(** * Push-Button Synthesis of Word-By-Word Montgomery *) Require Import Coq.Strings.String. Require Import Coq.micromega.Lia. Require Import Coq.ZArith.ZArith. Require Import Coq.MSets.MSetPositive. Require Import Coq.Lists.List. Require Import Coq.QArith.QArith_base Coq.QArith.Qround. Require Import Coq.Program.Tactics. (* For WBW Montgomery proofs *) Require Import Coq.derive.Derive. Require Import Crypto.Util.ErrorT. Require Import Crypto.Util.ListUtil. Require Import Crypto.Util.ListUtil.FoldBool. Require Import Crypto.Util.Strings.Decimal. Require Import Crypto.Util.Strings.Equality. Require Import Crypto.Util.ZRange. Require Import Crypto.Util.ZUtil.Definitions. Require Import Crypto.Util.ZUtil.Zselect. Require Import Crypto.Util.ZUtil.Tactics.LtbToLt. Require Import Crypto.Util.ZUtil.ModInv. (* Only needed for WBW Montgomery *) Require Import Crypto.Util.ZUtil.Modulo. (* Only needed for WBW Montgomery proofs *) Require Import Crypto.Util.ZUtil.Le. (* Only needed for WBW Montgomery proofs *) Require Import Crypto.Util.Prod. (* For WBW Montgomery proofs *) Require Import Crypto.Util.ZUtil.Tactics.PullPush.Modulo. (* For WBW montgomery proofs *) Require Import Crypto.Util.ZUtil.Tactics.RewriteModSmall. (* For WBW montgomery proofs *) Require Import Crypto.Util.ZUtil.Div. (* For WBW Montgomery proofs *) Require Import Crypto.Util.ZUtil.Tactics.DivModToQuotRem. (* For WBW Montgomery proofs *) Require Import Crypto.Util.ZUtil.Ones. (* For WBW montgomery proofs *) Require Import Crypto.Util.ZUtil.Shift. (* For WBW montgomery proofs *) Require Import Crypto.Util.Tactics.HasBody. Require Import Crypto.Util.Tactics.Head. Require Import Crypto.Util.Tactics.SpecializeBy. Require Import Crypto.LanguageWf. Require Import Crypto.Language. Require Import Crypto.AbstractInterpretation. Require Import Crypto.CStringification. Require Import Crypto.Arithmetic.Core. Require Import Crypto.Arithmetic.WordByWordMontgomery. Require Import Crypto.BoundsPipeline. Require Import Crypto.COperationSpecifications. Require Import Crypto.PushButtonSynthesis.ReificationCache. Require Import Crypto.PushButtonSynthesis.Primitives. Require Import Crypto.PushButtonSynthesis.WordByWordMontgomeryReificationCache. Import ListNotations. Local Open Scope Z_scope. Local Open Scope list_scope. Local Open Scope bool_scope. Import LanguageWf.Compilers Language.Compilers AbstractInterpretation.Compilers CStringification.Compilers. Import Compilers.defaults. Import COperationSpecifications.Primitives. Import COperationSpecifications.Solinas. Import COperationSpecifications.WordByWordMontgomery. Import Associational Positional. Import Arithmetic.WordByWordMontgomery. Import WordByWordMontgomeryReificationCache.WordByWordMontgomery. Local Coercion Z.of_nat : nat >-> Z. Local Coercion QArith_base.inject_Z : Z >-> Q. Local Coercion Z.pos : positive >-> Z. Local Set Keyed Unification. (* needed for making [autorewrite] fast, c.f. COQBUG(https://github.com/coq/coq/issues/9283) *) (* needed for making [autorewrite] not take a very long time *) Local Opaque reified_mul_gen reified_add_gen reified_sub_gen reified_opp_gen reified_to_bytes_gen reified_from_bytes_gen reified_nonzero_gen reified_square_gen reified_encode_gen reified_from_montgomery_gen reified_zero_gen reified_one_gen expr.Interp. Section __. Context (m : Z) (machine_wordsize : Z). Let s := 2^Z.log2_up m. Let c := s - m. Let n : nat := Z.to_nat (Qceiling (Z.log2_up s / machine_wordsize)). Let r := 2^machine_wordsize. Let r' := match Z.modinv r m with | Some r' => r' | None => 0 end. Let m' := match Z.modinv (-m) r with | Some m' => m' | None => 0 end. Let n_bytes := bytes_n machine_wordsize 1 n. Let prime_upperbound_list : list Z := Partition.partition (UniformWeight.uweight machine_wordsize) n (s-1). Let prime_bytes_upperbound_list : list Z := Partition.partition (weight 8 1) n_bytes (s-1). Let upperbounds : list Z := prime_upperbound_list. Definition prime_bound : ZRange.type.option.interp (base.type.Z) := Some r[0~>m-1]%zrange. Definition prime_bounds : ZRange.type.option.interp (base.type.list (base.type.Z)) := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_upperbound_list). Definition prime_bytes_bounds : ZRange.type.option.interp (base.type.list (base.type.Z)) := Some (List.map (fun v => Some r[0 ~> v]%zrange) prime_bytes_upperbound_list). Local Notation saturated_bounds_list := (saturated_bounds_list n machine_wordsize). Local Notation saturated_bounds := (saturated_bounds n machine_wordsize). (* We include [0], so that even after bounds relaxation, we can notice where the constant 0s are, and remove them. *) Definition possible_values_of_machine_wordsize := [0; 1; machine_wordsize; 2 * machine_wordsize]%Z. Definition possible_values_of_machine_wordsize_with_bytes := [0; 1; 8; machine_wordsize; 2 * machine_wordsize]%Z. Let possible_values := possible_values_of_machine_wordsize. Let possible_values_with_bytes := possible_values_of_machine_wordsize_with_bytes. Definition bounds : list (ZRange.type.option.interp base.type.Z) := Option.invert_Some saturated_bounds (*List.map (fun u => Some r[0~>u]%zrange) upperbounds*). (** Note: If you change the name or type signature of this function, you will need to update the code in CLI.v *) Definition check_args {T} (res : Pipeline.ErrorT T) : Pipeline.ErrorT T := fold_right (fun '(b, e) k => if b:bool then Error e else k) res [(negb (1 0 /\ s - c <> 0 /\ 0 < s /\ s <> 0 /\ 0 < machine_wordsize /\ n <> 0%nat /\ List.length bounds = n /\ 0 < 1 <= machine_wordsize /\ 0 < c < s /\ (r * r') mod m = 1 /\ (m * m') mod r = (-1) mod r /\ 0 < machine_wordsize /\ 1 < m /\ m < r^n /\ s = 2^Z.log2 s /\ s <= UniformWeight.uweight machine_wordsize n /\ s <= UniformWeight.uweight 8 n_bytes /\ UniformWeight.uweight machine_wordsize n = UniformWeight.uweight 8 n_bytes. Proof. clear -curve_good. cbv [check_args fold_right] in curve_good. cbv [bounds prime_bound prime_bounds saturated_bounds] in *. break_innermost_match_hyps; try discriminate. rewrite negb_false_iff in *. Z.ltb_to_lt. rewrite NPeano.Nat.eqb_neq in *. intros. cbv [Qnum Qden Qceiling Qfloor Qopp Qdiv Qplus inject_Z Qmult Qinv] in *. rewrite ?map_length, ?Z.mul_0_r, ?Pos.mul_1_r, ?Z.mul_1_r in *. specialize_by lia. repeat match goal with H := _ |- _ => subst H end. repeat match goal with | [ H : list_beq _ _ _ _ = true |- _ ] => apply internal_list_dec_bl in H; [ | intros; Z.ltb_to_lt; omega.. ] end. repeat apply conj. { destruct m eqn:?; cbn; lia. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } { use_curve_good_t. } Qed. Local Notation valid := (Arithmetic.WordByWordMontgomery.valid machine_wordsize n m). Local Notation bytes_valid := (Arithmetic.WordByWordMontgomery.valid 8 n_bytes m). Local Notation from_montgomery_res := (from_montgomerymod machine_wordsize n m m'). Local Notation notations_for_docstring prefix := ((CorrectnessStringification.dyn_context.cons m "m" (CorrectnessStringification.dyn_context.cons r' ("((2^" ++ decimal_string_of_Z machine_wordsize ++ ")⁻¹ mod m)") (CorrectnessStringification.dyn_context.cons from_montgomery_res "from_montgomery" (CorrectnessStringification.dyn_context.cons (@eval machine_wordsize n) "eval" (CorrectnessStringification.dyn_context.cons (@eval 8 n_bytes) "bytes_eval" CorrectnessStringification.dyn_context.nil)))))%string) (only parsing). Local Notation "'docstring_with_summary_from_lemma!' prefix summary correctness" := (docstring_with_summary_from_lemma_with_ctx! (notations_for_docstring prefix) summary correctness) (only parsing, at level 10, prefix at next level, summary at next level, correctness at next level). Definition mul := Pipeline.BoundsPipeline false (* subst01 *) None (* fancy *) possible_values (reified_mul_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m') (Some bounds, (Some bounds, tt)) (Some bounds). Definition smul (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "mul" mul (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " multiplies two field elements in the Montgomery domain."]%string) (mul_correct machine_wordsize n m valid from_montgomery_res)). Definition square := Pipeline.BoundsPipeline false (* subst01 *) None (* fancy *) possible_values (reified_square_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m') (Some bounds, tt) (Some bounds). Definition ssquare (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "square" square (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " squares a field element in the Montgomery domain."]%string) (square_correct machine_wordsize n m valid from_montgomery_res)). Definition add := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_add_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m) (Some bounds, (Some bounds, tt)) (Some bounds). Definition sadd (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "add" add (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " adds two field elements in the Montgomery domain."]%string) (add_correct machine_wordsize n m valid from_montgomery_res)). Definition sub := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_sub_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m) (Some bounds, (Some bounds, tt)) (Some bounds). Definition ssub (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "sub" sub (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " subtracts two field elements in the Montgomery domain."]%string) (sub_correct machine_wordsize n m valid from_montgomery_res)). Definition opp := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_opp_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m) (Some bounds, tt) (Some bounds). Definition sopp (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "opp" opp (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " negates a field element in the Montgomery domain."]%string) (opp_correct machine_wordsize n m valid from_montgomery_res)). Definition from_montgomery := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_from_montgomery_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m') (Some bounds, tt) (Some bounds). Definition sfrom_montgomery (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "from_montgomery" from_montgomery (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " translates a field element out of the Montgomery domain."]%string) (from_montgomery_correct machine_wordsize n m r' valid)). Definition nonzero := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values reified_nonzero_gen (Some bounds, tt) (Some r[0~>r-1]%zrange). Definition snonzero (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "nonzero" nonzero (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " outputs a single non-zero word if the input is non-zero and zero otherwise."]%string) (nonzero_correct machine_wordsize n m valid from_montgomery_res)). Definition to_bytes := Pipeline.BoundsPipeline false (* subst01 *) None (* fancy *) possible_values_with_bytes (reified_to_bytes_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n) (prime_bounds, tt) prime_bytes_bounds. Definition sto_bytes (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "to_bytes" to_bytes (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " serializes a field element in the Montgomery domain to bytes in little-endian order."]%string) (to_bytes_correct machine_wordsize n n_bytes m valid)). Definition from_bytes := Pipeline.BoundsPipeline false (* subst01 *) None (* fancy *) possible_values_with_bytes (reified_from_bytes_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify 1 @ GallinaReify.Reify n) (prime_bytes_bounds, tt) prime_bounds. Definition sfrom_bytes (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "from_bytes" from_bytes (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " deserializes a field element in the Montgomery domain from bytes in little-endian order."]%string) (from_bytes_correct machine_wordsize n n_bytes m valid bytes_valid)). Definition encode := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_encode_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m') (prime_bound, tt) (Some bounds). Definition sencode (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "encode" encode (docstring_with_summary_from_lemma! prefix (fun fname : string => ["The function " ++ fname ++ " encodes an integer as a field element in the Montgomery domain."]%string) (encode_correct machine_wordsize n m valid from_montgomery_res)). Definition zero := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_zero_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m') tt (Some bounds). Definition szero (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "zero" zero (docstring_with_summary_from_lemma! prefix (fun fname => ["The function " ++ fname ++ " returns the field element zero in the Montgomery domain."]%string) (zero_correct machine_wordsize n m valid from_montgomery_res)). Definition one := Pipeline.BoundsPipeline true (* subst01 *) None (* fancy *) possible_values (reified_one_gen @ GallinaReify.Reify machine_wordsize @ GallinaReify.Reify n @ GallinaReify.Reify m @ GallinaReify.Reify m') tt (Some bounds). Definition sone (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Eval cbv beta in FromPipelineToString prefix "one" one (docstring_with_summary_from_lemma! prefix (fun fname => ["The function " ++ fname ++ " returns the field element one in the Montgomery domain."]%string) (one_correct machine_wordsize n m valid from_montgomery_res)). Definition selectznz : Pipeline.ErrorT _ := Primitives.selectznz n machine_wordsize. Definition sselectznz (prefix : string) : string * (Pipeline.ErrorT (list string * ToString.C.ident_infos)) := Primitives.sselectznz n machine_wordsize prefix. Lemma bounded_by_of_valid x (H : valid x) : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) (Some bounds) x = true. Proof using curve_good. pose proof use_curve_good as use_curve_good. clear -H use_curve_good curve_good. destruct H as [H _]; destruct_head'_and. cbv [small] in H. cbv [ZRange.type.base.option.is_bounded_by bounds saturated_bounds saturated_bounds_list Option.invert_Some]. replace n with (List.length x) by now rewrite H, Partition.length_partition. rewrite <- map_const, fold_andb_map_map1, fold_andb_map_iff. cbv [ZRange.type.base.is_bounded_by is_bounded_by_bool lower upper]. split; [ reflexivity | ]. intros *; rewrite combine_same, in_map_iff, Bool.andb_true_iff, !Z.leb_le. intros; destruct_head'_ex; destruct_head'_and; subst *; cbn [fst snd]. match goal with | [ H : In ?v x |- _ ] => revert v H end. rewrite H. generalize (eval (n:=n) machine_wordsize x). cbn [base.interp base.base_interp]. generalize n. intro n'. induction n' as [|n' IHn']. { cbv [Partition.partition seq map In]; tauto. } { intros *; rewrite Partition.partition_step, in_app_iff; cbn [List.In]. intros; destruct_head'_or; subst *; eauto; try tauto; []. rewrite UniformWeight.uweight_S by lia. assert (0 < UniformWeight.uweight machine_wordsize n') by now apply UniformWeight.uwprops. assert (0 < 2 ^ machine_wordsize) by auto with zarith. assert (0 < 2 ^ machine_wordsize * UniformWeight.uweight machine_wordsize n') by nia. rewrite <- Z.mod_pull_div by lia. rewrite Z.le_sub_1_iff. auto with zarith. } Qed. (* XXX FIXME *) Lemma bounded_by_prime_bounds_of_valid_gen lgr n' x (Hlgr : 0 < lgr) (Hs : s = 2^Z.log2 s) (Hs' : s <= UniformWeight.uweight lgr n') (H : WordByWordMontgomery.valid lgr n' m x) : ZRange.type.base.option.is_bounded_by (t:=base.type.list base.type.Z) (Some (List.map (fun v => Some r[0~>v]%zrange) (Partition.partition (UniformWeight.uweight lgr) n' (s-1)))) x = true. Proof using curve_good. pose proof use_curve_good as use_curve_good. clear -H use_curve_good curve_good Hlgr Hs Hs'. destruct H as [H ?]; destruct_head'_and. cbv [small] in H. cbv [ZRange.type.base.option.is_bounded_by]. replace n' with (List.length x) by now rewrite H, Partition.length_partition. rewrite fold_andb_map_map1, fold_andb_map_iff. split; [ now autorewrite with distr_length | ]. cbv [ZRange.type.base.is_bounded_by is_bounded_by_bool lower upper]. rewrite H; autorewrite with distr_length. intros [v1 v0]; cbn [fst snd]. rename x into x'. generalize dependent (eval (n:=n') lgr x'). replace m with (s - c) in * by easy. intro x; intros ??? H; subst x'. eapply In_nth_error in H; destruct H as [i H]. rewrite nth_error_combine in H. break_match_hyps; try discriminate; []; Option.inversion_option; Prod.inversion_prod; subst. cbv [Partition.partition] in *. apply nth_error_map in Heqo; apply nth_error_map in Heqo0; destruct Heqo as (?&?&?), Heqo0 as (?&?&?). rewrite nth_error_seq in *. break_match_hyps; try discriminate; Option.inversion_option; Prod.inversion_prod; subst. rewrite ?Nat.add_0_l. assert (0 <= x < s) by lia. replace s with (2^Z.log2 s) by easy. assert (1 < s) by lia. assert (0 < Z.log2 s) by now apply Z.log2_pos. assert (1 < 2^Z.log2 s) by auto with zarith. generalize dependent (Z.log2 s); intro lgs; intros. edestruct (UniformWeight.uwprops lgr); try lia. assert (forall i : nat, 0 <= UniformWeight.uweight lgr i) by (intro z; specialize (weight_positive z); lia). apply Bool.andb_true_intro; split; apply OrdersEx.Z_as_OT.leb_le; [apply Z.div_nonneg | apply Z.div_le_mono_nonneg]; trivial. apply Z.mod_pos_bound; trivial. cbv [UniformWeight.uweight]. cbv [weight]. rewrite Z.div_1_r. rewrite Z.opp_involutive. rewrite <-2Z.land_ones by nia. rewrite Z.sub_1_r, <-Z.ones_equiv. rewrite Z.land_ones_ones. destruct ((lgs H end in let H := fresh in pose proof use_curve_good as H; (* I want to just use [clear -H Hres], but then I can't use any lemmas in the section because of COQBUG(https://github.com/coq/coq/issues/8153) *) repeat match goal with | [ H' : _ |- _ ] => tryif first [ has_body H' | constr_eq H' H | constr_eq H' Hres | dont_clear H' ] then fail else clear H' end; cbv zeta in *; destruct_head'_and; let f := match type of Hres with ?f = _ => head f end in try cbv [f] in *; hnf; PipelineTactics.do_unfolding; try (let m := match goal with m := _ - Associational.eval _ |- _ => m end in cbv [m] in * ); intros; lazymatch goal with | [ |- _ <-> _ ] => idtac | [ |- _ = _ ] => idtac | _ => split; [ | try split ]; cbv [small] end; PipelineTactics.use_compilers_correctness Hres; repeat first [ reflexivity | now apply bounded_by_of_valid | now apply bounded_by_prime_bounds_of_valid | now apply bounded_by_prime_bytes_bounds_of_bytes_valid | now apply weight_bounded_of_bytes_valid | solve [ eapply op_correct; try eassumption; solve_extra_bounds_side_conditions ] | progress autorewrite with interp interp_gen_cache push_eval | progress autounfold with push_eval | progress autorewrite with distr_length in * | solve [ cbv [valid small eval UniformWeight.uweight n_bytes] in *; destruct_head'_and; auto ] ]. (** TODO: DESIGN DECISION: The correctness lemmas for most of the montgomery things are parameterized over a `from_montgomery`. When filling this in for, e.g., mul-correctness, should I use `from_montgomery` from arithmetic, or should I use `Interp reified_from_montgomery` (the post-pipeline version), and take in success of the pipeline on `from_montgomery` as well? *) Lemma mul_correct res (Hres : mul = Success res) : mul_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness mulmod_correct. Qed. Lemma square_correct res (Hres : square = Success res) : square_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness squaremod_correct. Qed. Lemma add_correct res (Hres : add = Success res) : add_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness addmod_correct. Qed. Lemma sub_correct res (Hres : sub = Success res) : sub_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness submod_correct. Qed. Lemma opp_correct res (Hres : opp = Success res) : opp_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness oppmod_correct. Qed. Lemma from_montgomery_correct res (Hres : from_montgomery = Success res) : from_montgomery_correct machine_wordsize n m r' valid (Interp res). Proof using curve_good. prove_correctness from_montgomerymod_correct. Qed. Lemma nonzero_correct res (Hres : nonzero = Success res) : nonzero_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness nonzeromod_correct. Qed. Lemma to_bytes_correct res (Hres : to_bytes = Success res) : to_bytes_correct machine_wordsize n n_bytes m valid (Interp res). Proof using curve_good. prove_correctness to_bytesmod_correct. Qed. Lemma from_bytes_correct res (Hres : from_bytes = Success res) : from_bytes_correct machine_wordsize n n_bytes m valid bytes_valid (Interp res). Proof using curve_good. prove_correctness eval_from_bytesmod_and_partitions. Qed. Strategy -1000 [encode]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *) Lemma encode_correct res (Hres : encode = Success res) : encode_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness encodemod_correct. Qed. Strategy -1000 [zero]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *) Lemma zero_correct res (Hres : zero = Success res) : zero_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness encodemod_correct. Qed. Strategy -1000 [one]. (* if we don't tell the kernel to unfold this early, then [Qed] seems to run off into the weeds *) Lemma one_correct res (Hres : one = Success res) : one_correct machine_wordsize n m valid from_montgomery_res (Interp res). Proof using curve_good. prove_correctness encodemod_correct. Qed. Local Opaque Pipeline.BoundsPipeline. (* need this or else [eapply Pipeline.BoundsPipeline_correct in Hres] takes forever *) Lemma selectznz_correct res (Hres : selectznz = Success res) : selectznz_correct machine_wordsize n saturated_bounds_list (Interp res). Proof using curve_good. Primitives.prove_correctness use_curve_good. Qed. Section ring. Context from_montgomery_res (Hfrom_montgomery : from_montgomery = Success from_montgomery_res) mul_res (Hmul : mul = Success mul_res) add_res (Hadd : add = Success add_res) sub_res (Hsub : sub = Success sub_res) opp_res (Hopp : opp = Success opp_res) encode_res (Hencode : encode = Success encode_res) zero_res (Hzero : zero = Success zero_res) one_res (Hone : one = Success one_res). Definition GoodT : Prop := GoodT machine_wordsize n m valid (Interp from_montgomery_res) (Interp mul_res) (Interp add_res) (Interp sub_res) (Interp opp_res) (Interp encode_res) (Interp zero_res) (Interp one_res). Theorem Good : GoodT. Proof using curve_good Hfrom_montgomery Hmul Hadd Hsub Hopp Hencode Hzero Hone. pose proof use_curve_good; cbv zeta in *; destruct_head'_and. eapply Good. all: repeat first [ assumption | apply from_montgomery_correct | lia ]. all: hnf; intros. all: push_Zmod; erewrite !(fun v Hv => proj1 (from_montgomery_correct _ Hfrom_montgomery v Hv)), <- !eval_from_montgomerymod; try eassumption; pull_Zmod. all: repeat first [ assumption | lazymatch goal with | [ |- context[mul_res] ] => apply mul_correct | [ |- context[add_res] ] => apply add_correct | [ |- context[sub_res] ] => apply sub_correct | [ |- context[opp_res] ] => apply opp_correct | [ |- context[encode_res] ] => apply encode_correct | [ |- context[zero_res] ] => apply zero_correct | [ |- context[one_res] ] => apply one_correct end ]. Qed. End ring. Section for_stringification. Local Open Scope string_scope. Local Open Scope list_scope. Definition known_functions := [("mul", smul); ("square", ssquare); ("add", sadd); ("sub", ssub); ("opp", sopp); ("from_montgomery", sfrom_montgomery); ("nonzero", snonzero); ("selectznz", sselectznz); ("to_bytes", sto_bytes); ("from_bytes", sfrom_bytes)]. Definition valid_names : string := Eval compute in String.concat ", " (List.map (@fst _ _) known_functions). (** Note: If you change the name or type signature of this function, you will need to update the code in CLI.v *) Definition Synthesize (function_name_prefix : string) (requests : list string) : list string * list (string * Pipeline.ErrorT (list string)) * PositiveSet.t (* types used *) := Primitives.Synthesize machine_wordsize valid_names known_functions (fun _ => nil) [] function_name_prefix requests. End for_stringification. End __.