(** * Inline: Remove some [Let] expressions *) Require Import Crypto.Reflection.Syntax. Require Import Crypto.Reflection.Relations. Require Import Crypto.Reflection.InlineWf. Require Import Crypto.Reflection.InterpProofs. Require Import Crypto.Reflection.Inline. Require Import Crypto.Util.Tactics Crypto.Util.Sigma Crypto.Util.Prod. Local Open Scope ctype_scope. Section language. Context (base_type_code : Type). Context (interp_base_type : base_type_code -> Type). Context (op : flat_type base_type_code -> flat_type base_type_code -> Type). Context (interp_op : forall src dst, op src dst -> interp_flat_type interp_base_type src -> interp_flat_type interp_base_type dst). Local Notation flat_type := (flat_type base_type_code). Local Notation type := (type base_type_code). Local Notation interp_type := (interp_type interp_base_type). Local Notation interp_flat_type := (interp_flat_type interp_base_type). Local Notation exprf := (@exprf base_type_code op). Local Notation expr := (@expr base_type_code op). Local Notation Expr := (@Expr base_type_code op). Local Notation wff := (@wff base_type_code op). Local Notation wf := (@wf base_type_code op). Local Hint Extern 1 => eapply interpf_SmartVarVarf. Local Ltac t_fin := repeat match goal with | _ => reflexivity | _ => progress simpl in * | _ => progress unfold postprocess_for_const in * | _ => progress intros | _ => progress inversion_sigma | _ => progress inversion_prod | _ => solve [ intuition eauto ] | _ => apply (f_equal (interp_op _ _ _)) | _ => apply (f_equal2 (@pair _ _)) | _ => progress specialize_by assumption | _ => progress subst | [ H : context[List.In _ (_ ++ _)] |- _ ] => setoid_rewrite List.in_app_iff in H | [ H : or _ _ |- _ ] => destruct H | _ => progress break_match | _ => rewrite <- !surjective_pairing | [ H : ?x = _, H' : context[?x] |- _ ] => rewrite H in H' | [ H : _ |- _ ] => apply H | [ H : _ |- _ ] => rewrite H end. Lemma interpf_inline_constf is_const G {t} e1 e2 (wf : @wff _ _ G t e1 e2) (H : forall t x x', List.In (existT (fun t : base_type_code => (exprf (Tbase t) * interp_base_type t)%type) t (x, x')) G -> interpf interp_op x = x') : interpf interp_op (inline_constf is_const e1) = interpf interp_op e2. Proof. clear -wf H. induction wf; t_fin. Qed. Local Hint Resolve interpf_inline_constf. Lemma interp_inline_const is_const G {t} e1 e2 (wf : @wf _ _ G t e1 e2) (H : forall t x x', List.In (existT (fun t : base_type_code => (exprf (Tbase t) * interp_base_type t)%type) t (x, x')) G -> interpf interp_op x = x') : interp_type_gen_rel_pointwise (fun _ => @eq _) (interp interp_op (inline_const is_const e1)) (interp interp_op e2). Proof. induction wf. { eapply (interpf_inline_constf is_const); eauto. } { simpl in *; intro. match goal with | [ H : _ |- _ ] => apply H; intuition (inversion_sigma; inversion_prod; subst; eauto) end. } Qed. Lemma Interp_InlineConst is_const {t} (e : Expr t) (wf : Wf e) : interp_type_gen_rel_pointwise (fun _ => @eq _) (Interp interp_op (InlineConst is_const e)) (Interp interp_op e). Proof. unfold Interp, InlineConst. eapply (interp_inline_const is_const) with (G := nil); simpl; intuition. Qed. End language.