulesT] in PrimitiveHList.combine_hlist _ nbe_rewrite_rules_proofs. Local Ltac interp_good_t_step_related := first [ lazymatch goal with | [ |- ?x = ?x ] => reflexivity | [ |- True ] => exact I | [ H : ?x = true, H' : ?x = false |- _ ] => exfalso; clear -H H'; congruence | [ |- ?G ] => has_evar G; reflexivity | [ |- context[expr.interp_related_gen _ _ _ _] ] => reflexivity | [ |- context[_ == _] ] => reflexivity (*| [ |- context[(fst ?x, snd ?x)] ] => progress eta_expand | [ |- context[match ?x with pair a b => _ end] ] => progress eta_expand*) end | progress cbn [fst snd] in * | match goal with | [ H : zrange * zrange |- _ ] => destruct H end | progress intros | progress subst | assumption | progress inversion_option | progress destruct_head'_and | progress destruct_head'_unit | progress split_andb | match goal with | [ H : ?x = ?x -> _ |- _ ] => specialize (H eq_refl) | [ H : forall v : unit, _ |- _ ] => specialize (H tt) | [ H : negb ?b = true |- _ ] => rewrite (@Bool.negb_true_iff b) in H | [ |- context[Z.mul_split ?a ?b ?c] ] => rewrite (surjective_pairing (Z.mul_split a b c)), Z.mul_split_div, Z.mul_split_mod | [ |- context[Z.zselect] ] => rewrite Z.zselect_correct | [ |- context[Z.sub_get_borrow_full ?a ?b ?c] ] => rewrite (surjective_pairing (Z.sub_get_borrow_full a b c)), Z.sub_get_borrow_full_div, Z.sub_get_borrow_full_mod | [ |- context[Z.sub_with_get_borrow_full ?a ?b ?c ?d] ] => rewrite (surjective_pairing (Z.sub_with_get_borrow_full a b c d)), Z.sub_with_get_borrow_full_div, Z.sub_with_get_borrow_full_mod | [ |- context[Z.add_get_carry_full ?a ?b ?c] ] => rewrite (surjective_pairing (Z.add_get_carry_full a b c)), Z.add_get_carry_full_div, Z.add_get_carry_full_mod | [ |- context[Z.add_with_get_carry_full ?a ?b ?c ?d] ] => rewrite (surjective_pairing (Z.add_with_get_carry_full a b c d)), Z.add_with_get_carry_full_div, Z.add_with_get_carry_full_mod | [ |- pair _ _ = pair _ _ ] => apply f_equal2 | [ |- ?a mod ?b = ?a' mod ?b ] => apply f_equal2; lia | [ |- ?a / ?b = ?a' / ?b ] => apply f_equal2; lia | [ |- Z.opp _ = Z.opp _ ] => apply f_equal end | break_innermost_match_step | break_innermost_match_hyps_step | progress destruct_head'_or ]. Lemma arith_rewrite_rules_proofs (max_const_val : Z) : PrimitiveHList.hlist (@snd bool Prop) (arith_rewrite_rulesT max_const_val). Proof using Type. start_proof; auto; intros; try lia. all: autorewrite with zsimplify_const; try reflexivity. all: repeat first [ reflexivity | match goal with | [ |- context[Z.shiftl] ] => rewrite Z.shiftl_mul_pow2 by auto with zarith | [ |- context[Z.shiftr] ] => rewrite Z.shiftr_div_pow2 by auto with zarith | [ H : ?x = 2^?n |- context[Z.land _ (?x - 1)] ] => rewrite !Z.sub_1_r, H, <- Z.ones_equiv, Z.land_ones by auto with zarith end | Z.div_mod_to_quot_rem; nia | interp_good_t_step_related ]. Qed. Local Ltac interp_good_t_step_arith := first [ lazymatch goal with | [ |- ?x = ?x ] => reflexivity | [ |- True ] => exact I | [ H : ?x = true, H' : ?x = false |- _ ] => exfalso; clear -H H'; congruence | [ H : true = false |- _ ]=> exfalso; clear -H; congruence | [ H : false = true |- _ ]=> exfalso; clear -H; congruence end | progress cbv [option_beq] in * | match goal with | [ H : context[ZRange.normalize (ZRange.normalize _)] |- _ ] => rewrite ZRange.normalize_idempotent in H | [ |- context[ZRange.normalize (ZRange.normalize _)] ] => rewrite ZRange.normalize_idempotent | [ |- context[ident.cast (ZRange.normalize ?r)] ] => rewrite ident.cast_normalize | [ H : context[ident.cast (ZRange.normalize ?r)] |- _ ] => rewrite ident.cast_normalize in H | [ H : ?T, H' : ?T |- _ ] => clear H' | [ H : context[is_bounded_by_bool _ (ZRange.normalize (-_))] |- _ ] => rewrite ZRange.is_bounded_by_bool_move_opp_normalize in H | [ |- context[is_bounded_by_bool _ (ZRange.normalize (-_))] ] => rewrite ZRange.is_bounded_by_bool_move_opp_normalize | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true |- context[ident.cast _ ?r ?v] ] => rewrite (@ident.cast_in_normalized_bounds _ r v) by exact H | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true |- context[ident.cast _ (-?r) (-?v)] ] => rewrite (@ident.cast_in_normalized_bounds _ (-r) (-v)); [ | clear -H ] | [ |- context[ident.cast _ ?r (-ident.cast _ (-?r) ?v)] ] => rewrite (ident.cast_in_normalized_bounds r (-ident.cast _ (-r) v)) by (rewrite <- ZRange.is_bounded_by_bool_move_opp_normalize; apply ident.cast_always_bounded) | [ |- context[ident.cast _ ?r (ident.cast _ ?r _)] ] => rewrite (@ident.cast_idempotent _ _ r) | [ H : is_bounded_by_bool _ ?r = true |- _] => is_var r; unique pose proof (ZRange.is_bounded_by_normalize _ _ H) | [ H : lower ?x = upper ?x |- _ ] => is_var x; destruct x; cbn [upper lower] in * | [ H : is_bounded_by_bool ?x (ZRange.normalize r[?y~>?y]) = true |- _ ] => apply ZRange.is_bounded_by_bool_normalize_constant_iff in H | [ H : is_bounded_by_bool ?x r[?y~>?y] = true |- _ ] => apply ZRange.is_bounded_by_bool_constant_iff in H end | progress intros | progress subst | assumption | progress destruct_head'_and | progress Z.ltb_to_lt | progress split_andb | match goal with | [ |- ?a mod ?b = ?a' mod ?b ] => apply f_equal2; lia | [ |- ?a / ?b = ?a' / ?b ] => apply f_equal2; lia | [ |- Z.opp _ = Z.opp _ ] => apply f_equal end | break_innermost_match_step | break_innermost_match_hyps_step | progress destruct_head'_or | match goal with | [ |- context[-ident.cast _ (-?r) (-?v)] ] => rewrite (ident.cast_opp' r v) | [ |- context[ident.cast ?coor ?r ?v] ] => is_var v; pose proof (@ident.cast_always_bounded coor r v); generalize dependent (ident.cast coor r v); clear v; intro v; intros | [ |- context[ident.cast ?coor ?r ?v] ] => is_var v; is_var coor; pose proof (@ident.cast_cases coor r v); generalize dependent (ident.cast coor r v); intros | [ H : is_bounded_by_bool ?v ?r = true, H' : is_tighter_than_bool ?r ?r' = true |- _ ] => unique assert (is_bounded_by_bool v r' = true) by (eauto 2 using ZRange.is_bounded_by_of_is_tighter_than) | [ H : is_bounded_by_bool (-?v) ?r = true, H' : (-?r <=? ?r')%zrange = true |- _ ] => unique assert (is_bounded_by_bool v r' = true) by (apply (@ZRange.is_bounded_by_of_is_tighter_than _ _ H'); rewrite <- ZRange.is_bounded_by_bool_opp, ZRange.opp_involutive; exact H) | [ H : is_bounded_by_bool ?v (-?r) = true |- _ ] => is_var v; unique assert (is_bounded_by_bool (-v) r = true) by now rewrite <- ZRange.is_bounded_by_bool_move_opp_normalize, ZRange.normalize_opp | [ H : is_bounded_by_bool ?x r[0~>?v-1] = true |- _ ] => progress (try unique assert (0 <= x); try unique assert (x <= v - 1)); [ clear -H; cbv [is_bounded_by_bool] in H; cbn [lower upper] in H; Bool.split_andb; Z.ltb_to_lt; lia.. | ] end | progress cbn [expr.interp_related_gen] in * | match goal with | [ |- context[Z.shiftl] ] => rewrite Z.shiftl_mul_pow2 by auto with zarith | [ |- context[Z.shiftr] ] => rewrite Z.shiftr_div_pow2 by auto with zarith | [ |- context[Z.shiftl _ (-_)] ] => rewrite Z.shiftl_opp_r | [ |- context[Z.land _ (Z.ones _)] ] => rewrite Z.land_ones by auto using Z.log2_nonneg | [ |- context[- - _] ] => rewrite Z.opp_involutive | [ H : ?x = 2^Z.log2 ?x |- context[2^Z.log2 ?x] ] => rewrite <- H | [ H : ?x = 2^?n |- context[Z.land _ (?x - 1)] ] => rewrite !Z.sub_1_r, H, <- Z.ones_equiv, Z.land_ones by auto with zarith | [ |- _ = _ :> BinInt.Z ] => progress normalize_commutative_identifier Z.land Z.land_comm | [ H : ?x = ?y, H' : ?x <> ?y |- _ ] => exfalso; apply H', H | [ H : ?x = 2^Z.log2_up ?x - 1 |- context[2^Z.log2_up ?x - 1] ] => rewrite <- H | [ H : ?x = 2^Z.log2 ?x, H' : context[2^Z.log2 ?x] |- _ = _ :> BinInt.Z ] => rewrite <- H in H' | [ |- _ = _ :> BinInt.Z ] => progress autorewrite with zsimplify_const | [ H : 0 <= ?x, H' : ?x <= ?r - 1 |- context[?x mod ?r] ] => rewrite (Z.mod_small x r) by (clear -H H'; lia) | [ H : 0 <= ?x, H' : ?x <= ?y - 1 |- context[?x / ?y] ] => rewrite (Z.div_small x y) by (clear -H H'; lia) | [ H : ?x = 2^Z.log2 ?x |- _ ] => unique assert (0 <= x) by (rewrite H; auto with zarith) | [ |- _ mod ?x = _ mod ?x ] => progress (push_Zmod; pull_Zmod) | [ |- ?f (_ mod ?x) = ?f (_ mod ?x) ] => progress (push_Zmod; pull_Zmod) | [ |- _ mod ?x = _ mod ?x ] => apply f_equal2; (lia + nia) | _ => rewrite !Z.shiftl_mul_pow2 in * by auto using Z.log2_nonneg | _ => rewrite !Z.land_ones in * by auto using Z.log2_nonneg | H : ?x mod ?b * ?y <= _ |- context [ (?x * ?y) mod ?b ] => rewrite (PullPush.Z.mul_mod_l x y b); rewrite (Z.mod_small (x mod b * y) b) by omega | [ |- context[_ - ?x + ?x] ] => rewrite !Z.sub_add | [ |- context[_ mod (2^_) * 2^_] ] => rewrite <- !Z.mul_mod_distr_r_full | [ |- context[Z.land _ (Z.ones _)] ] => rewrite !Z.land_ones by lia | [ |- context[2^?a * 2^?b] ] => rewrite <- !Z.pow_add_r by lia | [ |- context[-?x + ?y] ] => rewrite !Z.add_opp_l | [ |- context[?n + - ?m] ] => rewrite !Z.add_opp_r | [ |- context[?n - - ?m] ] => rewrite !Z.sub_opp_r | [ |- context[Zpos ?p * ?x / Zpos ?p] ] => rewrite (@Z.div_mul' x (Zpos p)) in * by (clear; lia) | [ H : context[Zpos ?p * ?x / Zpos ?p] |- _ ] => rewrite (@Z.div_mul' x (Zpos p)) in * by (clear; lia) | [ |- ?f (?a mod ?r) = ?f (?b mod ?r) ] => apply f_equal; apply f_equal2; lia | [ |- context[-?a - ?b + ?c] ] => replace (-a - b + c) with (c - a - b) by (clear; lia) | [ |- context[?x - ?y + ?z] ] => lazymatch goal with | [ |- context[z - y + x] ] => progress replace (z - y + x) with (x - y + z) by (clear; lia) end | [ |- context[?x - ?y - ?z] ] => lazymatch goal with | [ |- context[x - z - y] ] => progress replace (x - z - y) with (x - y - z) by (clear; lia) end | [ |- context[?x + ?y] ] => lazymatch goal with | [ |- context[y + x] ] => progress replace (y + x) with (x + y) by (clear; lia) end | [ |- context[?x + ?y + ?z] ] => lazymatch goal with | [ |- context[x + z + y] ] => progress replace (x + z + y) with (x + y + z) by (clear; lia) | [ |- context[z + x + y] ] => progress replace (z + x + y) with (x + y + z) by (clear; lia) | [ |- context[z + y + x] ] => progress replace (z + y + x) with (x + y + z) by (clear; lia) | [ |- context[y + x + z] ] => progress replace (y + x + z) with (x + y + z) by (clear; lia) | [ |- context[y + z + x] ] => progress replace (y + z + x) with (x + y + z) by (clear; lia) end | [ |- - ident.cast _ (-?r) (- (?x / ?y)) = ident.cast _ ?r (?x' / ?y) ] => tryif constr_eq x x' then fail else replace x with x' by lia | [ |- _ = _ :> BinInt.Z ] => progress autorewrite with zsimplify_fast end ]. Local Ltac remove_casts := repeat match goal with | [ |- context[ident.cast _ r[?x~>?x] ?x] ] => rewrite (ident.cast_in_bounds r[x~>x] x) by apply ZRange.is_bounded_by_bool_constant | [ |- context[ident.cast _ ?r (ident.cast _ ?r _)] ] => rewrite ident.cast_idempotent | [ H : context[ident.cast _ ?r (ident.cast _ ?r _)] |- _ ] => rewrite ident.cast_idempotent in H | [ |- context[ident.cast ?coor ?r ?v] ] => is_var v; pose proof (@ident.cast_always_bounded coor r v); generalize dependent (ident.cast coor r v); clear v; intro v; intros | [ H : context[ident.cast ?coor ?r ?v] |- _ ] => is_var v; pose proof (@ident.cast_always_bounded coor r v); generalize dependent (ident.cast coor r v); clear v; intro v; intros | [ H : context[ZRange.constant ?v] |- _ ] => unique pose proof (ZRange.is_bounded_by_bool_normalize_constant v) | [ H : is_tighter_than_bool (?ZRf ?r1 ?r2) (ZRange.normalize ?rs) = true, H1 : is_bounded_by_bool ?v1 ?r1 = true, H2 : is_bounded_by_bool ?v2 ?r2 = true |- _ ] => let cst := multimatch goal with | [ |- context[ident.cast ?coor rs (?Zf v1 v2)] ] => constr:(ident.cast coor rs (Zf v1 v2)) | [ H : context[ident.cast ?coor rs (?Zf v1 v2)] |- _ ] => constr:(ident.cast coor rs (Zf v1 v2)) end in lazymatch cst with | ident.cast ?coor rs (?Zf v1 v2) => let lem := lazymatch constr:((ZRf, Zf)%core) with | (ZRange.shiftl, Z.shiftl)%core => constr:(@ZRange.is_bounded_by_bool_shiftl v1 r1 v2 r2 H1 H2) | (ZRange.shiftr, Z.shiftr)%core => constr:(@ZRange.is_bounded_by_bool_shiftr v1 r1 v2 r2 H1 H2) | (ZRange.land, Z.land)%core => constr:(@ZRange.is_bounded_by_bool_land v1 r1 v2 r2 H1 H2) end in try unique pose proof (@ZRange.is_bounded_by_of_is_tighter_than _ _ H _ lem); clear H; rewrite (@ident.cast_in_normalized_bounds coor rs (Zf v1 v2)) in * by assumption end | [ H : is_tighter_than_bool (?ZRf ?r1) (ZRange.normalize ?rs) = true, H1 : is_bounded_by_bool ?v1 ?r1 = true |- _ ] => let cst := multimatch goal with | [ |- context[ident.cast ?coor rs (?Zf v1)] ] => constr:(ident.cast coor rs (Zf v1)) | [ H : context[ident.cast ?coor rs (?Zf v1)] |- _ ] => constr:(ident.cast coor rs (Zf v1)) end in lazymatch cst with | ident.cast ?coor rs (?Zf v1) => let lem := lazymatch constr:((ZRf, Zf)%core) with | (ZRange.cc_m ?s, Z.cc_m ?s)%core => constr:(@ZRange.is_bounded_by_bool_cc_m s v1 r1 H1) end in try unique pose proof (@ZRange.is_bounded_by_of_is_tighter_than _ _ H _ lem); clear H; rewrite (@ident.cast_in_normalized_bounds coor rs (Zf v1)) in * by assumption end | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true |- context[ident.cast ?coor ?r ?v] ] => rewrite (@ident.cast_in_normalized_bounds coor r v) in * by assumption | [ H : is_bounded_by_bool ?v (ZRange.normalize ?r) = true, H' : context[ident.cast ?coor ?r ?v] |- _ ] => rewrite (@ident.cast_in_normalized_bounds coor r v) in * by assumption | [ H : is_bounded_by_bool ?v ?r = true, H' : is_tighter_than_bool ?r r[0~>?x-1]%zrange = true, H'' : Z.eqb ?x ?m = true |- context[?v mod ?m] ] => unique assert (is_bounded_by_bool v r[0~>x-1] = true) by (eapply ZRange.is_bounded_by_of_is_tighter_than; eassumption) | _ => progress Z.ltb_to_lt | _ => progress subst end. Local Lemma unfold_is_bounded_by_bool v r : is_bounded_by_bool v r = true -> lower r <= v <= upper r. Proof using Type. cbv [is_bounded_by_bool]; intro; split_andb; Z.ltb_to_lt; split; assumption. Qed. Local Lemma unfold_is_tighter_than_bool r1 r2 : is_tighter_than_bool r1 r2 = true -> lower r2 <= lower r1 /\ upper r1 <= upper r2. Proof using Type. cbv [is_tighter_than_bool]; intro; split_andb; Z.ltb_to_lt; split; assumption. Qed. Local Ltac unfold_cast_lemmas := repeat match goal with | [ H : context[ZRange.normalize (ZRange.constant _)] |- _ ] => rewrite ZRange.normalize_constant in H | [ H : is_bounded_by_bool _ (ZRange.normalize ?r) = true |- _ ] => is_var r; generalize dependent (ZRange.normalize r); clear r; intro r; intros | [ H : is_bounded_by_bool ?x (ZRange.constant ?x) = true |- _ ] => clear H | [ H : is_bounded_by_bool ?x ?r = true |- _ ] => is_var r; apply unfold_is_bounded_by_bool in H | [ H : is_bounded_by_bool ?x r[_~>_] = true |- _ ] => apply unfold_is_bounded_by_bool in H | [ H : is_tighter_than_bool r[_~>_] r[_~>_] = true |- _ ] => apply unfold_is_tighter_than_bool in H | _ => progress cbn [lower upper] in * | [ H : context[lower ?r] |- _ ] => is_var r; let l := fresh "l" in let u := fresh "u" in destruct r as [l u] | [ H : context[upper ?r] |- _ ] => is_var r; let l := fresh "l" in let u := fresh "u" in destruct r as [l u] | _ => progress Z.ltb_to_lt end. Local Ltac clear_useless_hyps := repeat match goal with | [ H : True |- _ ] => clear H | [ H : unit |- _ ] => clear H | [ H : nat |- _ ] => clear H | [ H : Z |- _ ] => clear H | [ H : zrange |- _ ] => clear H | [ H : ?x = ?x |- _ ] => clear H | [ H : ?x <= ?y <= ?z |- _ ] => is_var x; is_var z; clear x z H | [ H : ?x <= ?x' /\ ?y' <= ?y, H' : ?x' <= ?z <= ?y' |- _ ] => is_var x'; is_var y'; let H'' := fresh in assert (H'' : x <= z <= y) by (clear -H H'; lia); clear x' y' H H' end. Local Ltac systematically_handle_casts := remove_casts; unfold_cast_lemmas; clear_useless_hyps. Local Ltac fin_with_nia := lazymatch goal with | [ |- ident.cast _ ?r _ = ident.cast _ ?r _ ] => apply f_equal; Z.div_mod_to_quot_rem; nia | _ => reflexivity || (Z.div_mod_to_quot_rem; (lia + nia)) end. Lemma arith_with_casts_rewrite_rules_proofs : PrimitiveHList.hlist (@snd bool Prop) arith_with_casts_rewrite_rulesT. Proof using Type. start_proof; auto; intros; try lia. all: repeat interp_good_t_step_related. all: repeat interp_good_t_step_arith. all: remove_casts; try fin_with_nia. Qed. Lemma strip_literal_casts_rewrite_rules_proofs : PrimitiveHList.hlist (@snd bool Prop) strip_literal_casts_rewrite_rulesT. Proof using Type. start_proof; auto; intros; remove_casts; reflexivity. Qed. Section fancy. Context (invert_low invert_high : Z (*log2wordmax*) -> Z -> option Z) (value_range flag_range : zrange). Lemma fancy_rewrite_rules_proofs : PrimitiveHList.hlist (@snd bool Prop) fancy_rewrite_rulesT. Proof using Type. start_proof. Qed. Local Ltac fancy_local_t := repeat match goal with | [ H : forall s v v', ?invert_low s v = Some v' -> v = _, H' : ?invert_low _ _ = Some _ |- _ ] => apply H in H' | [ H : forall s v v', ?invert_low s v = Some v' -> v = _ |- _ ] => clear invert_low H | [ H : None <> None |- _ ] => exfalso; exact (H eq_refl) end. Local Ltac more_fancy_arith_t := repeat autorewrite with zsimplify in *. Lemma fancy_with_casts_rewrite_rules_proofs (Hlow : forall s v v', invert_low s v = Some v' -> v = Z.land v' (2^(s/2)-1)) (Hhigh : forall s v v', invert_high s v = Some v' -> v = Z.shiftr v' (s/2)) : PrimitiveHList.hlist (@snd bool Prop) (@fancy_with_casts_rewrite_rulesT invert_low invert_high value_range flag_range). Proof using Type. start_proof; auto; intros; try lia. Time all: repeat interp_good_t_step_related. Time all: fancy_local_t. Time all: try solve [ systematically_handle_casts; repeat interp_good_t_step_arith ]. Qed. End fancy.